
The grainscape package for R:

Tutorials using simulated landscapes

(Prepared: January 15th, 2013)

P. Galpern1,2

1Natural Resources Institute, University of Manitoba, Winnipeg, Canada
2email: pgalpern@gmail.com (for support, bug reports, etc.)

Contents

1 Introduction 2

2 Tutorials 2
The minimum planar graph . 3

Step 1: Preparing the resistance surface . 3
Step 2: Extracting the MPG . 4
Step 3: Quick visualization of the MPG . 4
Step 4: Reporting on the MPG . 4
Step 5: Thresholding the MPG . 7
Step 6: Visualizing a thresholded graph . 9
Step 7: Next Steps . 9

Patch-based grains of connectivity . 9
Step 1: Begin with an MPG . 9
Step 2: Exploring the Voronoi tessellation . 9
Step 3: Building GOC models . 11
Step 4: Visualizing a GOC model . 11
Step 5: Identifying locations on a GOC model 11
Step 6: Finding the distance between points on a GOC model 11

Lattice grains of connectivity . 14
Step 1: Building a lattice GOC model . 14
Step 2: Producing and visualizing a lattice GOC model 15
Step 3: Next steps . 15

Advanced visualization for grains of connectivity models 15
Section 1: Visualizing GOC models with vectorized Voronoi polygons 15
Section 2: Visualizing the complete GOC model, corridors and shortest paths . 18

1

1 Introduction

This document is a supplement to the grainscape package, and is included as an R vignette.
grainscape can be downloaded at http://grainscape.r-forge.r-project.org. Here, we illustrate
the use of the package in a tutorial format.

Are animals free to move across the landscape? What, if anything, may limit or encourage
their movement and dispersal. These are the questions of landscape connectivity research,
and natural resource managers and practitioners of conservation are increasingly asking them
in the course of their work. What are the effects of habitat fragmentation, and can organisms
find new habitat when they need to? Can corridors help? Is it possible to stop the spread of
pests and pathogens by managing the connectivity of their hosts?

The grainscape package was developed for landscape connectivity analyses. The approach
comes from the patch-based landscape graphs tradition (Urban and Keitt, 2001; Fall et al.,
2007; Galpern et al., 2011) where a mathematical graph or network is used to represent the
relationships among habitat patches. grainscape provides two types of landscape connectiv-
ity models. The first, a minimum planar graph (Fall et al., 2007) is an efficient approximation
of the potential for connectivity among a set of habitat patches.

The second model type is the grain of connectivity, which is based on the minimum planar
graph, but extends in a way that may be useful for highly mobile terrestrial animals, such as
ungulates and carnivores. For these organisms the patch may be not be a discrete and defin-
able feature or landcover type, but is rather defined probabilistically (e.g. as the probability of
resource selection). By modelling the relationships among a polygons in a Voronoi tessellation
of the landscape rather than discrete patches, grains of connectivity offers improvements in
the ability to model highly-mobile organisms (Galpern et al., 2012). Importantly it provides
continuous coverage of the entire landscape surface, in a way that a typical patch-based graph
does not, and the ability to measure landscape connectivity at multiple scales. The scalabil-
ity, in particular, offers flexibility to accommodate uncertainty in how species may perceive
landscape features.

grainscape provides functions to extract the minimum planar graph and create two types of
grains of connectivity: patch-based and lattic forms. The minimum planar graph, an essential
step in all cases is extracted using a Windows-based binary SELES (Fall and Fall, 2001) that is
distributed with the software. Consequently, the package works only on a Windows platform
(or running R on a Windows virtual machine).

2 Tutorials

There are four tutorials. The first demonstrates how to extract a minimum planar graph and
illustrates how it may be used to ask questions about landscape connectivity. The second
demonstrates patch-based grains of connectivity modelling where animals are known to have
some affinity to a resource patch, and the third uses lattice grains of connectivity modelling,
an approach that is more appropriate where a patch concept does not clearly apply. A final
tutorial demonstrates how to produce more advanced visualizations of grains of connectivity
and the corridors connecting locations.

2

http://grainscape.r-forge.r-project.org

In each case we draw on artificial landscape data that is provided with the package. All
analyses presented here can be run with the basic grainscape installation.

Tutorial 1 The minimum planar graph

The minimum planar graph (hereafter MPG) is a spatial representation of a graph or
a network that provides an efficient approximation of all possible pairwise connections
between graph nodes (Fall et al., 2007). In graph-based landscape connectivity analyses,
graph nodes have typically been patches of habitat that are demonstrably important
for the species in question (Fall et al., 2007).

An MPG has links (i.e. models the possibility for organism movement and dispersal)
between spatially adjacent habitat patches. In some cases spatially adjacent patches
may not be linked, if the shortest connection between them can be made through a
third patch. In practice, this property means that the MPG can be used to make a
simple and easily visualized picture of how a set of habitat patches is connected. The
alternative, the complete graph, can quickly become challenging to interpret because
these may contain a dense set of graph links making the pattern difficult to discern.
A second advantage of the MPG is the much reduced set of graph links; this can be
valuable where computational efficiency is important, and essential where the number
of habitat patches being modelled numbers in the thousands.

However, there are some types of connectivity analyses where the MPG approximation
of the complete graph is not appropriate. For example, assessing community structure
within a landscape patch network (i.e. finding sets of patches that are densely connected)
is not possible as redundant connections have been removed intentionally. Equally,
the MPG is a poor choice for prioritizing the influence of a patch for connectivity, the
objective in a number of landscape graph studies e.g. (Pascual-Hortal and Saura, 2006).
Please see (Galpern et al., 2011) for further discussion of these limitations and of the
MPG.

Step 1 Preparing the resistance surface

The MPG has typically been constructed using least-cost path links between the
perimeters of habitat patches. This implies that landscape structure in the ”ma-
trix” between patches is influencing movement, and that the organism in question
is on average minimizing its costs when moving through this matrix (an assump-
tion possibly appropriate for terrestrial animals, and terrestrial animal-dispersed
plants). Equally, MPGs can be constructed using Euclidean links, where the only
influence of the matrix on movement is the effect of spatial separation (i.e. distance
it presents between neighbouring habitat). In the following example we illustrate
just the case where links are least-cost paths on a resistance surface. Euclidean
links can be produced by passing a uniform cost surface (a constant raster), and
a raster describing the patches. The only difference in analysis is at the first step
below.

We begin by loading a landscape raster distributed with the package. Note that
any raster format readable using the raster package can be used here. The .asc

format rasters distributed with the package are ESRI ArcASCII format.

> patchy <- raster(system.file("extdata/patchy.asc", package="grainscape"))

3

Then, for convenience, we use R to turn this raster into a resistance surface. In
this example we will assume the feature class 1 are the patches, so we will set them
to resistance value also equal to 1 (i.e. no additional resistance to movement than
distance alone). The river, feature class 2, is assigned the highest resistance of 10.
Other features are assigned values in between. The parameterization of resistance
surfaces is itself a big topic (Zeller et al., 2012).

> patchyCost <- reclassify(patchy, rcl=cbind(c(1,2,3,4,5), c(1, 10, 8, 3, 6)))

> plot(patchyCost)

The result is shown in Figure 1.

Step 2 Extracting the MPG

With a resistance surface in hand the next step is to create the MPG. Basic use
of the function, gsMPG() to do this is shown here. Here for simplicity we assume
that all areas with the resistance value equal to 1 on the raster are patches.

> #patchyMPG <- gsMPG(patchyCost, patch=patchyCost==1)

Note that we defined the patches by passing a binary raster patchyCost==1 as
input. If patches are to be defined in a different way (e.g. using resistance classes 1
and 2) then a binary patch raster can be produced as patch=patchyCost %in% c(1,2).
Equally, we could use the raster package to load a binary raster produced manu-
ally in GIS software and specify the resulting raster object as the patch parameter.

Upon execution of this function, grainscape calls SELES, a binary executable
distributed with the package, in order to extract the graph, and then automatically
imports the output of the SELES run back into R transparently. More control can
be had over this process if required (see manual).

Step 3 Quick visualization of the MPG

A quick way to visualize the MPG is provided in the gsMPG object produced by
gsMPG().

> plot(patchyMPG$mpgPlot)

However, I’ve done something a little more advanced so that it shows up cleanly
in the PDF you are now reading. The result is shown in Figure 2.

Step 4 Reporting on the MPG

Following extraction, the MPG is available as an igraph object (see patchyMPG$mpg)
and can be analyzed using any of the functions in this package. A quick way to re-
port on the structure of the graph in tabular format is provided by the grainscape
function gsGraphDataFrame():

gsGraphDataFrame(patchyMPG)

The output shows the structure of the vertices (nodes) and their attributes under
the list element $v as well as the structure of the graph in the form of an edge
list (i.e. pairs of edges e1 and e2 that are connected) and associated edge (link)
attributes under the list element $e. Note that only the first three lines of each

4

0 100 200 300

−
40

0
−

30
0

−
20

0
−

10
0

0

2

4

6

8

10

Figure 1: Input raster resistance surface to create MPG. Features with value of 1 will be the
patches in the graph. A river (dark green) has the highest resistance in this example.

5

> ## Plot the patches / nodes

> plot(patchyMPG$patchId, col="black", main="", legend=FALSE)

> ## Before plotting the links we'll make them wider so they print nicely

> links <- patchyMPG$lcpPerimWeight > 0

> links[raster::edge(links, type="outer")] <- 1

> plot(links, col="darkgrey", add=TRUE, legend=FALSE)

0 100 200 300

−
40

0
−

30
0

−
20

0
−

10
0

0

Figure 2: A quick visualization of the MPG. Black areas are patches (nodes or vertices) in the
graph, and grey lines are links (edges) showing the least-cost path between the perimeters of
the patches. In depth discussion of how the MPG is generated can be found elsewhere (Fall
et al., 2007)

6

has been reproduced here. Please see the manual for the interpretation of the
attributes.

Note! however that the attribute eucPerimWeight is not the same as extracting
the MPG on a uniform (Euclidean) cost surface. This attribute describes the
Euclidean distance between patch perimeters given the Voronoi tessellation of the
cost surface (the dual of the MPG). Please see the next tutorial for information
about the Voronoi tessellation.

[[1]]

[[1]]$v

name patchId patchArea patchEdgeArea coreArea centroidX centroidY

1 1 1 4005 389 3616 81.04227 -32.63843

2 2 2 1686 189 1497 355.53782 -27.94127

3 3 3 939 154 785 302.14102 -54.40094

[[1]]$e

e1 e2 linkId lcpPerimWeight eucPerimWeight startPerimX startPerimY

1 12 13 24 843.1065 151.5432 106.36687 -350.56063

2 9 13 23 788.6869 118.1933 153.30812 -278.65062

3 1 9 22 762.3942 165.2791 61.42312 -53.93187

endPerimX endPerimY linkType

1 258.17687 -335.5794 3

2 258.17687 -335.5794 2

3 95.38062 -216.7281 2

Step 5 Thresholding the MPG

A frequent step in the analysis of a patch-based landscape graph is to threshold
the graph into a series of subgraphs or components representing connected areas
for an organism (Galpern et al., 2011, 2012; Urban and Keitt, 2001). This has
sometimes been called a scalar analysis (Brooks, 2003).

The function gsThreshold() provides a way to conduct a scalar analysis at multi-
ple scales. Here we ask for 5 thresholds, and the function finds five approximately
evenly-spaced threshold values in link length:

scalarAnalysis <- gsThreshold(patchyMPG, nThresh=5)

maxLink nComponents

1 0.0000 13

2 210.7766 6

3 421.5532 1

4 632.3299 1

5 843.1065 1

The $summary of this analysis can be plotted to explore scales of aggregation in the
landscape. Figure 3 shows a scalar analysis of this landscape with 100 thresholds,
where the response variables is the number of components or subgraphs created by
the thresholding.

Other independent variables about the components (e.g. area of patches) could,
of course, be calculated by processing the thresholded graphs scalarAnalysis$th
and their attributes using the igraph function clusters().

7

> scalarAnalysis <- gsThreshold(patchyMPG, nThresh=100)

> plot(scalarAnalysis$summary[, "maxLink"],

+ scalarAnalysis$summary[, "nComponents"],

+ xlab="Link Threshold (resistance units)",

+ ylab="Number of components", type="l")

0 200 400 600 800

2
4

6
8

10
12

Link Threshold (resistance units)

N
um

be
r

of
 c

om
po

ne
nt

s

Figure 3: A scalar analysis at 100 thresholds of the MPG in Figure 2. When the landscape
is a single component at higher link thresholds all patches are completely connected. As an
example, an organism able to disperse 200 resistance units would experience this landscape
as 6 connected regions.

8

Step 6 Visualizing a thresholded graph

Consider an organism able to disperse a maximum of 200 resistance units. Ac-
cording to Figure 3 this organism would experience this landscape as 6 connected
regions. This is visualized in Figure 4.

Step 7 Next steps

With the MPG in hand, all sorts of subsequent analyses about landscape connec-
tivity are possible. Grains of connectivity (GOC) the subject of the next three
tutorials is an example of using the MPG and its complement the Voronoi tessel-
lation.

When programming your own analyses in R based on the MPG it is helpful to
observe that the patchyMPG$patchId and patchyMPG$lcpLinkId rasters contain
the numerical IDs of the patches (nodes) and links respectively. These are are also
contained as attributes in the igraph object patchyMPG$mpg. Using these three
data objects together gives flexibility to visualize any graph analysis. To explore
the attributes further use gsGraphDataFrame().

Tutorial 2 Patch-based grains of connectivity

Grains of connectivity (hereafter GOC) was initially developed in two papers (Galpern
and Manseau, 2013; Galpern et al., 2012). Please refer to these papers for much more
detail on this method. In summary, grains of connectivity describes a tessellation of
functionally-connected regions of the landscape. These may be especially useful for
modelling landscape connectivity for highly-mobile terrestrial organisms that are not
obligate patch occupants.

Patch-based GOC, shown in this tutorial, may be most relevant for oganisms that have
patch affinities, but experience ”habitat” as a probabilistic surface. Lattice GOC, shown
in the next tutorial, is likely more appropriate when a patch affinity cannot be supported
(i.e. there is no resource for which proximity is demonstrably important). This may
also be the case when modelling landscape connectivity for large terrestrial mammals.

Step 1 Begin with an MPG

Here, we repeat the steps in Tutorial 1 for the same resistance surface. Any of the
variations imaginable for the MPG are equally valid here.

> patchy <- raster(system.file("extdata/patchy.asc", package="grainscape"))

> patchyCost <- reclassify(patchy, rcl=cbind(c(1,2,3,4,5), c(1, 10, 8, 3, 6)))

> #patchyMPG <- gsMPG(patchyCost, patch=patchyCost==1)

Step 2 Exploring the Voronoi tessellation

Before we build the GOC graph, we should explore the essential building block of
GOC, which is the Voronoi tessellation. This particular Voronoi tessellation was
first described elsewhere (Fall et al., 2007) and is the complement of the MPG. It is
found by finding the region of proximity in resistance units around a resource patch.
In contrast to a typical Voronoi tessellation where the generators are points and
distance is Euclidean, this tessellation uses two-dimensional patches as generators

9

> ## Plot the patches

> plot(patchyMPG$patchId, main="", col="black", legend=FALSE)

> ## Plot the links, but emphasize them first for printing

> thresholdLink <- patchyMPG$lcpPerimWeight <= 200

> thresholdLink[thresholdLink==0] <- NA

> thresholdLink[raster::edge(thresholdLink, type="outer")] <- 1

> plot(thresholdLink, add=TRUE, col="darkgrey", legend=FALSE)

0 100 200 300

−
40

0
−

30
0

−
20

0
−

10
0

0

Figure 4: The thresholded MPG depicted with a link length of 200 resistance units. An
organism that can disperse a maximum of 200 resistance units would experience this landscape
as 6 connected regions in the depicted spatial configuration. Note that the plotting has been
made a little more complicated than it needs to be in order to emphasize the links for printing.

10

and distance is calculated in cost or resistance space. Ultimately, the tessellation
is found in SELES using a marching algorithm.

The Voronoi tessellation was extracted by gsMPG() in order to build the MPG. It
can be plotted simply as follows:

plot(patchyMPG$voronoi)

A plot with the Voronoi tessellation and the patches superimposed is shown in
Figure 5.

Step 3 Building GOC models

GOC analysis is essentially a scalar or thresholding analysis (see gsThreshold()

and Tutorial 1) except the graph being thresholded is one of Voronoi polygons
rather than patches. In particular, it is the MPG of Voronoi polygons that is
thresholded. As links are added, and Voronoi polygons linked, the relevant poly-
gons are combined describing larger connected regions. An additional step is that
the links connecting a pair of polygons are the mean value of all links connecting
any patches in each of the two polygons from the MPG (Galpern et al., 2012).

The function gsGOC() builds GOC models at multiple thresholds. As with gsThreshold()

we can specify the number of thresholds, or grains of connectivity models, we want
to create using the nThresh parameter.

patchyGOC <- gsGOC(patchyMPG, nThresh=100)

Step 4 Visualizing a GOC model

To get a quick sense of the connected regions described by a GOC model at a given
threshold (or scale of movement) we can use the function gsGOCVisualize(). This
example uses the functions plotting mechanism to plot the 62nd threshold in the
patchyGOC object.

gsGOCVisualize(patchyGOC, whichThresh=4, doPlot=TRUE)

Figure 6 shows the resulting plot.

Step 5 Identifying locations on a GOC model

Organisms have locations in space. It is often necessary to know which connected
region contains a given location in a GOC model. This can be done using the
function gsGOCPoints(). First we create a thousand random locations that are on
the landscape, and then run the function

> loc <- cbind(runif(1000)*399, runif(1000)*-399)

> locGOC <- gsGOCPoint(patchyGOC, loc)

The resulting object locGOC reports on the polygon which contains each location at
each threshold (pointPolygon) as well as several other variables describing features
of the polygons in which point locations are contained.

Step 6 Finding the distance between points on a GOC model

11

> plot(patchyMPG$voronoi, main="")

> plot(patchyMPG$patchId, add=TRUE, col="black", legend=FALSE)

0 100 200 300

−
40

0
−

30
0

−
20

0
−

10
0

0

2

4

6

8

10

12

Figure 5: A Voronoi tessellation. This is the complement of the MPG. The patches are used
as generators, and regions of proximity (polygons of different colours) are found in cost or
resistance units. The method was first described by (Fall et al., 2007).

12

> gsGOCVisualize(patchyGOC, whichThresh=62, doPlot=TRUE)

0 100 200 300

−
40

0
−

30
0

−
20

0
−

10
0

0

whichThresh=62

1

2

3

4

5

6

Figure 6: A visualization of a GOC model. In this case it is the 62nd scale or threshold
extracted, which represents a link threshold of 168 resistance units, and a landscape of 6
components. Voronoi polygons imply regions that are functionally-connected at the given
movement threshold.

13

As mentioned at an earlier step, at each threshold (or scale) there is also a GOC
graph describing the relationships among the polygons. We can find the distance
between the polygons containing pairs of points using the gsGOCDistance() func-
tion. This may be particularly useful in certain types of landscape genetic analyses
where genetic distances are correlated with landscape distances (Galpern et al.,
2012). A key advantage is that thresholding permits scaling of these distances for
coarse representations of the landscape, removing variation from the calculation of
distance that may be uncorrelated with dispersal.

Here we’ll use four locations on the landscape.

> loc <- rbind(c(100,-100), c(200, -200), c(300, -300), c(100, -300))

> distGOC <- gsGOCDistance(patchyGOC, loc)

The resulting object locGOC reports on the pairwise distances in accumulated re-
sistance units between each of those four points given the GOC model at each
threshold. The results for the 62nd threshold are shown, where the row and col-
umn names give the polygonId containing each of the four points.

> distGOC$th[[62]]

$grainD

1 3 5 6

1 0.0000 365.4186 976.5450 706.8379

3 365.4186 0.0000 611.1264 341.4193

5 976.5450 611.1264 0.0000 815.8967

6 706.8379 341.4193 815.8967 0.0000

Tutorial 3 Lattice grains of connectivity

A lattice grains of connectivity model uses a lattice of focal points superimposed over
the landscape rather than patches on the landscape as nodes in the MPG. These points
are also the generators used in the Voronoi tessellation. The result is a more generic way
to scale up a resistance surface to coarser scales, without requiring assumptions about
a particular habitat type that may be ”focal” for connectivity. All that is required
for analysis is an input resistance surface, reducing the ecological parameter set of the
model.

Step 1 Building a lattice GOC model

For lattice GOC modelling a decision is required regarding the spacing of points
in the lattice. This amounts to a decision about the finest scale, or grain, to
be analyzed. Analysis time quickly increases as more nodes (lattice points) are
included, so this decision should be made carefully.

The steps in extracting the MPG are the same as before, except instead of specify-
ing a raster for the patch parameter, we specify an integer. This integer gives the
spacing in cells between focal points in the square lattice. Thus a square raster of
400 cells in dimension, and patch=40 produces a lattice of 10 * 10 = 100 focal
points.

> #patchyMPGLattice <- gsMPG(patchyCost, patch=40)

Let’s check how many focal points were actually used in this case:

14

> max(patchyMPGLattice$patchId[], na.rm=TRUE)

[1] 100

Which is what we expected. A visualization of these focal points and the MPG is
shown in Figure 7.

Step 2 Producing and visualizing a lattice GOC model

These steps proceeds much as with the patch-based GOC model. The next step is
to produce GOC model.

> #patchyGOCLattice <- gsGOC(patchyMPGLattice, nThresh=100)

Visualization of the Voronoi tessellation for the 35th threshold is shown in Figure 8.

Step 3 Next steps

Further analyses can proceed as with the patch-based GOC model. For example
gsGOCPoints and gsGOCDistance can be used, as can other igraph analyses of
the graphs contained in patchyGOCLattice$th and patchMPGLattice$mpg.

Tutorial 4 Advanced visualization for grains of connectivity models

So far we have been visualizing the products of analysis using raster formats. Since all
analyses take place in raster format this has the added advantage of speed. However,
for publications, or on-screen visuals, it tends to be better to have high resolution
vector representations; particularly of the Voronoi polygons, as this makes it easier to
understand what they show without confusing blocks of colour.

In the two sections of this tutorial we demonstrate how to use the rgeos package in R
to produce polygon representations of the Voronoi polygons in a GOC model, as well
as using a grainscape function intended for advanced visualizations.

Beware! One caution is that the rgeos package continues to have memory leak problems
from its parent C GEOS library which extend to grainscape. Occasionally when
running analyses, particularly with thousands of nodes (i.e. polygons), rgeos can
consume all available memory and lead to a crash of the R instance. Also, when running
multiple visualizations in succession it is often necessary to terminate the R instance to
free up memory before running a subsequent visualization.

Section 1 Visualizing GOC models with vectorized Voronoi polygons

For final analyses where visualization is a goal, build the GOC model with the
sp=TRUE parameter set. Also, the rgeos package must be installed. Here, we
do this for both the patch-based and lattice GOC models of Tutorials 2 and 3,
respectively. Note that this can be very slow, consuming orders of magnitude more
computational time!

> #patchyGOC_SP <- gsGOC(patchyMPG, nThresh=100, sp=TRUE)

> #patchyGOCLattice_SP <- gsGOC(patchyMPGLattice, nThresh=100, sp=TRUE)

Note how we can now visualize the Voronoi tessellation also with the sp=TRUE

parameter to make things sharper. Figure 9 shows this for the lattice GOC model

15

> ## Plot the links but make them wider so they print nicely

> links <- patchyMPGLattice$lcpPerimWeight > 0

> links[raster::edge(links, type="outer")] <- 1

> plot(links, main="", col="darkgrey", legend=FALSE)

> ## Add the focal points. We'll get the locations from the MPG object

> focalPts <- cbind(V(patchyMPGLattice$mpg)$centroidX, V(patchyMPGLattice$mpg)$centroidY)

> points(focalPts, pch="+", cex=1.25)

0 100 200 300

−
40

0
−

30
0

−
20

0
−

10
0

0

++++++++++

++++++++++

++++++++++

++++++++++

++++++++++

++++++++++

++++++++++

++++++++++

++++++++++

++++++++++

Figure 7: A visualization of an MPG of a lattice of focal points for the resistance surface in
Figure 1. Again, we have complicated plotting a bit to emphasize the links better.

16

> plot(gsGOCVisualize(patchyGOCLattice, whichThresh=35)$voronoi,

+ col=sample(terrain.colors(100)), main="whichThresh=35")

0 100 200 300

−
40

0
−

30
0

−
20

0
−

10
0

0

whichThresh=35

10

20

30

40

50

60

Figure 8: A visualization of a GOC model. In this case it is the 35th scale or threshold
extracted, which represents a link threshold of 122 resistance units. Voronoi polygons imply
regions that are functionally-connected at this movement threshold. It is easy to imagine,
here, how using more lattice points makes it possible to define grains of connectivity with
higher resolution.

17

at the finest threshold possible, superimposed over the input resistance surface
used to generate the GOC model.

Section 2 Visualizing the complete GOC model, corridors and shortest paths

grainscape provides a function called gsGOCCorridor() to simplify advanced
visualizations when the goal is to show a GOC, the graph connecting Voronoi
polygons and a shortest path or corridor between certain points on the landscape.

Figure 10 shows a visualization for the patch-based GOC model, and Figure 11
shows a visualization for the lattice GOC model. Finally Figure 12 demonstrates
how to take manual control of the visualization to liven up the product!

References

Brooks, C.P. (2003). A scalar analysis of landscape connectivity. Oikos 102:433-439.

Fall, A. and J. Fall. (2001). A domain-specific language for models of landscape dynamics.
Ecological Modelling 141:1-18.

Fall, A., M.J. Fortin, M. Manseau, and D. O’Brien. (2007). Spatial graphs: Principles and
applications for habitat connectivity. Ecosystems 10:448-461.

Galpern, P., M. Manseau. (2013). Modelling the influence of landscape connectivity on animal
distribution: a functional grain approach. Ecography. In press.

Galpern, P., M. Manseau, and P.J. Wilson. (2012). Grains of connectivity: analysis at multiple
spatial scales in landscape genetics. Molecular Ecology 21:3996.4009.

Galpern, P., M. Manseau, and A. Fall. (2011). Patch-based graphs of landscape connectivity:
A guide to construction, analysis and application for conservation. Biological Conservation
144:44-55.

Pascual-Hortal, L. and S. Saura. (2006). Comparison and development of new graph-based
landscape connectivity indices: towards the priorization of habitat patches and corridors
for conservation. Landscape Ecology 21:959-967.

Urban, D. and T. Keitt. (2001). Landscape connectivity: A graph-theoretic perspective. Ecol-
ogy 82:1205-1218.

Zeller, K.A., K. McGarigal, and A.R. Whiteley. (2012). Estimating landscape resistance to
movement: a review. Landscape Ecology:1-21.

18

> plot(patchyCost, legend=FALSE, main="")

> plot(gsGOCVisualize(patchyGOCLattice_SP, whichThresh=1, sp=TRUE)$voronoiSP,

+ add=TRUE)

> focalPts <- cbind(V(patchyMPGLattice$mpg)$centroidX, V(patchyMPGLattice$mpg)$centroidY)

> points(focalPts, pch="+", cex=1.25)

0 100 200 300

−
40

0
−

30
0

−
20

0
−

10
0

0

++++++++++

++++++++++

++++++++++

++++++++++

++++++++++

++++++++++

++++++++++

++++++++++

++++++++++

++++++++++

Figure 9: A visualization of a lattice GOC model using vectorized Voronoi polygons, super-
imposed over the input resistance surface. In this case the Voronoi polygons show the finest
grain possible using the 100 point lattice (+) initially specified. Plotting only the outlines of
the Voronoi polygons makes it easier to show other information on this map (e.g. resistance
surface) and retain clarity. Recall, when interpreting this figure, that the polygons show
regions of proximity from each focal lattice point given distance in resistance units.

19

> loc <- rbind(c(50, -350), c(350, -50))

> corridor1 <- gsGOCCorridor(patchyGOC_SP, whichThresh=1, coords=loc, doPlot=TRUE)

> points(loc, pch=c("P", "Q"), cex=1.25)

> mtext(paste("Shortest path between P and Q:",

+ round(corridor1$corridorLength, 2), "resistance units",

+ sep=" "),

+ side=1)

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

P

Q

Shortest path between P and Q: 1077.83 resistance units

Figure 10: A visualization of the complete patch-based GOC model at its finest scale and the
shortest path or least-cost corridor given the GOC graph between two locations on the map
(P and Q) at this scale. Grey regions are Voronoi polygons in the patch-based GOC model.

20

> loc <- rbind(c(50, -350), c(350, -50))

> corridor1 <- gsGOCCorridor(patchyGOCLattice_SP, whichThresh=45,

+ coords=loc, doPlot=TRUE)

> points(loc, pch=c("P", "Q"), cex=1.25)

> mtext(paste("Shortest path between P and Q:",

+ round(corridor1$corridorLength, 2), "resistance units",

+ sep=" "),

+ side=1)

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

P

Q

Shortest path between P and Q: 1293.83 resistance units

Figure 11: A visualization of the complete lattice GOC model at a relatively coarse scale and
the shortest path or least-cost corridor given the GOC graph between two locations on the
map (P and Q) at this scale. Grey regions are Voronoi polygons in the lattice GOC model.

21

> tiny <- raster(system.file("extdata/tiny.asc", package="grainscape"))

> ## Create a resistance surface from a raster using an is-becomes reclassification

> tinyCost <- reclassify(tiny, rcl=cbind(c(1, 2, 3, 4), c(1, 5, 10, 12)))

> ## Produce a patch-based MPG where patches are resistance features=1

> #tinyPatchMPG <- gsMPG(cost=tinyCost, patch=tinyCost==1)

> ## Extract a representative subset of 5 grains of connectivity using sp=TRUE

> #tinyPatchGOC <- gsGOC(tinyPatchMPG, nThresh=5, sp=TRUE)

> ## Visualization of a corridor

> corridorStartEnd <- rbind(c(10,10), c(90,90))

> tinyPatchCorridor <- gsGOCCorridor(tinyPatchGOC, whichThresh=3,

+ coords=corridorStartEnd)

> plot(tinyPatchCorridor$voronoiSP, col="lightgrey", border="white", lwd=2)

> plot(tinyPatchCorridor$linksSP, col="darkred", lty="dashed", add=TRUE)

> plot(tinyPatchCorridor$nodesSP, col="darkred", pch=21, bg="white", add=TRUE)

> plot(tinyPatchCorridor$shortestLinksSP, col="darkred", lty="solid",

+ lwd=2, add=TRUE)

> plot(tinyPatchCorridor$shortestNodesSP, col="darkred", pch=21,

+ bg="darkred", add=TRUE)

> mtext(paste("Corridor shortest path length:",

+ round(tinyPatchCorridor$corridorLength, 2),

+ "resistance units"), side=1)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Corridor shortest path length: 204.02 resistance units

Figure 12: More control over a corridor visualization using an example from the manual, and
the tiny.asc resistance surface

22

