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1 Forwords

This document is an attempt at giving a quick overview of the R package ggene. The
package was designed to provide tools to analyse microsatellite data recorded for geolocated
individuals. ggene is based on spatially explicit statistical methods and mostly relies on
geostatistics i.e. variography. The package allows variogram analysis following Wagner et al.
(2005) and provides additional tools such as variogram maps. Readers should refer to the
numerous textbooks dedicated to geostatistics amongst which are Geostatistics for natural
resources evaluation (Goovaerts 1997) and Applied geostatistics (Isaaks and Srivastava 1989).
For an introduction to geostatitsics in R, readers should consult Model-based geostatistics
(Diggle and Ribeiro 2007).

2 Package Overview

2.1 Disclaimer

ggene is delivered as it is and without any warranty. If you find a bug, or if you have a
suggestion to improve the package, please contact us at ggene.package@gmail.com.

2.2 Funding

The INRA department EFPA provided financial support to a very early version of the package
ggene. We further benefited from the financial support of the INRA métaprogramme SMaCH
(Sustainable Management of Crop Health) through the project COPACABANA.

2.3 Package functions

The table below lists the main functions available from ggene.

name topic description

tab2geo data input creates a ggene object (useful for haploid organisms)
gene2geo data input creates a ggene object from a genind object
subsetdata data management subsets a ggene object by point-and-click
distlag utility creates customized distance intervals
genocount utility computes the number of different genotypes in a dataset
genoweight utility computes the weights associated to the different genotypes
svariog analysis variography
svarmap analysis variography
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name topic description

varioWeight analysis variography
randsvariog analysis variography
fitsvariog analysis variography

As usual in the R environment, users can access a specific help page by entering ?name of
the function in the R console. Typing

?ggene

provides an overview of the main package features.

2.4 Datasets available from ggene

Readers are referred to a dedicated vignette entitled ggene_datasets accessible by typing
vignette("ggene_datasets") in the R console.

3 Data management

3.1 Data inputs

Data are imported and converted to an object of class ggene using 2 functions, namely
gene2geo and tab2geo.

• gene2geo uses an object of genind class from the package adegenet (Jombart 2008)
and a data frame containing the spatial coordinates of the corresponding individuals.

• tab2geo operates in a similar way but requires a simple data frame for the genetic data
instead of a genind object. tab2geo is intended to handle haploid data which cannot
be easily stored as a genind object (see the manual of adegenet). Note that missing
data can be handled using the function scaleGen available in the package adegenet.

The chunk of code below shows how to read both coordinates and microsatellite data for an
haploid dataset.
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# read genetic data
sim <- read.csv(system.file("extdata/sim_01.csv", package="ggene"),

header=FALSE)
# read spatial coordinates
xy.sim <- read.csv(system.file("extdata/xysim_01.csv", package="ggene"),

header=FALSE)
# create a ggene object
dat.sim <- tab2geo(X=sim, coord=xy.sim)

## The number of individuals is 625
## The number of locus is 20

str(dat.sim)

## List of 5
## $ tab : num [1:625, 1:502] 0 0 0 0 0 0 0 0 0 0 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:625] "1" "2" "3" "4" ...
## .. ..$ : chr [1:502] "V1.14" "V1.16" "V1.17" "V1.18" ...
## $ coord :'data.frame': 625 obs. of 2 variables:
## ..$ V1: int [1:625] 150 150 150 150 150 150 150 150 150 150 ...
## ..$ V2: int [1:625] 150 151 152 153 154 155 156 157 158 159 ...
## $ nloc : int 20
## $ loc : Named int [1:20] 23 31 33 31 15 36 29 19 25 20 ...
## ..- attr(*, "names")= chr [1:20] "V1" "V2" "V3" "V4" ...
## $ locnames: chr [1:20] "V1" "V2" "V3" "V4" ...
## - attr(*, "class")= chr "ggene"

The function gene2geo operates the same way but relies on a genind object. genind objects
are created with the package adegenet from various data input formats such as genepop or
genetix (see the documentation of the package for details). Note that ggene comes with
no function allowing to read data directly from files.
Here is an example where we firstly read the genetic data from a file in genepop format :

library(adegenet)
dat <- read.genepop(system.file("extdata/sim_03.gen", package="ggene"),

ncode = 3)

##
## Converting data from a Genepop .gen file to a genind object...
##
##
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## File description: Simulated data
##
## ...done.

The resulting object has various characteristics:

dat

## /// GENIND OBJECT /////////
##
## // 625 individuals; 20 loci; 502 alleles; size: 1.3 Mb
##
## // Basic content
## @tab: 625 x 502 matrix of allele counts
## @loc.n.all: number of alleles per locus (range: 15-36)
## @loc.fac: locus factor for the 502 columns of @tab
## @all.names: list of allele names for each locus
## @ploidy: ploidy of each individual (range: 2-2)
## @type: codom
## @call: read.genepop(file = system.file("extdata/sim_03.gen", package = "ggene"),
## ncode = 3)
##
## // Optional content
## @pop: population of each individual (group size range: 625-625)

There are 625 individuals.
Let’s now read the geographic coordinates :

xy <- read.csv(system.file("extdata/xysim_01.csv", package="ggene"),
header=FALSE)

dim(xy)

## [1] 625 2

The function head displays the first records. There are 2 columns corresponding to abscissa
and ordinates, x and y. It is important to check this information since the coordinate file may
contain point labels or additional coordinate systems and other information. It is important
that users select the correct coordinate system and for that reason, checking the content of
the data file is necessary. In addition, it is assumed that coordinates are provided in cartesian
system rather that in a longitude/latitude system. Readers are referred to Bivand et
al. (2008) for details.
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head(xy)

## V1 V2
## 1 150 150
## 2 150 151
## 3 150 152
## 4 150 153
## 5 150 154
## 6 150 155

At this point, we can plot the spatial distribution of individuals and visualise the sampling
scheme:

plot(xy[,1],xy[,2], xlab="x coordinates", ylab="y coordinates")
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We can create a ggene object using gene2geo:

library(ggene)
data <- gene2geo(X=dat, coord=xy)

## The number of individuals is 625
## The number of locus is 20

class(data)

## [1] "list" "ggene"
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3.2 Data subsets

In some cases, one may wish to analyse a subset of the dataset e.g. one patch of individuals.
The function subsetdata allows to extract subsets of a dataset using a polygon created by
point-and-click in the display.

data(sim02)
sub <- subsetdata(X=sim02, col="blue")
to add points: click left mouse button in window

to exit: click middle mouse button
[The last point should NOT repeat the first point]

A plot of the individuals location is displayed and user is invited to create a polygon defining
the group of points to be extracted by clicking in the display (figure 3.2 page 8).

\begin{figure}
\caption[subsetdata]{Subsetting a dataset using the function subsetdata: screenshot of

the polygon definition.} \end{figure}
The resulting object has 4 slots, the first one being the ggene object corresponding to the

subset of data.

class(sub[[1]])
[1] "ggene"

Sequential extractions are possible by launching the function with previous extracts as a list
of arguments (L).
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> sub2 <- subsetdata(X=sim02, col="blue", L=list(sub))
to add points: click left mouse button in window

to exit: click middle mouse button
[The last point should NOT repeat the first point]

The definition of the second polygon is done while the first polygon (sub) appears in the plot
(figure 3.2 page 9).

\begin{figure}
\caption[subsetdata]{Subsetting a dataset using the function subsetdata: screenshot of a
second polygon definition. Note that the first polygon "sub" appears in the plot to facilitate

the positioning a the new polygon.} \end{figure}

3.3 Superimposed individuals

Several individuals may be collected at the same site i.e. their coordinates are similar. This
situation is not uncommon in biology while it is unlikely in geology and soil science where a
given spatial location supports only one sample. Duplicated coordinates may also point out
an error in the data file. For that reason, ggene will issue a warning message when a data
set contains points/individuals with duplicated coordinates. This occurs when you read the

raw datasets by means of functions tab2geo or gene2geo.
For instance :
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data(sim02)
# forcing 3 duplicated sample locations
sim02$coord[5,] <- sim02$coord[10,] <- sim02$coord[20,]
# create a new ggene object with duplicate coordinates
sim02bis <- tab2geo(X=sim02$tab, coord=sim02$coord)

## WARNING: There are some duplicated coordinates.
## You should consider jittering the duplicated coordinates before
## running the anisotropic variography.
## You can use jitterDupCoords from package geoR
## The number of individuals is 100
## The number of locus is 395

Duplicated coordinates cause no problem in variogram analysis except for directional
variograms. The function svariog will issue a warning message when data contain

duplicated coordinates but will run correctly in the case of omnidirectional variograms (in
that case a bin will be added at the origin: see below). If you want to avoid any warning you
can jitter point coordinates. This consists in slightly changing the coordinates and is of no
consequence on the analysis outputs provided that the changes remain slight. Jittering the

duplicated coordinates can be achieved using jitterDupCoords from package geoR.
The following code chunk tests for the presence of duplicated coordinates:

library(geoR)
# test for duplicated coordinates
dup.coords(sim02bis$coord)

## [,1]
## [1,] "5"
## [2,] "10"
## [3,] "20"
## attr(,"class")
## [1] "duplicated.coords"

There are 3 duplicated coordinates.

#Jitter coordinates
coordbis <- jitter2d(sim02$coord[,], max=0.01)

# test for duplicated coordinates
dup.coords(coordbis$coord)

## NULL
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The coordinates have been slightly changed, resulting in no duplicate. Users should consult
the help page of the function jitter2d and carefully evaluate the value to be given to the

argument max.

3.4 Managing recurrent genotypes

The presence of repeated genotypes potentially affects the spatial structure and it may be
necessary to account for this effect (H. Wagner et al. 2005; Werth S. et al. 2006; Dutech et
al. 2008). This can be achieved by using a weighting matrix during the computations (see H.

Wagner et al. 2005).
genocount and genoweight are utilities for preparing such matrices of weights.

• genocount identifies and counts the repeated genotypes in a given dataset. The function
returns a list of genotypes and a number that identifies each of them in the dataset.
The output of genocount can be useful on its own but is primarily intended to feed
the function genoweight.

• genoweight computes the weighting matrix following Wagner et al. (2005) using the
output of genocount.

data(Wagner)
count <- genocount(X=Wagner)
count

## $vec
## [1] 1 1 2 3 3 3
##
## $n
## [1] 3

mat <- genoweight(X=Wagner,genotyp=count$vec)
mat

## 1 2 3 4 5
## 2 0.0000000
## 3 0.5000000 0.5000000
## 4 0.1666667 0.1666667 0.3333333
## 5 0.1666667 0.1666667 0.3333333 0.0000000
## 6 0.1666667 0.1666667 0.3333333 0.0000000 0.0000000

The matrix of weights mat in the example above can be used to compute the weighted
variogram using the function varioWeight (see details § 5.2.3).
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3.5 Missing data (NAs)

Missing data i.e. nuls alleles are not allowed and should be managed prior to data analysis.
This can be achieved by removing either individuals and/or locus exhibiting missing data.

Another solution is offered by the function scaleGene for the package adegenet.
scaleGene allows to replace NAs by the mean allele frequency or by zero. In the present
document and in all the examples provided in ggene we have removed the individuals

exhibiting missing values.

4 Variograms in a nutshell

4.1 Semivariance & the variogram

In geostatistics, spatial structures are usually assessed using the average dissimilarity between
data separated by a vector h. The dissimilarity is measured by the semivariance which is
computed as half the average squared difference between the components of each data pair:

γ̂(h) = 1
2nh

∑
a6=b

χ
(h)
ab (xa − xb)2 (1)

where xa and xb are the values of the observed variable at sites a and b, h is the distance
class, nh the number of individuals separated by a distance h and χ(h)

ab is the Kronecker
weight. The Kronecker weight for a data pair ab takes the value χ(h)

ab = 1 if the pair belongs
to the distance interval h and χ(h)

ab = 0 otherwise. In this way, only the pairs of individuals
(a, b) within the distance class h are taken into account in the calculation of γ̂(h).

The more alike are the individuals separated by h, the smaller γ̂(h) and vice versa. The plot
of γ̂(h) against the separating distance h is referred to as the semi-variogram or variogram
for short. It represents the average rate of change of the similarity with distance. Its shape
describes the pattern of spatial variation in terms of general form, scales and magnitude. In

many cases, γ̂(h) increases with h and reaches a plateau roughly equal to the sample
variance. The distance h for which γ̂(h) reaches the plateau is called the range of the

variogram and corresponds to the distance at which individuals/sampling points can be
considered as statistically independent (Goovaerts 1997; Isaaks and Srivastava 1989).

The features of the empirical variogram are conveniently summarized by fitting a theoretical
model to the estimates of γ̂(h). Not all models that seem to fit can be used and only positive
definite models are valid (aka authorized functions). This question is beyond the scope of
the present introduction and readers are referred to geostatistical textbooks such as Isaaks &
Srivastava (1989) or Goovaerts (1997). Because positive definiteness is somewhat difficult to
check, geostatisticians traditionally use a set of authorized functions that are known to meet

the assumption of positive definiteness. Authorized functions are described in various
textbooks and can be combined to describe more complex variograms (Goovaerts 1997).
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A mentioned above, under certain circumstances, the variogram levels off for a certain
distance, referred to as the range b. When h reaches b the semivariance value is maximum
and remains constant. Such variograms are referred to as bounded variograms. The plateau
is called the sill in the geostatistical jargon and corresponds to the variation picked up by
the sampling scheme. The sill variance is the sum of two terms corresponding to the part of
the variance that is explained by the spatial structure of the variable (referred to as C1, the
spatial variance or partial sill) and an additional term accounting for residual (non spatial)

variance referred to as nugget variance C0 (a term derived from the gold mining
jargon)(figure 4.1 page 13). The nugget variance C0 encapsulates various sources of

variability that are perceived as being spatially independent, i.e. that are not autocorrelated
at the scale of the study. When there is no spatial structure, the variogram is horizontal and

γ̂(h) = C0. Such variograms are referred to as 100% nugget models.

\begin{figure}[h]
\caption[Characteristic features of variogram]{Characteristic features of the variogram:

range (a), nugget variance (C0) and partial sill (C1).} \end{figure}
Fitting theoretical variogram to empirical values has given rise to an important literature
and is achieved by using generalized least-squares fitting (Goovaerts 1997) and maximum

likelihood (e.g. Akaike information criteria Webseter and Oliver (1990)). In practice,
theoretical variogram models are fitted to empirical variograms and the model parameters
furnish estimates of the partial sill, the range (a) and the nugget variance (C0). Variogram
parameters are directly interpretable in terms of strength and extent of the spatial structure.

For example, the ratio of the term C1 to the sum C0 + C1 provides a measure of the
proportion of variance that is spatially dependent. The range, b, indicates the separating
geographic distance beyond which observations are statistically independent. This is an

important issue when designing sampling schemes (Webster and Oliver 1990).
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4.2 The exponential model

Some authorized functions are commonly encountered in the geostatistical literature e.g.
spherical, gaussian or exponential models. We will only consider here the exponential model

(H. Wagner et al. 2005). It is defined by :

γ(h) = C

(
1− exp(−h

r
)
)

(2)

where C is the asymptote (sill) and r a distance parameter controlling the spatial extent of
the function. In practice, a nugget term C0 is added to the equation when theoretical models

are fitted to empirical variograms.
Exponential models are bounded (Goovaerts 1997) and approach their sill asymptotically
hence there is no range strictly speaking. For practical purposes, however, a effective range

b = 3r at which γ(a) = 0.95C is defined (Webster and Oliver 1990).

4.3 Variogram of gene diversity

The analysis of spatial genetic structure (SGS) has hitherto mostly involved correlograms
and Mantel tests (Hardy and Vekemans 1999) or geostatistical analysis of allelic frequencies
(Le Corre et al. 1998). Geostatistical exploration of genetic diversity is rare (Dutech et al.

2008; Werth S. et al. 2006; H. Wagner et al. 2005) and limited to haploid organisms.
Wagner et al. (2005) showed how variograms could be related to gene diversity so as to

express SGS of continuous populations. If we consider a set of k dummy variables zk for k
alleles with zka = 1, zka = 0.5 or zka = 0 if individual a is homozygous, heterozygous or does
not bear allele k, respectively. The proportion of unlike joins between individuals equals the

sum of the variograms of the dummy variables. Wagner et al. (2005) showed that the
variogram of multilocus gene diversity Ĥ (or expected heterozygosity) can be defined as:

Ĥ(h) =
L∑

l=1
ωlγ̂l(h) =

∑
a6=b

L∑
l=1

∑
k

ωlχ
(h)
ab

2nh

(zlka − zlkb)2 (3)

where zlka and zlkb are the dummy variables for locus l allele k for individuals a and b, χ(h)
ab is

the Kronecker weight, ωl = 1
L
is the weight of locus l with L the number of locus and nh the

number of data pairs separated by a distance of h.

4.4 Isolation by distance and the exponential variogram model

Under isolation–by–distance (i.e. limited gene dispersal) in a two-dimensional space,
theoretical models predict that kinship between individuals (as well as pairwise Fst) decreases
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approximately linearly with the logarithm of the separating distance (Hardy and Vekemans
1999). The probability of identity of two neutral genes separated by a distance r, Q(r)
depends on a gene dispersal function, the mutation rate (µ) and the population effective
density D under the assumption of an isotropic dispersal and at drift–dispersal–mutation
equilibrium (Vekemans and Hardy 2004). Interestingly, Q(r) is approximately linearly

related to ln(r) (in two dimensions) at a rate proportional to 1/Dσ2 for r values ranging
between σ and 0.5σ/

√
2µ with σ2, half the average squared axial parent–offspring distance.

The classical approach (Vekemans and Hardy 2004) consists of regressing the relatedness
coefficient F (r) on log(r) and estimating the slope b̂F which depicts the SGS. This

estimation must be done for r ranging between σ and 0.5σ/
√

2µ. An additional index, the
Sp statistic, has been proposed to characterize the SGS (Vekemans and Hardy 2004). It is:

Sp = bF

(1− FN) (4)

where FN is the kinship of immediate neighbors that compete for the same resources. FN

can be estimated by F (1), the value of F (r) for the first distance class.
The Sp statistic is directly related to dispersion parameters (under former hypotheses of IBD

and equilibrium)

Sp = 1
4πDσ2 (5)

Whereas Sp is usually estimated using Moran’s I correlogram, the exponential variogram
model fitted to empirical values of γ̂(h) provides alternate estimates of these statistics (H.
Wagner et al. 2005). FN can be estimated by the ratio of the term C1 to the sill (C0 + C1):

F̂N = C1

C0 + C1
(6)

If an estimate of F (1) is required, the exponential variogram model must be fitted under the
constraint of having a fixed nugget parameter C0 = γ̂(h = 1).

The slope parameter bF is closely related to the range parameter of the variogram. Because
the exponential model reaches its sill asymptotically, the effective range must be used to

estimate bF (H. Wagner et al. 2005):

b = −3
b̂F

(7)

Exponential model parameters allow to estimate of the index Sp and hence to the estimation
of the dispersal parameter known as the average axial parent–offspring distance.
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4.5 What does ggene actually compute?

The package provides different functions allowing the estimation of the variogram and a
function (fitsvariog) dedicated to exponential model fitting to empirical variograms. It
provides an estimate of the parameters listed above. ggene also allows to compute statistical
envelope of the variogram on the basis of random permutations of the genetic data. Two

functions provide tools to examine anisotropy. In addition, the package offers some functions
allowing to compute the omnidirectional variogram while accounting for the presence of

recurrent genotypes following the approach proposed in Wagner et al. (2005).

5 En route for variography

“If you’re going through hell, keep going.”
Winston Churchill.

5.1 Distance interval to be considered in variography

5.1.1 Distance lags, maximum distance and number of data pairs

The first step to variography is selecting ad hoc distance classes. This means choosing a
distance lag (also called distance interval or lag width) and a maximum distance value to be
considered. Individuals separated by a distance larger than this threshold won’t be evaluated.

Large distance intervals will thus tend to smooth out local details while small distance
intervals may obscure the underlying signal (if any) with too much local “noise”. The

maximum distance to be accounted for is another important aspect of empirical variograms
(Webster and Oliver 1990). Values larger than 1/3 or 1/2 of the maximum inter-sample
distance are generally the maximum considered (Journel and Huijbregts 1978; Isaaks and
Srivastava 1989; Webster and Oliver 1990) but this is mostly because empirical variograms

are used with the aim of fitting a theoretical model ultimately used for interpolation
purposes named kriging in geostatistics (Goovaerts 1997). This is not our aim when we

study genetic variation and the whole variogram is of interest. It should be noted, however,
that the largest (or lowest) distance classes may involve only a few data couples which means

that the estimate of the semivariance is poor. The number of data pairs involved in
semivariance computation highly depends on the sampling scheme. It must be noted that in
genetic survey sampling scheme can be very dependent on natural population spatial pattern
while in geology or soil science researchers often use regular schemes. Caution is therefore
needed and it is good practice to check the number of data pairs and possibly change the
distance interval accordingly. Finally, the sampling scheme is obviously determinant in the
distribution of the information along distance classes and therefore each analysis shall be
devised according to sampling scheme. Homogeneous sampling schemes are to be preferred
and in case of uneven distribution of individuals, users are advised to check the number of
data pairs involved in each semivariance estimation. In environmental sciences, geostatistics
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are often used to analyse data collected following a regular sampling scheme. One advantage
is that the number of data pairs per lags decreases more regularly when the distance lag is

increased. Random or clumped schemes requires that users be very cautious when
interpreting the variogram, particularly for large (small) intersample distances.

5.1.2 The function distlag

The function distlag allows to quickly build a vector showing the midpoint of the distance
classes to be used in variography i.e. study of the variogram. distlag uses either a set of
individual coordinates or an inter-individual euclidean distance matrix. Note that the

coordinates (hence the distances derived from) must be defined in a plane. This means that
longitude and latitude data, which are recorded in degrees and associated with an ellipse,

shall be expressed according to the adequate coordinate reference system (CRS) and
projected onto a plane. Readers are referred to the book of Bivand et al. (2008, chap. 4)

that provides precious details regarding this point. distlag operates with 3 arguments and
allow customizing the resulting distance intervals: dmin indicates the minimum distance to
be accounted for, distance.lag indicates the intersample lag distance and dist.lag.max
denotes the maximum intersample distance to be considered. The function returns a vector
that can be passed to other functions of the package such as svariog for computation of the

semi-variogram.

data(aniso)
distlag(dist=aniso$coord, dmin=0, distance.lag=2, dist.lag.max=NULL)

## [1] 1 3 5 7 9 11 13 15 17 19 21 23 25 27

By default, distlag considers all the possible distance classes. It is sometimes useful,
however, to restrict the range of the distance classes to get a better view of the spatial

structure near the origin. This point is important for instance when the zone of influence of
the structure is short with regards to the size of the study area and/or if a model must be

fitted very accurately for the very first lags (i.e. lower than the variogram range).

distlag(dist=aniso$coord, dmin=0, distance.lag=2, dist.lag.max=20)

## [1] 1 3 5 7 9 11 13 15 17 19

Changing the width of the distance increment has a strong impact on the number of data
pairs involved in computations. This can in turn affect the semivariance estimates. The
following example shows how increasing the width from 1 meters to 2 meters affects the

number of pairs of individuals involved in the semivariance estimations.
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d <- distlag(dist=aniso$coord, dmin=0, distance.lag=1, dist.lag.max=20)
d

## [1] 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5
## [15] 14.5 15.5 16.5 17.5 18.5 19.5

d1 <- distlag(dist=aniso$coord, dmin=0, distance.lag=2, dist.lag.max=20)
d1

## [1] 1 3 5 7 9 11 13 15 17 19
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We shall return to this issue when dealing with variogram computation and model fitting.

5.2 Computing omnidirectional empirical variogram

As would be expected, the pièce de résistance of the package ggene is its functions allowing
variography. ggene has 3 functions dedicated to semivariance computation: svariog,

varioWeight and svarmap.
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• svariog computes the variogram for the gene diversity (termed Ĥ(h) in Wagner et al.
(2005)). The function also returns the locus-by-locus semivariance and the conventional
estimator of the gene diversity Ĥ(h). It also implements directional variograms (see
below).

• varioWeight computes omnidirectional variograms and allows accounting for clonality
following the weighting scheme proposed in Wagner et al. (2005). We saw earlier how
the functions genocount and genoweight could be used to compute weighting matrix
which, in turn, can feed the function varioWeight to compute the weigthed variogram.

• svarmap computes the variogram map aka variogram surface (Isaaks and Srivastava
1989, 149). The method, although rarely used even in the field of geology where it was
originally developed, is an effective way to search for anisotropy axes.

5.2.1 The Larix decidua example

5.2.1.1 The sampling scheme and the distance lag As seen before, omnidirectional
variograms are computed without accounting for directional variation. We will start by
examining the example dataset called larix2300 which provides a set of 13 micosatellite

locus recorded for 175 individual trees located in an experimental plot at an altitude of 2300
m asl. in the French Alps (Nardin et al. 2015).

data(larix2300)

A quick examination of their spatial distribution reveals that the trees are spatially clumped.
Such a pattern originates from various ecological processes and deserves a study in its own

right (Rossi et al. 2014).

plot(larix2300$coord[,1],larix2300$coord[,2], asp=1, xlab="x", ylab="y")
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Note that the argument asp was set to 1 when calling the function plot. asp controls the
y/x aspect ratio and a value of 1 ensures that one data unit in the x direction is equal in

length to one data unit in the y direction (see plot.default).
Because trees form small patches, many individuals are clumped and a sizeable amount of
genetic information occurs at short spatial scales. We therefore want to explore the spatial
genetic variation with small separating lags because if the lags were too large, local features

might be smoothed out.
Again, distlag allows to customize the distance intervals:

d <- distlag(dist=larix2300$coord, dmin=0, distance.lag=1)
d

## [1] 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5
## [15] 14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5
## [29] 28.5 29.5 30.5 31.5 32.5 33.5 34.5 35.5 36.5 37.5 38.5 39.5 40.5 41.5
## [43] 42.5 43.5 44.5 45.5 46.5 47.5 48.5 49.5 50.5 51.5 52.5 53.5 54.5 55.5
## [57] 56.5 57.5 58.5 59.5 60.5 61.5 62.5 63.5 64.5 65.5 66.5 67.5 68.5 69.5
## [71] 70.5 71.5 72.5 73.5 74.5 75.5 76.5 77.5 78.5 79.5 80.5 81.5 82.5 83.5
## [85] 84.5 85.5 86.5 87.5 88.5 89.5 90.5 91.5 92.5 93.5 94.5 95.5 96.5 97.5
## [99] 98.5

We now estimate the variogram using d as the separating distance:

va <- svariog(X=larix2300, uvec=d, plot=FALSE)
plot(va$svario$u, va$svario$v, type="p", xlab="distance (m)",

ylab="semivariance")
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Note that when plot=TRUE a basic variogram is plotted. From this plot, the main
features of the variogram can be seen.
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5.2.1.2 General shape of the empirical variograms The semivariance increases
with increasing inter-individual distance until it reaches a plateau and remains more or less
constant. At very large distances (e.g. >15 m in our case) the gene diversity may fluctuate
as the result of sampling effects: the number of data pairs (tree couples involved in the

semivariance estimation) is often much smaller for large separating distances. Obviously, this
depends on the spatial distribution of individuals. In the case of the larix dataset, almost

all trees have been investigated and as such the sampling scheme largeley conveys the
natural distribution of the trees which is clumped.

5.2.1.3 A glance at the scale(s): the variogram range(s) A very interesting
feature of the variogram is the distance at which it reaches a plateau. It is referred to as the
range of the variogram and provides an information about the spatial scale at which the

structure occurs. Individuals separated by a distance lower than the range are considered as
statistically independent. Below that range, individuals are more similar than expected by
chance. Consequently, if one wants to set up a sampling scheme where individuals are

expected to be independent, they must be separated by a distance larger than or equal to
the range. This has been discussed in details in various papers and text books (Oliver 2010;

Webster1985; Webster and Oliver 1990)

5.2.1.4 Playing with the lag distance Increasing the lag increment smooths out local
variability which is sometimes very useful to get a better picture of the global pattern.
Various trials are generally necessary to get a clear view of different scales at which the
spatial variation occurs. In the case of larix2300 we can increase the lag distance:

va1 <- svariog(X=larix2300, uvec=distlag(dist=larix2300$coord, dmin=0,
distance.lag=1), plot=FALSE)

va2 <- svariog(X=larix2300, uvec=distlag(dist=larix2300$coord, dmin=0,
distance.lag=2), plot=FALSE)

va4 <- svariog(X=larix2300, uvec=distlag(dist=larix2300$coord, dmin=0,
distance.lag=4), plot=FALSE)

va8 <- svariog(X=larix2300, uvec=distlag(dist=larix2300$coord, dmin=0,
distance.lag=8), plot=FALSE)

plot(va1$svario$u, va1$svario$v, xlab="distance", ylab="semivariance")
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plot(va2$svario$u, va2$svario$v, pch=2, xlab="distance", ylab="semivariance")
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plot(va4$svario$u, va4$svario$v, pch=3, xlab="distance", ylab="semivariance")
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plot(va8$svario$u, va8$svario$v, pch=4, xlab="distance", ylab="semivariance")
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Not only larger increments lead to smoother variograms but they also help detect more or
less hidden structures. Here, increments of 8 m lead to a variogram exhibiting a clear

structure at distances ranging from 0 to ca. 60 m superimposed upon another structure at
larger scales correponding to the increase in semivariance from 60 m. The topic of
superimposed structures and how variograms can be of help in their detection and

characterization has been adressed in several papers (Burrough 1983; Bellier et al. 2007;
Jiménez et al. 2014) and will be delt in more details later. For the moment, we need to make
sure that the second phase of semivariance increase is not solely due to sampling effect i.e.

lower number of data pairs for larger separating distances.
svario$n allows checking that the number of data pairs involved is sufficient:
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va1$svario$n

## [1] 7 28 40 60 55 81 73 84 107 114 106 114 142 140 144 138 151
## [18] 155 165 150 169 185 213 198 214 211 191 184 224 179 223 192 220 197
## [35] 230 219 212 219 202 212 207 193 239 214 197 220 225 199 234 225 205
## [52] 193 197 192 176 210 206 176 199 199 176 176 176 174 164 168 145 134
## [69] 145 142 141 116 135 111 107 125 111 98 92 92 78 68 60 53 50
## [86] 38 34 38 25 28 12 18 12 11 9 3 6 3 2

va8$svario$n

## [1] 428 1005 1386 1618 1711 1694 1632 1482 1155 871 419 118 11

A commonly accepted threshold for the minimum number of data pairs is 50 (Journel and
Huijbregts 1978). We see that an interval of 1 m leads to a relativeley small number of pairs
of individuals both for the lower (1 m) and higher (8 m) separating distances. These results
illustrate how distance increment affects our perception of the spatial pattern at hand. It

can also noticeably impact model fitting as we will see later.

5.2.1.5 Locus-by-locus variograms The variogram is the sum of the semivariance
estimated for each locus. It may be useful, in some cases, to examine if the spatial signal
changes according to the locus considered. This is possible with the slot $bylocus returned

by the function svariog where the semivariance computed for each locus is stored.

# compute variogram
va <- svariog(X=larix2300, uvec=distlag(dist=larix2300$coord, dmin=0,

distance.lag=3), plot=FALSE)

# plot semivariance locus by locus
va <- svariog(X=larix2300)
plot(va$svario$u,va$bylocus[[1]]$gamma.by.locus, xlab="distance",

ylab="semivariance", type="n", ylim=c(0,0.5))
cols <- rainbow(length(va$bylocus))

for(i in 1:(length(va$bylocus))){
points(va$svario$u,va$bylocus[[i]]$gamma.by.locus, type="l", col=cols[i])
}

legend("bottomleft", legend=larix2300$locnames, col=cols, bty="n", lty=1,
ncol=3)
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5.2.2 Departure from randomness: more Larix decidua!

5.2.2.1 Statistical envelopes larix1350 provides another example dataset of Larix
decidua trees. Here, trees were surveyed at lower altitudes (ca.1300 m asl.). Let’s see if we

can detect a spatial structure within this dataset:

data(larix1350)
# examine sampling scheme
plot(larix1350$coord[,1],larix1350$coord[,2], xlab="x", ylab="y", asp=1)
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va <- svariog(X=larix1350, uvec=distlag(dist=larix1350$coord,
dmin=0, distance.lag=3), plot=FALSE)

plot(va$svario$u, va$svario$v, type="p", xlab="distance (m)",
ylab="semivariance")
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The resulting variogram appears to be somewhat flat, thus indicating that the semivariance
(gene diversity) is not changing much with increasing separating distance. Such signal

suggests an absence of spatial genetic structure (SGS) and various factors can explain such a
lack of structuration (Nardin et al. 2015). The question remains to determine if an empirical
variogram is significantly different from what can be expected by chance. ggene comes with
the function randsvariog that performs randomizations of the genotype spatial distribution
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and recomputes the variogram from the randomized datasets. Readers are referred to
Legendre and Legendre (1998) for details about randomization tests in the context of spatial
analyses. randsvariog randomizes the genetic data associated to each individual. Note that
genomes are not changed, only their spatial distribution are permuted between individuals,

hence the sampling design is kept unchanged.

env <- randsvariog(var=va, X=larix1350, nsim=30, bounds=c(0.025, 0.975),
save.sim=FALSE)

## ..............................
## done

The randomizations are used to compute the bounds of the statistical envelope for the
observed semivariance. The graphical output is simply obtained with:

plot(env$svario$u, env$svario$v, ylim=range(env$env),
xlab="distance", ylab="semivariance")

points(env$svario$u, env$env[,1], type="l")
points(env$svario$u, env$env[,2], type="l")
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The results show that most of the observed values lie between the the 2.5% and 97.5%
bounds suggesting the absence of significant departure from spatial randomness. The

number of permutations was kept low in this simple example. More randomizations would be
necessary and different tests using various distance increments would be useful to fully

investigate the presence of a SGS.
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5.2.2.2 Notes on statistical testing When the argument save.sim = TRUE,
randsvariog returns a data.frame with all the simulated semivariances for the different
distance classes. The data are provided in the slot $simul and they can be used to compute

new envelope bounds i.e. for new quantile values without redoing the randomizations
themselves. For example, the code below computes the variogram for the dataset sim03 and
the corresponding enveloppe for 30 randomizations and the quantile values of 0.025 and 0.975.

data(sim03)
var <-svariog(X=sim03, plot=FALSE)
plot(var$svario$u, var$svario$v, xlab="distance", ylab="semivariance")
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env <-randsvariog(var=var, X=sim03, nsim=30, bounds=c(0.025, 0.975),
save.sim=TRUE)

## ..............................
## done

The semivariance after randomization, which mimics the expected values under the null
hypothesis of complete spatial randomness, are returned in env$simul:

dim(env$simul)

## [1] 13 30

The data.frame has a number of rows equal to the number of distance lags and a number of
columns corresponding to the number of randomizations. From this data.frame we can
compute new values describing the variability of the randomized values. Here we compute

and plot the minimum, the maximum and the median values:
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min <- apply(X=env$simul, MARGIN=1, FUN=min)
median <- apply(X=env$simul, MARGIN=1, FUN=median)
max <- apply(X=env$simul, MARGIN=1, FUN=max)

plot(var$svario$u, var$svario$v, xlab="distance", ylab="semivariance")
points(env$svario$u, min, type="l", lty="dotted", col="red", lwd=2)
points(env$svario$u, median, type="l", lty="dotted", col="blue", lwd=2)
points(env$svario$u, max, type="l", lty="dotted", col="green", lwd=2)
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What happens if we select quantile values equal to 0.025 and 0.975 ?

q1 <- apply(X=env$simul, MARGIN=1, FUN=quantile, prob=0.025)
q2 <- apply(X=env$simul, MARGIN=1, FUN=quantile, prob=0.975)

plot(var$svario$u, var$svario$v, xlab="distance", ylab="semivariance")
points(env$svario$u, q1, type="l", lty="dotted", col="red", lwd=2)
points(env$svario$u, q2, type="l", lty="dotted", col="blue", lwd=2)
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We now plot the output of randsvariog computed for these quantiles and stored in $env[] :

plot(var$svario$u, var$svario$v, xlab="distance", ylab="semivariance")
points(env$svario$u, q1, type="l", lty="dotted", col="red", lwd=2)
points(env$svario$u, q2, type="l", lty="dotted", col="blue", lwd=2)

points(env$svario$u, env$env[,1], type="l")
points(env$svario$u, env$env[,2], type="l")
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The curves are superimposed.
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5.2.2.3 Remarks on flat variograms The variogram for larix1350 is an example of
what is called a horizontal variogram. There is no significant change in the semivariance as
the average inter-individual distance increases. It means that individuals are independent
from a statistical viewpoint. Interestingly, this situation is also observed when a SGS is

present but when we consider data couples separated by a distance larger than the
variogram range. When the empirical variogram appears to be flat, users should try to
decrease the lag and examine the behavior of the semivariance for the first distance lags

alone to make sure that short-scale patterns are not obscured. The statistical envelopes may
also be of help to determine if a structure is present.

5.2.3 Accounting for recurrent genotypes

5.2.3.1 Computing weighted empirical variogram In its present form, ggene
allows to account for repeated genotypes in omnidirectional variogram analysis alone. The
option may become available for directional variograms in the future. As stated by Wagner
et al. (2005), the principle of the analysis is to compute the variogram while decreasing the
weight given to data couples including individuals whose genotype is repeated. Practically,
this is achieved through the computation of a weighting matrix that is passed to the function
varioWeight. We saw above (§ 3.4) how that so-called matrix of weights is computed using

functions genocount and genoweight.
The function returns a variogram reflecting the SGS after weithing for repeats following the
proposal of Wagner et al. (2005). Suppose that a significant SGS is observed for a given

dataset where a certain degree of clonality is observed. The weighted variogram indicates if
the SGS is solely due to the spatial distribution of repeated genotypes or if it conveys

another source of variability.
We illustrate this analysis using a dataset named crypho consisting in a set of 10 locus for
276 individuals of the chestnut blight fungus Cryphonectria parasitica (CBF) (Dutech et al.
2008). This organism is haploid and a certain level of clonality is observed (Dutech et al.

2008).
We first compute the number of different genotypes using genocount:

data(crypho)
# check sampling scheme
plot(crypho$coord[,1],crypho$coord[,2], xlab="x", ylab="y", asp=1)
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count <- genocount(X=crypho)
count$n

## [1] 92

A total of 92 genotypes is present in the dataset. We then compute the matrix of weights:

mat <- genoweight(X=crypho,genotyp=count$vec)
class(mat)

## [1] "dist"

dim(as.matrix(mat))

## [1] 276 276

The output of genoweight is an object of class dist. It corresponds to a matrix of 276 ×
276, the number of individuals in the dataset. The weighted variogram is computed as

follows:

d <- distlag(dist=crypho$coord, dmin=0,distance.lag=50)
d

## [1] 25 75 125 175 225 275 325 375 425 475 525 575 625
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wva <- varioWeight(X=crypho, weights=mat, uvec=d)

varioWeight returns both the semivariance with and without weighting for recurrent
genetypes. The regular semivariance is returned under the slot $gamma (wa$svario$gamma

in the example). It is strictly similar to the values returned by the function svariog.
semivariance for weighted dataset is given in the slot $v (wa$svario$v in the example

above).
We can plot the variograms:

#plot the weighted variogram
plot(wva$svario$u, wva$svario$gamma, col="black", type="b",

ylim=range(c(wva$svario$gamma,wva$svario$v)), pch=16,
xlab="distance", ylab="semivariance")

#add the variogram for raw data
points(wva$svario$u, wva$svario$v, col="red", type="b", pch=15,

lty="dotted")

legend("top", legend=c("raw", "weighted"), col=c("black", "red"),
pch=c(16,15), lty=c("solid", "dotted"), bty="n")
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We can also use the function svariog:

va <- svariog(X=crypho, uvec=d, plot=FALSE)

The resulting variogram is similar to the object returned by varioWeight:
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#plot the weighted variogram
plot(wva$svario$u, wva$svario$gamma, col="black", type="b",

ylim=range(c(wva$svario$gamma,wva$svario$v)), pch=16,
xlab="distance", ylab="semivariance")

#add the variogram for raw data
points(wva$svario$u, wva$svario$v, col="red", type="b", pch=15,

lty="dotted")

legend("top", legend=c("raw", "weighted"), col=c("black", "red"),
pch=c(16,15), lty=c("solid", "dotted"), bty="n")

points(va$svario$u, va$svario$v, col="green", type="b", pch=3, bg="green")
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From this figure it is obvious that weighting for reccurrent genotypes has a strong impact on
the resulting variogram. The weighted variogram shows a very low amount of struture and

possibly no SGS at all.

5.2.3.2 Statistical envelopes for weighted variograms: the argument weights of
svariog The example below shows how to compute the weighted variogram for the dataset
crypho and how to perform randomization of the weighted semivariance. Users must provide
the weighting matrix as the argument weights in addition to an object of the class ggene.

#compute the weights
count <- genocount(X=crypho)
mat <- genoweight(X=crypho,genotyp=count$vec)

#performs the randomizations on raw variogram
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va <- svariog(X=crypho, plot=FALSE)
env <- randsvariog(var=va, X=crypho, nsim=9, bounds=NULL,

save.sim=FALSE)

## .........
## done

#compute the weighted variogram
wva <- varioWeight(X=crypho, weights=mat)

#performs the randomizations on weighted variogram
env2 <- randsvariog(var=wva, X=crypho, nsim=9, bounds=NULL,

save.sim=FALSE, weights=mat)

## .........
## done

#draw the variogram (raw and weighted) and their envelopes
plot(wva$svario$u, wva$svario$gamma, type="b", col="black")
points(env$svario$u, env$env[,1], type="l", col="black")
points(env$svario$u, env$env[,2], type="l", col="black")

points(wva$svario$u, wva$svario$v, col="blue", type="b",
ylim=range(c(wva$svario$gamma,wva$svario$v)))

points(env2$svario$u, env2$env[,1], type="l", col="blue")
points(env2$svario$u, env2$env[,2], type="l", col="blue")
legend("top", legend=c("raw", "weighted"), col=c("black", "blue"),

lty="solid", bty="n")
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# same but another style...
xx <- c(wva$svario$u, rev(wva$svario$u))
yy <- c(env$env[,1], rev(env$env[,2]))
plot(xx, yy, type = "n", xlab = "distance", ylab = "semivariance",

ylim=c(0.5,0.75))
polygon(xx, yy, col = "lightgrey", border = "black")
xx <- c(wva$svario$u, rev(wva$svario$u))
yy <- c(env2$env[,1], env2$env[,2])
points(xx, yy, type = "l")
polygon(xx, yy, col = "lightblue", border = "blue")

points(wva$svario$u, wva$svario$v, col="blue", typ="b")
points(wva$svario$u, wva$svario$gamma, col="black", type="b")
legend("top", legend=c("raw", "weighted"), col=c("black", "blue"),

lty="solid", pch=1, bty="n")
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We can conclude that repeated genotypes and the way they are spatially distributed is the
main source of SGS in this dataset (Dutech et al. 2008).

5.3 Fitting models to the empirical variogram

There is a wealth of literature dedicated to model fitting in geostatistics (McBratney and
Webster 1986; Journel and Huijbregts 1978; Isaaks and Srivastava 1989; Webster and Oliver
1990; Goovaerts 1997). Basically, one of the authorized functions is fitted to the empirical
variogram. The model parameters provide interesting information on the spatial structure at
hand. They are also used for interpolation by kriging algorithm, a point that is beyond the
scope of the present document. Wagner et al. (2005) showed that under certain assumptions,
fitting an exponential model to the empirical variogram provides a summary of the SGS. In
ggene, model fitting is realized by the function fitsvariog. It returns the usual variogram
parameters (partial sill, nugget variance, range, practical range, see e.g. Goovaerts (1997)) as
well as the indices developped specifically with the aim to characterize the SGS (FN , bf ans

Sp, (Vekemans and Hardy 2004; H. Wagner et al. 2005)).

library(ggene)
data(aniso)
va <- svariog(X=aniso, plot=FALSE)
fit <- fitsvariog(vario=va, ini.cov.pars=c(0.05,4.5),

nugget=0.5, max.dist=200, plot = TRUE)
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The red dotted line indicates the conventional estimation of the variance (gene diversity) Ĥ.
It is returned by svariog. The model parameters can be accessed by:

fit$param

## c1 nugget range pract.range sill Hhat FN
## 1 0.4089432 0.3344568 5.614505 16.84351 0.7433999 0.651282 0.5500985
## bf Sp
## 1 -0.1781101 0.3958868

The object fit can be directly used with lines to plot the model:

plot(va$svario$u, va$svario$v)
lines(fit$fit)
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The example above is based an a simulated dataset and the fit is very good. Let’s now
examine an empirical datset.

data(crypho)
va <- svariog(X=crypho, plot=TRUE, messages=FALSE)
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fit <- fitsvariog(vario=va, ini.cov.pars=c(0.05,4.5), nugget=0.5,
max.dist=600, plot = TRUE)
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## c1 nugget range pract.range sill Hhat FN bf
## 1 0.6119464 0 11.986 35.95799 0.6119464 0.6068645 1 -0.0834307
## Sp
## 1 Inf

The practical range is larger than 235 km ! We get another value if we reduce the maximum
distance over which the fit is done.

fit <- fitsvariog(vario=va, ini.cov.pars=c(0.05,4.5), nugget=0.5,
max.dist=400, plot = TRUE)
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fit$param

## c1 nugget range pract.range sill Hhat FN bf
## 1 0.5945829 0 10.68576 32.05728 0.5945829 0.6068645 1 -0.09358248
## Sp
## 1 Inf

The practical range is estimated as 393 m.
Let’s reduce again the maximum distance over which the fit is done.

fit <- fitsvariog(vario=va, ini.cov.pars=c(0.05,4.5), nugget=0.5,
max.dist=300, plot = TRUE)
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fit$param

## c1 nugget range pract.range sill Hhat FN bf
## 1 0.5884712 0 10.22987 30.6896 0.5884712 0.6068645 1 -0.09775298
## Sp
## 1 Inf

We get another value of ca. 330. This example illustrates how choosing the distance range
over which the model is fitted can affect the model parameters. Why is this aspect so
important in the case of Cryphonectria parasitica? The empirical variogram shows the
presence of a first plateau for distances ranging from ca. 100 m up to ca. 300 m but the

semivariance increases again for larger distances. This means that SGS spotted at distance
<300 m is nested into long-range pattern. Such pattern could be seen for example if local
demographical processes create a local SGS itself superimposed on a longer range isolation
by distance structure. Caution is needed as it is very difficult to infer a pattern from its
summary by a structure function such as the variograms or the correlograms. Regarding

fitting models, a good practice consists in fitting the model for the first distance classes and
restrain the computation to values below the first half or third of the maximum distance.

This is a rule of thumb commonly used in geostatistics (Isaaks and Srivastava 1989; Journel
and Huijbregts 1978) that ensures that the fit is good at least for the most local structures,

an important thing regarding kriging.

6 Dealing with anisotropy

Anisotropy is the property of being directionally dependent. It is opposed to isotropy.
Anisotropy occurs if the spatial pattern differs, when measured along different axes, either in
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extent or intensity. Geometric anisotropy corresponds to situations where variograms
have the same sill in all directions through their ranges are different. Zonal (or stratified
anisotropy) occurs when sills are different according to the direction considered. ggene

allows searching and charaterizing anisotropies of genetic variation either by computing the
so-called directional variograms or by drawing variogram maps (Isaaks and Srivastava 1989).

6.1 Directional variograms

svariog computes omnidirectional variograms by default. The arguments direction,
tolerance and unit.angle allow to define the main direction, the tolerance and the unit of
measure for the angle. These arguments, along others, are passed to the function variog
from package geoR. Users are referred to the documentation associated to this function for

details on computation options and default values.
Computation of the directional variogram

data(aniso)
va <- svariog(X=aniso, plot=TRUE)
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The omni-directional variogram reveals a clear spatial genetic structure. Does this SGS differ
according to the main directional axes considered? We consider 4 directions : 0, 45, 90 and

135 degrees. The same tolerance of 22.5° is considered in each case.

d0_225 <- svariog(X=aniso,direction=0, tolerance=22.5,
unit.angle="degrees")

d45_225 <- svariog(X=aniso,direction=45, tolerance=22.5,
unit.angle="degrees")

d90_225 <- svariog(X=aniso,direction=90, tolerance=22.5,
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unit.angle="degrees")
d135_225 <- svariog(X=aniso,direction=135, tolerance=22.5,

unit.angle="degrees")

The variograms can be plotted on the same graph:

plot(va$svario$u, va$svario$v, type="b", ylim=range(c(va$svario$v,
d0_225$svario$v, d45_225$svario$v, d90_225$svario$v, d135_225$svario$v))
,xlab="distance", ylab="semivariance")

points(d0_225$svario$u, d0_225$svario$v, type="b", lty=2)

points(d45_225$svario$u, d45_225$svario$v, type="b", col="red", lty=2)

points(d90_225$svario$u, d90_225$svario$v, type="b", col="blue", lty=2)

points(d135_225$svario$u, d135_225$svario$v, type="b", col="green", lty=2)

legend("topleft", legend=c("omnidirectional", expression(0 * degree),
expression(45 * degree), expression(90 * degree),
expression(135 * degree)), lty=c(1,2,2,2,2,2),
col=c("black","black","red","blue","green"), bty="n")
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From the plot, it can be seen that the semivariance is markedly lower in the direction 45°.
The shape of the variogram is very similar but the magnitude differs. The example

illustrates a case of zonal anisotropy.

6.2 Variogram maps

Searching for directional anisotropies can also be achieved using a display called the
variogram map aka variogram surface (Isaaks and Srivastava 1989, 149). Pairs of individuals
are constituted by gathering individuals whose separation in the x direction is hx ± δx and
whose separation in the y direction is hy ± δy. The grid considered has cells of width δx and
a overall length called cutoff. In ggene the function svarmap computed variogram maps on
the basis of a ggene object, a cutoff value (i.e. the maximum distance to be considered) and
the width i.e. δx (only square cells are implemented which means that δx = δy)(figure 6.2

page 45).
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\begin{figure}
\caption[Grouping points to form a variogram map]{Grouping points to form a variogram
map. Individuals at B and all other individuals falling within the shaded area will be paired
with the individual at A. The semivariance of all such pairs are averaged and plotted in a

raster map.} \end{figure}

map <- svarmap(X=aniso,cutoff=20, width=1)
plot(map)
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As with the directional variograms, the variogram map reveals the presence of a direction for
which the semivariance (here gene diversity) is lower (pink areas on the map). This direction
is 45°. Note that the results of the analysis is particularly clear because the dataset aniso
was simulated and as such exhibits a very strong pattern. Let’s examine the variogram map

for the empirical dataset crypho.

map <- svarmap(X=crypho,cutoff=500, width=25)
plot(map)
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There is no clear directional pattern although pixels at the centre of the plot show lower
semivariance values. This simply conveys the isotropic spatial structure identifed above.

What happens when no struture is present at all? We can return to the larix1350 dataset
(for which no pattern was found) and compute the variogram map.

data(larix1350)
map <- svarmap(X=larix1350,cutoff=90, width=5) ; plot(map)
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We here see that there is no clear pattern part from lower values at the margin of the plot.
These are probably associated to estimates based on few data pairs, which is a common

feature of variograms. We will deal with this question below.
The value of the width parameter affects the grain of the outputs. Larger values smooth up

the semivariance which can obscure our perception of the SGS.

map <- svarmap(X=crypho,cutoff=500, width=5)
plot(map)
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Cutoff value simply limits the extent of the analysis. Larger extents provide a more complete
picture but require more computation time.

map <- svarmap(X=crypho, cutoff=250, width=5)
plot(map)
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Whatever the values of width and cutoff there is no indication of anisotropy. Some cells
may contain only few data pairs, this depends on the sampling scheme. Because those cells
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may contain unreliable semivariance values, they shall be removed. The parameter
threshold (default value = 5) can be used for that purpose:

plot(map, threshold = 10)
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Semivariance values derived from a number of data pairs lower than the threshold are not
printed on the map.
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