
An Introduction to Events

Will Lowe
MZES, University of Mannheim

April 13, 2012

1 Introduction

The events package takes political event data in the form generated by KEDS (Schrodt et~al., 1994;
Gerner et~al., 1994). For this vignette we use the Reuters-derived event chronology from the collapse
of Yugoslavia, focusing on Serbian and Bosnian interactions in the period in 1991 and 1995. The events
in this event data are coded according to the WEIS event scheme (McClelland, 1978). In the following
sections we perform a typical set of data manipulations; we load and clean a set of event data, restrict it
to actors and period of interest, apply a scale to the raw events, aggregate to make a time series and plot
the results. The package does not current contain function for the analysis of event data because once
the data is finally in a regular time series format, other packages can be used to analyse it. The package
provides the link between raw output from an event data extraction system such as KEDS/TABARI and a
set of regularly spaced time series.

1.1 Data Loading and Cleaning

A version of the Balkans data is built into the package. Here we load and summarise it.

> data("balkans.weis")
> summary(balkans.weis)

date source target code
Min. :1989-04-02 UNO : 6011 BOS : 7995 031 : 8059
1st Qu.:1994-03-17 USA : 5649 SER : 6506 032 : 4481
Median :1996-08-12 SER : 4223 UNO : 4821 223 : 4075
Mean :1997-01-04 NAT : 3954 FRY : 3839 023 : 3976
3rd Qu.:1999-06-18 BOS : 3851 NAT : 3659 033 : 3429
Max. :2003-07-31 BOSSER : 3273 USA : 3370 102 : 3110

(Other):45992 (Other):42763 (Other):45823
desc

Length:72953
Class :character
Mode :character

An event data set can be constructed from text file event data output using the read_keds function. And
event data set is essentially a data frame with column names date, source, target, and code.

> head(balkans.weis)

date source target code desc
1 1989-04-02 YUG KSV 224 (RIOT)
2 1989-04-04 YUG ETHALB 212 (ARREST PERSON)

1



3 1989-04-07 ALB ETHALB 224 (RIOT)
4 1989-04-08 ETHALB KSV 123 (INVESTIGATE)
5 1989-04-10 PRK YUG 032 (VISIT)
6 1989-04-10 YUG PRK 033 (RECEIVE)

Subsequent columns of event label, shown above, and matching phrase from the original text, not shown
above, are optional.

Duplicated stories are a common type of information extraction error. We can prefilter the events by
removing all instances of the same pair of actors experiencing the same event on the same date using the
on-a-day filter

> dd1 <- one_a_day(balkans.weis)

This can also be applied as part of the read_keds function.

1.2 Actor Filtering

In the next step we filter out actors whose interactions are not of interest. A complete list of actors is given
by

> head(actors(dd1))

[1] "AFG" "AFR" "ALB" "ALBMED" "ALG" "AMN"

We will focus on actors identified in the data as Serbia ‘SER’ and the Serbian military ‘SERMIL’, and
Bosnia ‘BOS’ and the Bosnian military ‘BOSMIL’

> dd2 <- filter_actors(dd1, fun=spotter("SER", "SERMIL", "BOS", "BOSMIL"))

The filter_actors function takes two arguments, an event data set and a filter function, and returns a
filtered event data set. The filter may be any user-specified R function that returns TRUE for things that
are of interest and FALSE otherwise. Here we have used a convenience function spotter, which creates a
function that returns TRUE for any exact matches of its arguments.

The function takes an optional which argument which can be used to specify that the filtering should
apply to ‘source’, ‘target’ or ‘both’ (the default).

We would like to treat the Serbian and Bosnian actors identified in the previous step as equivalent
and refer to then for convenience as ‘ser’ and ‘bos’ respectively. We do this by aggregating actor codes we
aggregate actor codes.

> actor.agg <- list(ser=c("SER", "SERMIL"), bos=c("BOS", "BOSMIL"))
> dd3 <- map_actors(dd2, fun=actor.agg)

Here we specify the mapping from new to old actor codes as a list and pass it to the mapping function.
We could also have written a function that for any object returned its new name, in the same style as the
filter function in the previous section. For example, the function

actor.aggregator <- function(oldname){
newname <- NA
if (oldname %in% c("SER", "SERMIL")) newname <- "ser"
if (oldname %in% c("BOS", "BOSMIL")) newname <- "bos"
return(newname)

}

would work, but is rather longwinded to write.

2



1.3 Temporal Restriction

We will focus on the period between January 1991 and December 1995

> dd4 <- filter_time(dd3, start="1991-01-01", end="1995-12-30")

The optional start and end parameters may be anything that can be converted into a Date object.
Our new data set is now considerably smaller than before

> summary(dd4)

date source target code desc
Min. :1991-03-15 bos:396 bos:447 223 :173 Length:853
1st Qu.:1993-01-08 ser:457 ser:406 031 : 43 Class :character
Median :1994-02-08 081 : 39 Mode :character
Mean :1994-02-21 023 : 33
3rd Qu.:1995-06-06 032 : 29
Max. :1995-12-26 033 : 26

(Other):510

1.4 Scaling

Scales are mappings from event codes to real numbers. You can create your own event code by construct-
ing a headerless csv file with event codes in the first column and numbers in the second column, and
reading it in with the make_scale command. This is a thin wrapper around the read.csv function.

Here we will use the extended Goldstein scale bundled with the package (Goldstein, 1992)1. This
maps WEIS event codes onto a number representing level of conflict or cooperation.

> data("weis.goldstein.scale")
> summary(weis.goldstein.scale)

Length Class Mode
010 1 -none- numeric
011 1 -none- numeric
012 1 -none- numeric
013 1 -none- numeric
014 1 -none- numeric
015 1 -none- numeric
020 1 -none- numeric
021 1 -none- numeric
022 1 -none- numeric
023 1 -none- numeric
024 1 -none- numeric
025 1 -none- numeric
026 1 -none- numeric
027 1 -none- numeric
030 1 -none- numeric
031 1 -none- numeric
032 1 -none- numeric
033 1 -none- numeric
034 1 -none- numeric
040 1 -none- numeric

1These codes are taken from http://web.ku.edu/~keds/data.dir/KEDS.WEIS.Codes.txt

3

http://web.ku.edu/~keds/data.dir/KEDS.WEIS.Codes.txt


041 1 -none- numeric
042 1 -none- numeric
043 1 -none- numeric
050 1 -none- numeric
051 1 -none- numeric
052 1 -none- numeric
053 1 -none- numeric
054 1 -none- numeric
055 1 -none- numeric
060 1 -none- numeric
061 1 -none- numeric
062 1 -none- numeric
063 1 -none- numeric
064 1 -none- numeric
065 1 -none- numeric
066 1 -none- numeric
067 1 -none- numeric
070 1 -none- numeric
071 1 -none- numeric
072 1 -none- numeric
073 1 -none- numeric
080 1 -none- numeric
081 1 -none- numeric
082 1 -none- numeric
083 1 -none- numeric
084 1 -none- numeric
090 1 -none- numeric
091 1 -none- numeric
092 1 -none- numeric
093 1 -none- numeric
094 1 -none- numeric
095 1 -none- numeric
096 1 -none- numeric
097 1 -none- numeric
100 1 -none- numeric
101 1 -none- numeric
102 1 -none- numeric
110 1 -none- numeric
111 1 -none- numeric
112 1 -none- numeric
113 1 -none- numeric
120 1 -none- numeric
121 1 -none- numeric
122 1 -none- numeric
123 1 -none- numeric
131 1 -none- numeric
132 1 -none- numeric
133 1 -none- numeric
140 1 -none- numeric
141 1 -none- numeric
142 1 -none- numeric

4



150 1 -none- numeric
151 1 -none- numeric
152 1 -none- numeric
160 1 -none- numeric
161 1 -none- numeric
162 1 -none- numeric
170 1 -none- numeric
171 1 -none- numeric
172 1 -none- numeric
173 1 -none- numeric
174 1 -none- numeric
180 1 -none- numeric
181 1 -none- numeric
182 1 -none- numeric
190 1 -none- numeric
191 1 -none- numeric
192 1 -none- numeric
193 1 -none- numeric
194 1 -none- numeric
195 1 -none- numeric
196 1 -none- numeric
197 1 -none- numeric
198 1 -none- numeric
200 1 -none- numeric
201 1 -none- numeric
202 1 -none- numeric
203 1 -none- numeric
210 1 -none- numeric
211 1 -none- numeric
212 1 -none- numeric
213 1 -none- numeric
220 1 -none- numeric
221 1 -none- numeric
222 1 -none- numeric
223 1 -none- numeric
224 1 -none- numeric
225 1 -none- numeric
226 1 -none- numeric

When we apply the scale to an event data set a column is added with the same name as the scale

> dd5 <- add_eventscale(dd4, weis.goldstein.scale)
> head(dd5)

date source target code desc goldstein
897 1991-03-15 ser ser 094 (CALL FOR) -0.1
1425 1991-07-04 ser ser 212 (ARREST PERSON) -4.4
2223 1991-09-19 ser ser 223 (MIL ENGAGEMENT) -10.0
2224 1991-09-19 ser ser 223 (MIL ENGAGEMENT) -10.0
2341 1991-09-25 ser ser 081 (MAKE AGREEMENT) 6.5
2342 1991-09-25 ser ser 081 (MAKE AGREEMENT) 6.5

5



1.4.1 Score Aggregation

The final step is to aggregate quantities of interest into a regular time series for each directed pair of
actors. Here we construct a typical dyad set using the summed scored event counts per week:

> dyads <- make_dyads(dd5, scale="goldstein", unit="week", monday=TRUE,
+ fun=sum, missing.data=0)

We assert that weekly counts should start on a monday, that they should be summed rather than e.g.
averaged, and that weeks with no events observed should be given score zero. Note that this is only an
example; these are not necessarily sensible setting for actual applications.

Alternative aggregation units are ‘day’, ‘month’, ‘quarter’, and ‘year’. The fun parameter should be any
function that will transform a numerical vector into a scalar.

The output of make_dyads is a list of directed dyad time series. All combinations of actors are con-
structed, so it is a good idea to filter and aggregate actors before calling the function. The naming scheme
for the dyads is concatenation with a period: dyads$ser.bos is the temporally aggregated sequence of
summed scores with the ‘ser’ actor as source and ‘bos’ the target, dyads$bos.ser is the reverse direction,
and dyads$ser.ser is the activities internal to the ‘ser’ actor.

> tail(dyads$ser.bos)

date goldstein n
246 1995-11-20 24.5 11
247 1995-11-27 24.3 5
248 1995-12-04 2.9 2
249 1995-12-11 11.7 10
250 1995-12-18 -0.2 1
251 1995-12-25 0.0 0

The directed dyad can be treated like a regular time series:

> with(dyads$ser.bos, plot(goldstein ~ date, type="l", lwd=2))

1991 1992 1993 1994 1995 1996

−
60

−
20

0
20

date

go
ld

st
ei

n

There are a few gaps in the series. This is because the scale does not cover all the events that occur in the
event data

6



> scale_coverage(weis.goldstein.scale, dd5)

Scale goldstein does not cover codes:
[1] "130" "199" "204"

1.4.2 Count Aggregation

If scale is NULL a sequence then directed dyadic event count streams are created instead of scaled scores.
This will generate an event count for each distinct event code and each temporal unit. Sometimes it is
helpful to aggregate code before constructing these count streams. Here we aggregate them into four
categories: verbal and material cooperation, and verbal and material conflict

> evts <- codes(dd4)
> event.agg <- list(
+ coop.verb=grep("02.|03.|04.|05.|08.|09.|10.", evts, value=TRUE),
+ coop.mat=grep("01.|06.|07.", evts, value=TRUE),
+ conf.verb=grep("11.|12.|13.|14.|15.|16.|17.", evts, value=TRUE),
+ conf.mat=grep("18.|19.|20.|21.|22.", evts, value=TRUE)
+ )
> dc1 <- map_codes(dd4, fun=event.agg)

Like the other aggregation function, map_codes function in the final line takes a list or a function to map
old event codes to new ones. We start by using the codes function to list all the event codes that are used
in the data. WEIS is a two level scheme that by convention indicates the upper level code category in first
two digits and subcategory in remaining digits. Here, we use grep to identify all the codes in “01”, “06”,
and “07” at any level and assign them to a new material cooperation category mat.coop.

> dyad.counts <- make_dyads(dc1, scale=NULL, unit="week", monday=TRUE,
+ fun=sum, missing.data=0)
> tail(dyad.counts$ser.bos)

date conf.mat conf.verb coop.mat coop.verb
246 1995-11-20 1 1 2 7
247 1995-11-27 0 0 0 5
248 1995-12-04 0 0 0 2
249 1995-12-11 0 2 0 8
250 1995-12-18 0 0 0 1
251 1995-12-25 0 0 0 0

References

Gerner, D.~J., Schrodt, P.~A., Francisco, R.~A., and Weddle, J.~L. (1994). The analysis of political events
using machine coded data. International Studies Quarterly, 38(1):91–119.

Goldstein, J.~S. (1992). A conflict-cooperation scale for WEIS events data. Journal of Conflict Resolution,
36(2):369–385.

McClelland, C. (1978). World Event/Interaction Survey (WEIS) Project, 1966–1978.
http://dx.doi.org/10.3886/ICPSR05211.v3.

Schrodt, P.~A., Davis, S., and Weddle, J. (1994). KEDS – A program for machine coding of events data.
Social Science Computer Review, 12(3):561–554.

7


	Introduction
	Data Loading and Cleaning
	Actor Filtering
	Temporal Restriction
	Scaling
	Score Aggregation
	Count Aggregation



