Colour Schemes

Barry Rowlingson

April 13, 2012

Colours in R

Colour is an important factor in statistical graphics, especially now that cheap
colour printers are available. Many of R’s graphics functions use colour, and
colours can be specified as RGB triples or via a large set of names.

R has several functions that produce or manipulate colours (see colors, rgb,
hcl ete) and also functions that produce or manipulate vectors of colours (see
palette, rainbow, colorRamp) in its default packages. Add-on packages provide
further colour-related functionality (see colorRamps, colorspace, dichromat,
plotrix packages). The ggplot2 package also has several functions for colour
handling within its graphics system.

What these functions lack is a way of easily controlling the mapping from
your data to a colour value. If you are using rainbow(10) to plot data that
spans the interval [-3,9], what colour is 5.45 going to be?

Colour Scheme Functions

This package aims to fill that gap by providing the means to create colour scheme
functions. A colour scheme function is an R function that takes data values as
argument and produces colours as an output.

Access the package functions in the usual way with the R library function:

> library(colourschemes)

The package provides constructors that return colour scheme functions. The
general way of working is like this:

> sc = whicheverScheme(data,colours,etc)
> cl1 sc(data) # vector of colours
> ¢2 = sc(newdata) # another vector of colours

Firstly you construct a function (sc here) using a specific colour scheme
function. The constructor may take parameters that are data values, colours,
and other things. Secondly you apply the constructed function to some data -
either the existing data or new data. At this point the function is fixed according

to the scheme and the parameters, and the returned colours are only dependent
on the argument. This way you can be sure that the mapping of data values to
colours is constant.

Colours For Factors

A very simple colour scheme is one that produces a colour for each level of a
factor. The function factorScheme does that:

> f = factor(c("a" "a","b","a","c"))
> fs = factorScheme(f,c("red", "blue", "green"))
> fs(f)

a a b a c
llredll llredll Hbluell Ilredll Ilgreenll

The function fs can be re-used with any data that has the same levels as
the original source, to guarantee that the same colours are used. Here we use
the f£s function as an argument to the col= argument to colour plotted points
correctly:

> g = factor(c("c","b","a"))
> fs(g)

c b a
Ilgreenll Hbluell Ilredll

> plot(1:length(f),col=fs(f),pch=19)

> ng = length(g)

> points(seq(1,2,len=ng),rep(4,ng),col=fs(g),pch=20,cex=3)
> text(4.5,4.5,"f")

> text(1.75,4,"g")

0 - .
f
< qe e J o .
e
£
g’m— .
@
—
N - °
— — e
T T T T T
1 2 3 4 5
Index

Univariate Continuous Colours

Nearest Colour

The nearest scheme takes a data frame of values and colours and produces a
colour scheme function that maps data values to the colour corresponding to
the nearest value in the data frame.

> ns = nearestScheme (data.frame (
+ values=c(0,1,2),col=c("red", "blue", "green")

+ 1))

Ramp Interpolation

The ramp interpolation scheme produces colours that map a range of numeric
values onto a colour ramp. The ramp is produced using the base colorRamp
function, and extra “...” arguments are passed through to that. This gives a way
of controlling the specifics of the interpolation such as whether to interpolate in
RGB or CIE Lab colour space.

> rs = rampInterpolate(limits=c(-2, 2), ramp = c("red", "yellow", "blue"))

Note that colours outside the set limits are returned as NA, and so result in
invisible points.

Since you can give any vector of colour values to colorRamp, you can pass
through a palette for interpolation, such as one of the RColorBrewer palettes:

> require (RColorBrewer)
> rs2 = rampInterpolate(c(-2,2),brewer.pal(5, "Pulr"))

Multiple Ramp Interpolation

In some fields, complex colour ramps are used. For example in topographical
mapping there may be a range of blues for underwater values (below zero), then
a ramp of green to brown as altitude increases, then a sudden and flat white for
the snowline. The multi ramp scheme handles these cases.

Its arguments are a data frame of min-max values for each ramp, and a list
of ramp specifications as used in the rampInterpolate function, but without
the facility to pass extra “...” parameters to colorRamp. Any gaps between the
min-max values will return an NA instead of a colour.

Here is a sample topographical multiple ramp scheme. The ocean sinks away
to black, and the snowline is at 1000 units up. I’ve made the ice gray so it shows
on a white background:

> tramp = multiRamp (rbind(c(-2000,0),c(0,1000),c(1000,9000)),
+ list(c("black","blue"),c("green", "brown"),c("gray70", "gray70"))
+)

The package also supports transparency. The following colour scheme con-
sists of three bands of red, yellow and blue with transparency that fades in and
out.

> threeband = multiRamp (rbind(c(0,1),c(1,2),c(2,3)),
+ 1list(c("#££000000", "#£f0000f£f", "#££000000")

+ c("#LL££0000", "#IfFFOOFE", "#EFF£0000") ,

+ c ("#0000f£00", "#0000LLff", "#0000££00")))

| L
I-I-I-J-d-d.-d-l-l-l- ------

0.0 0.5 1.0 15 2.0 2.5 3.0

Multivariate Continuous Colours

The rgb Scheme

This scheme simply maps sets of three values in your data to red, green, and
blue values which it feeds to the rgb function. By default it scales red to the
full range of the first data value, green to the full range of the second, and so
on. The equalScale parameter can be used so that each of the colours is scaled
depending on the global scale of all three input data values.

> m3=matrix(sample(1:12),4,3)
> print (m3)

[,11 [,2]1 [,3]
[1,] 8 2 5

[2,] 6 12 11
[3,] 4 10 7
4,] 3 1 9

> r=rgbScheme (m3, equalScale=TRUE)
> r(m3)

[1] "#A2175D" "#T4FFE8" "#46D18B" "#2E00B9"

> r=rgbScheme (m3, equalScale=FALSE)
> r(m3)

[1] "#FF1700" "#99FFFF" "#33D155" "#000OAA"

The hsv Scheme

This scheme is similar to the rgb scheme but instead passes the values to the hsv
function, so the three columns of the data refer to hue, saturation, and colour
value.

> h=hsvScheme (m3, equalScale=FALSE)
> h(m3)

[1] "#000000" "#OO66FF" "#47550F" "#AAAAAA"

The “f3” Scheme

The rgb and hsv schemes are specialised cases of the “f3” scheme. This scheme
takes a function as parameter in its constructor that takes three equal-length
vector arguments that range from 0 to 1 and returns colour values. The existing
rgb and hsv functions in R fit this pattern, but you can write your own. The
constructor also takes the equalScale argument and needs a label string to
identify your scheme.

For example, suppose you have bivariate data and want to represent the first
variable as a variation in the redness, and the second variable as variation in
greenness, and with no blue. Write an rg function:

> rg <- function(r,g,b){return(rgb(r,g,0))}

That function maps values of r and g from 0 to 1. So now we wrap it in an
f£3Scheme function, to get a colour scheme that is bound to our data ranges:

> m=matrix(10*runif (300),ncol=3)

> rg <- function(r,g,b){return(rgb(r,g,0))}

> rgs=f3Scheme (m,rg, "red-green scheme")

> plot(m[,1],m[,2],col=rgs(m),pch=19,xlab="more red",ylab="more green")

o _|
—
o - ° .o
c © - o o °
) . o
2 (]
o ° .l L]
o o° ‘
o) M .
IS < - . M .
N ° ¢ ° o o ° ’ ¢
. ° . °
] ° ¢ °
. . . ® . .
o °
T T T T T I
0 2 4 6 8 10
more red

Scheme Information

Each colour scheme function object has a schemeData method that returns a
list giving the specification of the scheme. This list can be fed back into the
scheme constructor function with do.call. If unmodified, you will get back an
identical colour scheme function, but this is useful if you wish to slightly modify
an existing colour scheme function. Here we raise the snowline from the multiple
ramp example to 1800:

> sd = schemeData (tramp)
> print (sd$ranges)

[,11 [,2]
[1,] -2000 0O
[2,] 0 1000

[3,] 1000 9000

lets raise the snowline
sd$ranges[2,2]=1500
sd$ranges[3,1]1=1500

tramp2 = do.call(multiRamp,sd)

vV V. VvV

Writing Your Own Colour Schemes

If you want to write your own colour scheme functions that conform to the
existing ones, here is how you do it.
First, define a new scheme function:

myScheme = function(a,b,c){

This function takes whatever data and options are needed. Then you need
to make sure these options are evaluated in order to fix their values. Use the
force function for this:

force(a)
force(b)
force(c)

Next we create a function within this function that only takes the new data
as argument:

f = function(data){
colours=someFunction(data,a,b,c)
return(colours)

}

Note that this function only takes the data as an argument, but it does
have the values of a, b, and ¢ available within it. These values will be in the
environment of the function when it is called, since they are there as the function
is created.

Then we need to make sure we return the function with a new class, and a
‘type’ string attribute which is a short description used by the print method.

class(f)= c("myScheme", "colourScheme", "function")
attr(f,"type")="my scheme"
return(f)

}

Finally, we write a schemeData method for our new scheme. It will be passed
the function object with the arguments wrapped in its environment:

schemeData.myScheme = function(object){
eo=environment (object)
return(list (a=get ("a",env=eo),
b=get ("b",env=eo),
c=get("c",env=e0)))

See the R code for the included functions for more.

Using colourschemes with image

Most base graphics functions such as plot, lines and friends have a col=
argument to directly specify colours of plotted entities. However, no such option
is available for the image function. This function can only plot against a colour
palette.

One way round this is to create a palette of the same length as the number
of cells in the image, and create a matrix of the same shape as the data but
containing the values from 1 to the number of cells. Then we use image on that
matrix, and the colour is then looked up in our long palette.

In this example we create a modified version of the volcano dataset scaled
to give us some negative values. We then use a colour scheme for topological
data with a snowline at 1500 units:

v=((volcano-94) *40)-2000

vramp = multiRamp (rbind(c(-2000,0),c(0,1500),c(1500,max(v))),
list(c("black", "blue"),c("green", "brown"),c("gray70", "white"))
)

image (matrix(1:length(v),nrow=nrow(v)),col=vramp(v))

title("Colour Scheme, exact')

vV VvV + + Vv VvV

Colour Scheme, exact

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

This method is expensive in terms of memory since it involves the creation
of objects of the same size as your data, but it does produce the exact correct
colours. Another option is to create a fixed palette from your colour scheme
based on the range of your data:

> p=vramp (seq(min(v),max(v),len=50))

> image (v, col=p)
> title("Colour Scheme, approximate")

10

Colour Scheme, approximate

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

This gives an approximation to the exact colours, something most easily
noticed in the difference in the icecap. A better approximation can be made by
using a longer palette.

When reusing the colour scheme on a subset or other data set using this
method, just construct a palette from the range of the subset. Here we zoom in
on part of the volcano and use the same colour scheme:

> vs=v[20:40,40:60]

> ps=vramp (seq(min(vs),max(vs),len=50))
> image(vs,col=ps)

> title("Colour Scheme, approximate")

11

Colour Scheme, approximate

1.0

0.8

0.6

04

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Note that the icecap now looks closer to the original region than before
because we are using a better approximation for our palette - the 50 colours are
now interpolating between the smaller range of values in our subset matrix.

The exact method for a subset looks like this:

> image (matrix(1:length(vs),nrow=nrow(vs)),col=vramp(vs))
> title("Colour Scheme, exact")

12

Colour Scheme, exact

1.0

0.8

0.6

04

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

More Examples

The following code produces some more example colour schemes.

>
>
>
>
>
>
+
+
>
+
>
+
+
>
+
>
+

set.seed(123)
require (RColorBrewer)
x=seq(-2.5, 2.5, len=50)
srange = max(abs(range(x)))*c(-1,1)
schemes = list()
schemes[[length(schemes)+1]] =
nearestScheme (data.frame (values=c(-1.5,-0.5,0,0.5,1.5),
col=brewer.pal(5, "Set3")))
schemes[[length(schemes)+1]] =
rampInterpolate(c(-2,2), c("red","yellow", "blue"))
schemes[[length(schemes)+1]] =
rampInterpolate(c(-2,2), c("red","yellow", "blue"),
interpolate="spline",bias=0.3)
schemes[[length(schemes)+1]] =
rampInterpolate(c(-2,2), brewer.pal(5,"PuOr"))
schemes[[length(schemes)+1]] =
rampInterpolate (srange, brewer.pal(5,"Pu0r"))

13

schemes[[length(schemes)+1]] =
multiRamp(rbind(c(-2,0), c(0,.6), c(.6,2)),
list(c("black","blue"),
c("yellow", "brown"),
c("green", "white")))
nt = length(schemes)

plot(srange, c(1,nt+1), type='n', xlab="", ylab="",
axes=FALSE, main="colour schemes")

axis (1)

box ()

for(i in 1:nt){

points(x,rep(i,length(x)),col=schemes[[i]] (x),pch=19,cex=1.5)
for(k in 1:1)9
xr = runif(30,min(x),max(x))
points(xr,rep(i,length(xr))+.2*k,col=schemes[[i]] (xr),pch=19, cex=1)
}
text(min(x),i+.4,class(schemes[[i]]) [1],adj=c(0,.5))
legend(par () $usr[2],i+0.4,xjust=1,yjust=0.5,
as.character(pretty(x)),
fill=schemes[[i]] (pretty(x)),

>
+
+
+
+
>
>
+
>
>
>
+
+
+
+
+
+
+
+
+
+
+ horiz=TRUE,bty='n"',cex=1,x.intersp=.1,text.width=0.05)
+

>

14

colour schemes

multiRamp
. L] oee s o «

O-3m-2m-1m0 O1 02 O3

ramplnterpolate
L (1]

ramplnterpolate

ramplnterpolate
L] L]

ramplnterpolate
L7 ”e °

0O0-3@-20-100 O1 =2 O3

O-3m-20-100 O1 W2 3

O-3m-20-100 01 w2 O3
L] -

O-3m-23-100 @1 =2 O3
L] L J e o

000000000000 00000000000000
nearestScheme 0O-30-20-100 @1 @2 @3
00000000
T T T T I
-2 -1 0 1 2

15

