
The Bigmemory Project

Michael J. Kane and John W. Emerson
Yale University
April 29, 2010

Multi-gigabyte data sets often challenge and frustrate R users. C/C++ pro-
gramming can provide efficiencies, but is cumbersome for interactive data analysis
and lacks the flexibility and power of R’s rich statistical programming environ-
ment. The package bigmemory and sister packages biganalytics , synchronic-
ity , bigtabulate , and bigalgebra bridge this gap, implementing massive ma-
trices and supporting their manipulation and exploration. The data structures
may be allocated to shared memory, allowing separate processes on the same
computer to share access to a single copy of the data set. The data structures
may also be file-backed, allowing users to easily manage and analyze data sets
larger than available RAM and share them across nodes of a cluster. These fea-
tures of the Bigmemory Project open the door for powerful and memory-efficient
parallel analyses and data mining of massive data sets, even on modest hardware.

Introductory Example: the 2009 JSM Data Expo

Consider the complete airline on-time performance data from the 2009 JSM Data
Expo. The processed data set, airline.csv, is approximately 11 GB (about 120 million
rows and 29 columns) with factors coded as integers (see http://www.bigmemory.org/ for
processing information). The read.big.matrix() call creates the binary file-backing air-

line.bin associated with the big.matrix object x. Subsequent R sessions can attach
instantly to airline.bin without incurring the one-time overhead (about 25 minutes) asso-
ciated with creating the backing. A summary of the entire data set is easily obtained using
the new summary() method. Note the surprising presence of negative arrival and departure
delays: exploratory data analysis in action via bigmemory . The summary only takes 3-4
minutes to process the 11 GB of data on a laptop with only 4 GB of RAM.

> library(bigmemory)

> library(biganalytics)

> x <- read.big.matrix("airline.csv", type="integer", header=TRUE,

+ backingfile="airline.bin",

+ descriptorfile="airline.desc",

+ extraCols="Age")

> summary(x)

min max mean NA's

Year 1987 2008 1998.62 0

Month 1 12 6.55 0

DayofMonth 1 31 15.72 0

DayOfWeek 1 7 3.94 0

ArrDelay -1437 2598 7.05 2587529

DepDelay -1410 2601 8.17 2302136

... (other variables omitted here) ...

1

Overview

Data frames and matrices in R are easy to use, with typical manipulations executing
quickly on data sets much smaller than available RAM. They suit the needs of many R users
and work seamlessly with existing R functions and packages. However, problems arise with
larger data sets and when increased memory requirements of parallel programming strain
the system.

The Bigmemory Project offers packages for two purposes. First, bigmemory , bigan-
alytics , and bigtabulate have been designed to provide a minimalist, elegant framework
for users to manage and explore large data sets, even on modest hardware (expensive work-
stations or clusters are not required). The interface is designed to mimic R’s familiar matrix
syntax. Matthew Keller, Assistant Professor of Psychology, University of Colorado at Boul-
der offered the following testimonial about bigmemory : “I love that it’s intuitive and doesn’t
require a lot of learning new ways to code things.”

Second, the packages of the Bigmemory Project provide a foundation for memory-
efficient parallel programming and can serve as building blocks for developers of new high-
performance computing tools in R. When used in conjunction with a parallel package (such as
foreach , snow , Rmpi , or multicore , for example), even shared-memory parallel-computing
becomes accessible to non-experts. The programming interface is stable, and offers the
flexibility to support the development of algorithms working seamlessly on both big.matrix

and traditional matrix objects. For examples of this, look first at the function mwhich(); it
offers flexible which()-like functionality that is computationally efficient and avoids memory
overhead. In addition, all the functions provided by bigtabulate may be used with matrix

and big.matrix objects alike.

Underneath the Hood of the Bigmemory Project

The packages of the Bigmemory Project use the Boost Interprocess C++ library to
provide platform-independent support for massive matrices that may be shared across R
processes. Innovative use of C++ accessors supports matrices of double, integer, short,
and char, as well as the development of algorithms working seamlessly on big.matrix objects
or traditional R matrices.

Example: Airplane Ages and Parallel Processing

We would like to approximate the age of each plane at the time of each flight. This
first requires calculation of an approximate “birthmonth” for each plane: the month of the
first appearance in the data set. Given a matrix y containing Year and Month for all flights
of a given plane, birthmonth(y) returns the month (in months AD) of the earliest flight:

> birthmonth <- function(y) {

+ minYear <- min(y[,'Year'], na.rm=TRUE)

+ these <- which(y[,'Year']==minYear)

+ minMonth <- min(y[these,'Month'], na.rm=TRUE)

+ return(12*minYear + minMonth - 1)

+ }

A traditional approach to calculating all the birthmonths might use a for() loop:

2

> allplanes <- unique(x[,'TailNum'])

> planeStart <- rep(0, length(allplanes))

> for (i in allplanes) {

+ planeStart[i] <- birthmonth(x[mwhich(x, 'TailNum', i, 'eq'),

+ c('Year', 'Month'), drop=FALSE])

+ }

With about 13,000 flights this takes about 9 hours, even with the relative fast and memory-
efficient use of mwhich().

A far more efficient alternative is to first obtain a list of row indices for each plane:

> library(bigtabulate)

> planeindices <- bigsplit(x, 'TailNum')

Here, the use of the new function bigsplit() is equivalent to

> planeindices <- split(1:nrow(x), x[,'TailNum'])

but is faster (16 versus 29 seconds) and more memory efficient (with peak memory usage
of 2 versus 3 GB). Either way, planeindices[i] contains all row indices corresponding to
flights with TailNum equal to i. This requires several hundred MB, but is computationally
more efficient in this problem. For example, planeindices may be used with sapply() in
the obvious way, completing the task in a mere 30 seconds:

> planeStart <- sapply(planeindices,

+ function(i) birthmonth(x[i, c('Year','Month'),

+ drop=FALSE]))

The looping structure foreach() of package foreach can be a powerful and flexible
alternative to for() or functions like lapply() and sapply(). It can also take advantage
of the shared-memory capability of bigmemory . Package doMC provides one of several avail-
able “parallel backends” for the function foreach(), allowing the work to be automatically
distributed to available processor cores:

> library(doMC)

> registerDoMC(cores=2)

> planeStart <- foreach(i=planeindices, .combine=c) %dopar% {

+ return(birthmonth(x[i, c('Year','Month'), drop=FALSE]))

+ }

The syntax of a foreach() loop is slightly different from the syntax of a traditional loop,
but its benefits are clear: in this example, it takes only 14 seconds to calculate the plane
birthmonths using two processor cores.1 Both cores share access to the same master copy of
the airline data (with Year and Month cached in RAM); individual calls to birthmonth()

are relatively small in size. Without the registerDoMC() initialization, the foreach() loop
would run on a single processor core, much like sapply(), but taking about 24 seconds in
this problem with lower memory overhead than sapply().

Finally, the plane ages at the time of all flights may be calculated:

1We should note that doMC and multicore are particularly well-suited for this. When other par-
allel backends are used, one additional command is required in the birthmonth() function: x <- at-

tach.big.matrix(xdesc) where xdesc <- describe(x) would be required just prior to the foreach()

loop, providing explicit shared-memory access across processes. In contrast, multicore automatically oper-
ates on shared memory, avoiding the need for this extra step.

3

> x[,'Age'] <- x[,'Year']*as.integer(12) +

+ x[,'Month'] - as.integer(planeStart[x[,'TailNum']])

This arithmetic is conducted on R vectors extracted from the big.matrix; use of as.integer()
helps keep the memory consumption under control.

Concluding Example: a Big Regression

In addition to providing basic functions for exploratory data analysis, the package
biganalytics provides a wrapper for Thomas Lumley’s biglm package, supporting massive
linear and generalized linear models.2 The following toy example examines the airline arrival
delays as a linear function of the age of the plane at the time of the flight and the year of
the flight. About 85 million flights are used (because of missing airplane tailcodes). We
estimate that use of R’s lm() function would require more than 10 GB of RAM of memory
overhead, while this example runs in about 3 minutes with only several hundred MB of
memory overhead.

> blm <- biglm.big.matrix(ArrDelay ~ Age + Year, data=x)

> summary(blm)

Large data regression model: biglm(formula = formula, data = data, ...)

Sample size = 84216580

Coef (95% CI) SE p

(Intercept) 91.6149 87.6509 95.5789 1.9820 0

Age 0.0144 0.0142 0.0146 0.0001 0

Year -0.0424 -0.0444 -0.0404 0.0010 0

From this, we might conclude that older planes are associated with increased predicted delays,
and predicted delays in recent years are lower. However, this exercise is merely for illustrative
purposes; a serious study of airline delays would quickly reject this oversimplification and
discover problems with this particular regression.

Additional Information and Supporting Material

These examples were tested both in Linux 64-bit and Windows 7 Enterprise 64-bit
environments. Older versions of Windows operating systems (including Vista 64-bit) seem to
suffer from extremely inefficient caching behavior with filebackings and are not recommended
for use with bigmemory ; 32-bit environments will be limited by approximately 2 GB of
addressable memory.

The packages are available via R-Forge and on CRAN as of late April, 2010; please see
http://www.bigmemory.org/ for more information. There is a short vignette available in
the Documentation area, as well as presentation slides introducing bigmemory and providing
some benchmarks and shared-memory parallel programming examples. Please do not use
the older version of bigmemory archived on CRAN (versions <= 3.12).

2Package biganalytics also provides bigkmeans(), and other analytics may be added to the package in
the future.

4

Citations

1. The Bigmemory Project, http://www.bigmemory.org/, the home of R packages big-
memory , biganalytics , bigtabulate , bigalgebra , and synchronicity . Packages
available from CRAN or R-Forge.

2. 2009 JSM Data Expo: Airline on-time performance. http://stat-computing.org/

dataexpo/2009/.

3. Thomas Lumley (2009). biglm : bounded memory linear and generalized linear models.
R package version 0.7, http://CRAN.R-project.org/package=biglm.

4. R Development Core Team (2009). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-
07-0, http://www.R-project.org.

5. Luke Tierney, A. J. Rossini, Na Li and H. Sevcikova (). snow : Simple Network of
Workstations. R package version 0.3-3, http://CRAN.R-project.org/package=snow.

6. Simon Urbanek (2009). multicore : Parallel processing of R code on machines
with multiple cores or CPUs. R package version 0.1-3, http://www.rforge.net/

multicore/.

7. Stephen Weston and REvolution Computing (2009). doMC : Foreach parallel adaptor
for the multicore package. R package version 1.2.0, http://CRAN.R-project.org/
package=doMC.

8. Stephen Weston and REvolution Computing (2009). foreach : Foreach looping con-
struct for R. R package version 1.3.0, http://CRAN.R-project.org/package=foreach.

9. Hao Yu (2010). Rmpi : Interface (Wrapper) to MPI (Message-Passing Interface). R
package version 0.5-8, http://www.stats.uwo.ca/faculty/yu/Rmpi.

5

