
FLBEIA a R package to conduct Bio-Economic

Impact assessments using FLR

Dorleta Garćıa, Raúl Prellezo, Sonia Sanchéz & Marga Andrés

November 10, 2011

Abstract

FLBEIA FLBEIA (FL Bio-Economic Impact Assessment) is an R pack-
age build on top of FLR libraries. The purpose of the package is to provide
a flexible and generic simulation model to conduct Bio-Economic Impact
Assessments of harvest control rule based management strategies under a
Management Strategy Evaluation (MSE) framework. As such the model
is divided in two main blocks, the operating model (OM), and the man-
agement procedure model (MPM). In turn these two blocks are divided
in 3 components. The OM is formed by the biological, the fleet and the
covariables components and the MPM by the observation, the assessment
and the management advice components.

The model is multistock, multifleet and seasonal and uncertainty is
introduced by means of montecarlo simulation. The algorithm has been
coded in a modular way to ease its checking and to make it flexible. The
package provides functions that describe the dynamics of the different
model components, under certain assumptions. In each case specific model
implementation the user chooses which of the functions are used. Further-
more, if in a specific case study or scenario, for some of the components,
the functions provided within FLBEIA do not fulfill the requirements,
the user can code the functions that adequately describe the dynamics of
those components and use existing ones for the rest of the components.
As the user can construct its own model, selecting existing submodels and
constructing new ones, we can define it as a framework more than as a
model. The package is still under development but most of its functionali-
ties are already available. At the moment there are no functions to model
trophic interactions but it is something planed in the short term. Main
limitations of the model are that the stocks must be age structured or
aggregated in biomass (length structure is not allowed) and that spatial
dimension is not considered explicitly. Spatial characteristics could be
modeled assigning stocks and/or fleets/metiers to specific areas.

1

Contents

1 Introduction 4

2 The Concept of BEIA 7
2.1 Operating Model . 7

Biological component: 7
Fleet component: . 7
Covariates: . 7
Links among and within components: 8

2.2 The management procedure model 8
Observation component: 8
Assessment component: 9
Management advice component: 9

3 Running BEIA 9
3.1 First level function: BEIA 9
3.2 Second level functions . 10

3.2.1 Biological Component: biols.om 10
biols.control. 11

3.2.2 Fleets Component: fleets.om 11
fleets.ctrl. 12

3.2.3 Covariables Component: covars.om 14
covars.ctrl . 14

3.2.4 Observation Component: observation.om 14
obs.ctrl. 15

3.2.5 Assessment Component: assess.om 15
assess.ctrl. 16

3.2.6 Management Advice Component: advice.om 16
advice object. 17
advice.ctrl . 17

3.3 Third level functions . 17
3.3.1 Population growth functions 17

ASPG: Age Structured Population Growth function. . 17
BDPG: Biomass Dynamic Population Growth function. 18

3.3.2 Effort models . 18
fixedEffort. 18
SMFB: Simple Mixed Fisheries Behavior. 19
SSFB: Simple Sequential Fisheries Behavior. 21

3.3.3 Price Models . 23
fixedPrice. 23
elasticPrice. 23

3.3.4 Capital Models . 24
fixedCapital. 24
SCD: Simple capital Dynamics 24

3.3.5 Covariables Models 25
fixedCovar. 25

3.3.6 Observation Models: Catch and biological parameters 25
age2ageDat. 25
bio2bioDat. 26

2

age2bioDat. 27
3.3.7 Observation Model: Population 27

perfectObs. 27
age2agePop. 27
bio2bioPop. 28
age2bioPop. 28

3.3.8 Observation Model: Abundance Indices 28
ageInd. 28
bioInd. 29

3.3.9 Observation Model: Fleets 29
3.3.10 Management Advice Models 29

annualTAC. 29
3.4 Fourth level functions . 30

3.4.1 Stock-Recruitment relationships 31
3.4.2 Catch production functions 32

CobbDouglasBio . 32
CobbDouglasAge . 33

3.4.3 Costs functions . 34
TotalCostsPower. 34

A New FLR - S4 classes 35
A.1 FLBDsim class . 35
A.2 FLSRSim Class . 36

B Graphical representation of FLR Objects 37

3

1 Introduction

The idea of FLBEIA comes from many applications developed to perform
bio-economic analysis in AZTI-Tecnalia to which pieces of code were re-
written in order to match with a specific case study/fishery. These pieces,
in many cases, reflect exactly the same processes with similar dynamics,
that have to be slightly, adapted to these different case studies.

In order to avoid theses cases we decided to develop not a model but
a framework in which a model is built. This model can be constructed
combining only existing functions or new ones can be constructed and
combined with existing ones. This idea comes from the fact that there
is no an universal model that can be applied to address all fishery man-
agement issues. The choice of the model to be used is dependent on the
questions asked, which implies that any model can be considered valid for
all purposes.

Furthermore, big advances have been seen in the last years in bio-
economic modelling, in which models such as Fishrent [Salz et al., 2011],
Fcube [Ulrich et al., 2011], FcubeEcon [Hoff et al., 2010] and many others
can be cited. But also theoretical and sometimes partial assessment have
been developed. In that sense FLBEIA pretends not to create new models
or processes but to integrate many of them in a common bio-economic
impact assessment framework as a package of FLR [Kell et al., 2007].

FLR [Kell et al., 2007] was developed with the goal of developing a
common framework to facilitate collaboration within and across disci-
plines (e.g. biological, ecological, statistical, mathematical, economic, and
social) and, in particular, to ensure that new modelling methods and soft-
ware are more easily validated and evaluated, as well as becoming widely
available once developed.

FLBEIA package is build on top of existing FLR packages. It is an R

package [R Development Core Team, 2010] developed to conduct Bio-
Economic Impact Assessments, that is, to identify the potential economic
and biological consequences of a proposed policy action, to support policy
making.

It has been built under Management Strategy Evaluation framework
[Butterworth and Punt, 1999, Butterworth, 2007, De la Mare, 1998, Punt
and Donovan, 2007, Rademeyer et al., 2007]. It contains a collection
of functions and new S4 classes developed to facilitate the simulation of
fishery systems response to different types of management strategies.

The main characteristics of FLBEIA package are

� It is coded in a generic, flexible and extensible way.

� Provides functions to condition the simulations, to run them and to
analyze the results.

In fact, a mayor effort has been set on the second functionality, namely
the simulation model.

The main characteristics of the BEIA simulation model are:

� The model is fully biological-economic coupled and provides fully
integrated bio-economic assessment.

4

� The model deals with multi-species, multi-fleet and multi-metier sit-
uations.

� The model can be run using seasonal steps (smaller or equal to one
year).

� It is generic, flexible and extensible.

� Uncertainty can be introduced in almost any of the parameters used.

A conceptual diagram of the model is shown in figure 1. The simula-
tion is divided in two main blocks, the Operating Model (OM) and the
Management Procedure Model (MPM). The OM is the part of the model
that simulates the real dynamics of the fishery system and the MPM is
the part of the model that simulates the whole management process.

Figure 1: Conceptual diagram of BEIA

The OM has three components that can interact among themselves :

1. The biological populations or stocks.

2. The fleets.

3. The covariables. They can be of any nature, environmental, eco-
nomical or technical.

The MPM has also three components:

1. The data collected from the OM.

2. The observed population obtained through the application of a set
of assessment models to the observed data.

5

3. The management advice obtained from the application of harvest
control rules (HCR) to the observed populations.

The model is built modularly with a top-down structure that has, at
least, four levels:

1. In the first level (top level) there is only one function, BEIA function.
It calls the functions on the second level in a determined order and it
links the main components (stocks, fleets, covariates ,data, observed
population and management advice)of the OM and MPM.

2. The functions in the second level correspond with the components
in the figure 1. The OM components project the objects one sea-
son forward: biols.om projects the stocks, fleets.om projects the
fleets and covars.om projects the covariables. The MPM compo-
nents generate the objects necessary to produce the management
advice, they generate the objects based on OM objects and they
operate at most once a year: observation.mp generates the data,
assessment.mp generates the observed population and advice.mp

generates the management advice. They take the input objects and
returns only those related to the component they belong to.

3. The functions in the third level, define the specific dynamic or dy-
namics of each component and they are chosen by the user in each
simulation. They are always called by a second level function and
in some cases they call fourth level functions, for example a func-
tion that describes the dynamics of an age structured population
can call a stock recruitment function. In this way, a function used to
describe age structured populations can be combined with different
stock recruitment relationships.

4. The functions in the fourth level are called by functions in the third
level and are used to model the most basic processes in the simula-
tion. They are coded as a function and selected by the user because
it could be interesting to use the same third level function together
with different fourth level functions, as in the case of age structured
population and stock recruitment functions.

This top down structure allow us to avoid the classical structure of
separated biological and economic (and social) modules (that could be
integrated or not). When designing the model we can think only in at what
level do we want to include a particular characteristic, and this decision
is independent of being a biological or an economic characteristic.

FLBEIA is prepared to incorporate new third and lower level compo-
nents, or to modify them while first and second level are fixed. Changing
first or second level functions would imply a different approach but exist-
ing third and lower level functions would be usable.

The next two sections will explain the conceptual model of BEIA and
the model specifications. The conceptual model will explain the main
components as well as the feedbacks and loops among them. The model
specification, will explain the components,the functions by level, the cur-
rently available third and four level functions andž how to use them within
the FLBEIA package.

6

2 The Concept of BEIA

As commented above the simulation model has been divided in two main
blocks, the Operating Model (OM) and the Management Procedure Model
(MPM). This division is part of the requirements of the MSE approach,
that is, mathematical representations of the real world (OM), the observed
world (MPM) and the interactions between them.

2.1 Operating Model

The OM is the part of the model that simulates the real dynamics of the
fishery system. It is divided in three components or operating models, the
biological operating model, the fleets operating model, and the covariables
operating model.

It runs in seasonal steps projecting the components in each step.
Firstly, the biological component is updated, secondly the fleet compo-
nent and finally the covariable component.

Biological component: The biological component simulates the pop-
ulation dynamics of the biological populations, the stocks. The number
of populations is, in principle, unlimited. The limitation could come from
memory problems with R and/or the operating system. The stocks can
be described as age structured populations or as biomass dynamic pop-
ulations, length structured populations models are not supported by the
simulation algorithm. Each stock can follow a different population dy-
namic model and is projected independently. It does not mean that there
can not interdependence between them but the order in which these bi-
ological components are updated has to be decided and it will affect the
results obtained.

Fleet component: The fleet component simulates the behavior and
dynamics of the individual fleets. As the number of the stocks, the number
of fleets is in principle unlimited. The limitation could come from memory
problems with R and/or the operating system used.The activity of the
fleets is divided in metiers. The metiers are supposed to be formed by
trips that share the same catchability for all the stocks caught. Fishing
effort of the fleets and their effort share among metiers are independently
updated for each fleet in each season.

Annually there are capital dynamics that update the capacity and/or
catchability of the fleets according to their economic performance, inde-
pendently for each fleet.

Covariates: This part of the model is intended to incorporate all the
variables that have not room in the biological or fleet components and that
affect any of the operating model components or the management process.
The number of covariates is in principle unlimited. The limitation could
come from memory problems with R and/or the operating system used.

7

Links among and within components: The link within the be-
tween OM components are not restricted by the general setting of the
simulation model. If the modeler decides to include these links, we will
have:

� The link within the biological component is that catch affects abun-
dance.

� The link within the fleets component is that fleets’ capacity affects
fishing effort.

� The link between the biological and fleets components is that fishing
effort and fish abundance affects catches.

Again, remind that the use of not of these links is under the discretion
of the modeler.

2.2 The management procedure model

The Management Procedure Model (MPM) is divided in 3 components,
the observation component, the assessment component and the manage-
ment advice component. The observation component produces the neces-
sary data to run the assessment component. Then, the assessment com-
ponent is applied to the data to obtain the observed populations. Finally,
the management advice component produces a management advice based
on the observed populations. One of the limitations is that the MPM
procedure is applied yearly in the last season of the year. It implies that,
for example, management that goes from the mid season of the year to the
mid season of the next year can not be simulated1. This does not imply
any further limitation in terms of performing multi-annual advices.

Observation component: The observation component generates the
necessary objects to run the assessments. Three types of objects can be
generated :

� Stocks.

� Fleets.

� Abundance indices.

Stocks and abundance indices objects are generated independently,
stock by stock, and fleets are observed jointly. These observed objects
are generated starting the components of the OM to which a variation is
introduced. This variation can be due to:

� Introducing uncertainty to the OM variables, or

� adjusting the OM variables to the assessment model requirements
that is going to be used in the next step (collapsing the dimensions
-age, season,...)

� adjusting the OM variables to the legal conditionants (TACs, quotas,
TAE, discards,...)

1We are working on solving this limitation

8

Assessment component: Assessment models are applied on a stock
by stock basis and they can vary from stock to stock.

Management advice component: The management advice com-
ponent produces a set of indicators (set by the user) useful for policy
making. The management advice is produced based on the output ob-
tained from the observation and assessment components. The advice is
first applied at single stock level and then (after that) it can be applied
at fleet level.

3 Running BEIA

3.1 First level function: BEIA

The simulations are run using BEIA function. This function is a multistock,
multifleet and seasonal simulation algorithm coded in a generic, flexible
and extensible way. It is generic in the sense that can be applied to any
case study that fit into the model restrictions. The algorithm is made by
third and fourth level functions specified by the user. Apart of existing
functions new ones can be defined and used if necessary, this is the reason
to define it as flexible and extensible.

To define the simulation the third- and fourth-level functions must be
specified. For this end, in the main function call, there is a control argu-
ment associated to each second level function. These control arguments
are lists which include, apart of the name of the functions to be used in
the simulations, any extra argument needed by those functions that are
not contained in the main arguments.

BEIA is called as:

BEIA(biols, SRs, BDs, fleets, covars, indices, advice,

main.ctrl, biols.ctrl, fleets.ctrl, covars.ctrl,

obs.ctrl, assess.ctrl, advice.ctrl)

Main arguments:

biols : An FLBiols object. The object must be named and the names
must coincide with those used in SRs object, BDs object and catches

slots within FLFleetExts object.

SRs : A list of FLSRsim objects. This object is a simulation version of
the original FLSR object. The object must be named and the names
must coincide with those used in FLBiols object. For details on this
object see the figure in the annex.

BDs : A list of FLBDsim objects. This object is similar to FLSRs object but
oriented to simulate population growth in biomass dynamic popu-
lations. The object must be named and the names must coincide
with those used in FLBiols object. For details on this object see the
figure in the annex.

fleets : An FLFleetExts object. This object is almost equal to the orig-
inal FLFleet object but the FLCatch object in catch slot has been
replaced by FLCatchExt object. The difference between FLCatch

9

and FLCatchExt objects is that FLCatchExt object has two extra
slots alpha and beta used to store Cobb-Douglas production func-
tion parameters, α and β, (Cobb and Douglas [1928], Clark [1990]).
α corresponds with effort’s exponent and β with that of biomass.
The FLFleetExts object must be named and the names used must
be consistently used in the rest of the arguments. For details on this
object see the figure in the annex.

covars : An FLQuants object. This object is not used in the most basic
configuration of the algorithm. Its content is totally dependent in
the third or lower level functions that make used of it.

indices : A list of FLIndices objects. Each element in the list corre-
sponds with one stock. The list must be named and the names must
coincide with those used in FLBiols object.

advice : A list. The class and content of its elements depends on func-
tions used in fleet.om to simulate fleets’ effort and the functions
used to produce advice in advice.mp.

Control arguments:

main.ctrl : Controls the behavior of the main function, BEIA.

biols.ctrl : Controls the behavior of the second level function biols.om.

fleets.ctrl : Controls the behavior of the second level function fleets.om.

covars.ctrl : Controls the behavior of the second level function co-

vars.om.

obs.ctrl : Controls the behavior of the second level function observa-

tion.mp.

assess.ctrl : Controls the behavior of the second level function assess-

ment.mp.

advice.ctrl : Controls the behavior of the second level function ad-

vice.mp.

3.2 Second level functions

3.2.1 Biological Component: biols.om

The call to the function within BEIA is done as:

biol.om(biols, fleets, SRs, BDs, covars, biols.ctrl, year,

season)

This function projects the stocks one season forward. The projection
is done independently stock by stock by the third level function specified
for each stock in biols.ctrl object. In this moment there are two popula-
tion dynamic functions implemented, one corresponding to age structured
populations, ASPG, and the second one to biomass dynamic populations,
BDPG. These two functions do not include predation among stocks, but
this kind of models could be implemented and used in the algorithm if
necessary.

10

biols.control. This argument is a list which contains the necessary
information to run the third level functions that are called by biols.om.
The elements depend on the the third and lower level functions used to
describe the dynamic of the stocks. The list must contain at least one
element per stock and the name of the element must coincide exactly with
the name used in biols argument so it can be used to link the population
with its dynamic model. At the same time each of these elements must
be a list with at least one element, dyn.model, which specifies the name
of the function used to describe population dynamics.

When only ASPG and/or BDPG functions are used the biols.ctrl object
is just a list with one element per stock. And these elements are lists with
just one element, dyn.model, specifying the name of the function used to
describe populations dynamics, ASPG or BDPG. For example:

> biols.ctrl

$NHKE

$NHKE$dyn.model

[1] "ASPG"

$CMON

$CMON$dyn.model

[1] "BDPG"

$FAKE

$FAKE$dyn.model

[1] "ASPG"

$

3.2.2 Fleets Component: fleets.om

The call to fleets.om function within BEIA is done as:

fleets.om(fleets, biols, covars, advice,

fleets.ctrl, year, season)

It projects the fleets one season forward. The main argument, fleets,
is an object of class FLFleetsExt, an extension of the FLFleet object. The
difference is in the catches slot that in the case of FLFleetsExt object
is of class FLCatchExts. FLCatchExt objects are equal to the original
FLCatch but has 2 extra slots, alpha and beta. These two slots have been
added to store Cobb-Douglas production function parameters.

The function is divided in three processes related with fleet dynamics,
the effort model, the price model and the capital model. Effort and Capital
models are fleet specific and price model is fleet and stock specific. First
fleets.om calls the effort model and it updates the slots related to effort
and catch. The effort models are called independently fleet by fleet. Then
fleets.om calls the price model in fleet by fleet and stock by stock basis.
The price model updates the price slot in the fleets object. Finally the
function calls the capital model, but the call is done in the last season of

11

the year. Thus, investment and disinvestment is only done annually. The
capital model is called independently fleet by fleet.

Effort model: This part of the model simulates the tactical behavior of
the fleet every season and iteration. In each time step and iteration
the effort exerted by each individual fleet and its effort-share among
metiers is calculated depending on the stock abundance, manage-
ment restrictions or others. After that the catch produced by the
combination of effort and effort-share is calculated and discards,

discards.n, landings, landings.n slots are filled. Other vari-
ables variables stores in fleets.ctrl could also be updated here,
for example quota.share, as a result of the exerted effort.

The effort model is specified at fleet level so each fleet can follow a
different effort model. At the moment there are 3 functions available,
fixedEffort, SMFB and SSFB. To write new functions for effort it
must be taken into account that the input arguments must be found
among fleets.om function arguments and that the output must be
a list with updated FLFleetsExt and fleet.ctrl objects, i.e:

list(fleets = my_fleets_obj, fleet.ctrl = my_fleet.ctrl_obj)

Price Model: The price model updates the price-at-age at stock, metier
and fleet level in each time step and iteration.

At the moment there are 2 functions available, fixedPrice and
elasticPrice. To write new functions for price it must be taken into
account that the input arguments must be found among fleets.om

function arguments and that the output must be a list with updated
FLFleetsExt object.

Capital Model: This module is intended to simulate the strategic be-
havior of the fleets, namely the investment and disinvestment dy-
namics. The model is applied at fleet level and in an annual basis
and can affect fleets’s capacity and catchability. Catchability could
be modified through investment in technological improvement and
capacity as a result of and increase (investment) or decrease (disin-
vestment) in number of vessels. Changes in fleets’ capacities could
produce a variation in quota share among fleets for example, thus
the corresponding change would have to be done in fleets.ctrl

object.

At the moment there are 2 functions available, fixedCapital and
SCD. To write new functions for capital dynamics as for effort and
price it must be taken into account that the input arguments must
be found among fleets.om function arguments and that the output
must be a list with updated FLFleetsExt and fleets.ctrl objects.

fleets.ctrl. The most simple example of fleet dynamic model and
hence the most simple fleets.ctrl object correspond with the model
where all the parameters in fleets object are given as input and main-
tained fixed within the simulation. This is obtained using the third level
functions, fixedEffort, fixedPrice and fixedCapital which do not
need any extra arguments. In the case of two fleets, FL1 and FL2, where

12

FL1 catches 3 stocks, ST1, ST2 and ST3 and FL2 catches ST1 and ST3

stocks, the fleets.ctrl will have the following form:

>fleets.ctrl <- list()

The fleets

>fleets.ctrl[['FL1']] <- list()

>fleets.ctrl[['FL2']] <- list()

Effort model per fleet.

>fleets.ctrl[['FL1']]$effort.dyn <- 'fixedEffort'

>fleets.ctrl[['FL2']]$effort.dyn <- 'fixedEffort'

Price model per fleet and stock.

>fleets.ctrl[['FL1']][['ST1']]$price.dyn <- 'fixedPrice'

>fleets.ctrl[['FL1']][['ST2']]$price.dyn <- 'fixedPrice'

>fleets.ctrl[['FL1']][['ST3']]$price.dyn <- 'fixedPrice'

>fleets.ctrl[['FL2']][['ST1']]$price.dyn <- 'fixedPrice'

>fleets.ctrl[['FL2']][['ST3']]$price.dyn <- 'fixedPrice'

Capital model by fleet.

>fleets.ctrl[['FL1']]$capital.dyn <- 'fixedCapital'

>fleets.ctrl[['FL2']]$capital.dyn <- 'fixedCapital'

$FL1

$FL1$effort.dyn

[1] "fixedEffort"

$FL1$ST1

$FL1$ST1$price.dyn

[1] "fixedPrice"

$FL1$ST2

$FL1$ST2$price.dyn

[1] "fixedPrice"

$FL1$ST3

$FL1$ST3$price.dyn

[1] "fixedPrice"

$FL1$capital.dyn

[1] "fixedCapital"

$FL2

$FL2$effort.dyn

[1] "fixedEffort"

$FL2$ST1

$FL2$ST1$price.dyn

[1] "fixedPrice"

13

$FL2$ST3

$FL2$ST3$price.dyn

[1] "fixedPrice"

$FL2$capital.dyn

[1] "fixedCapital"

3.2.3 Covariables Component: covars.om

covars.om projects covars object one season forward. covars object is
a named list and the class and dimension of each element will depend on
the function used to project it into the simulation.

The call to covars.om function within BEIA is done as:

covars.om(biols, fleets, covars, advice,

covars.ctrl, year, season)

Internally, for each element in the covars list, it calls to the third level
functions specified in the covars.ctrl object. At the moment there exist
only one third level function, fixedCovar, which is used to work with
variables that are input parameters not updated within the simulation.

This way of working could be useful for example for environmental
variables such as sea surface temperature that could affect catchability or
recruitment in the fleet and biological operating models respectively and
that are external to fishery system.

A covariable with a non trivial dynamic could be the abundance of
certain animal which is not commercially exploited by the fleet but which
abundance affects the natural mortality of any of the exploited stocks.
In this case extra 2 functions will be needed, the function that defined
the dynamic of the covariable and the function that models the natural
mortality of the stock as a function of the abundance of the animal. The
first function should be declared in covars.ctrl argument and the former
in biols.ctrl argument as a stock dynamic model.

covars.ctrl . It is a named list with one element per covariable and
the names of the list must match those used to name the covars object.
Its of the elements is at the same time a list with, at least, one element,
dyn.model, which defines the dynamic of the covariable in question.

3.2.4 Observation Component: observation.om

The observation component generates the necessary data to run the as-
sessment models. The main function is observation.mp and it calls third
level functions which generate 3 possible objects, a FLStock, a FLIndices

or a FLFleetsExt object. The FLStock and FLIndices objects are gener-
ated independently for each stock and the FLFleetsExt object jointly for
all the fleets.

The call to observation.mp function within BEIA is done as:

observation.mp(biols, fleets, covars, indices, advice,

obs.ctrl, year)

14

The output of observation.mp is a list with 3 elements. The first
element, stocks, is a named list with one element per stock and its names
correspond with those used in biols object. The elements of the stocks

list are of class FLStock or NULL, if a FLStock is not needed to run the as-
sessment. The second element, indices, is a named list with one element
per stock and its names correspond with those used in biols object. The
elements of the indices list are of class FLIndices or NULL, if a FLIndices

is not needed to run the assessment. The third element, fleets.obs, is
an observation version of the original fleets object. The segmentation of
the fleet in the observed version would be different to the real one (in this
moment there is no third level function implemented to generate observed
fleets).

As in the current implementation of the simulation model the man-
agement process is run in a yearly basis the unit and season dimension
are collapsed in all the observed objects. Moreover, if the management
process is being conducted in year y the observed objects extend up to
year y-1 as it happens in reality.

obs.ctrl. The obs.ctrl argument is a list with one element per stock.
If fleets were observed the object should have also one element per fleet
but as at the moment there are no functions that provide observed version
of FLFleetsExt object this option is not described here. The obs.ctrl

object must be a named list where the names used correspond with those
used in the FLBiols object. Each stock element is at the same time a list
with two elements (stockObs and indicesObs), and this 2 elements are
once again lists. A scheme of obs.ctrl object is presented in Figure 2.

The stockObs element is a list with the arguments necessary to run
the third level function used two generate the FLStock object. In the list
there must be at least one element, stockObsModel, with the name of the
third level function that will be used two generate the FLStock object. If it
is not required to generate a FLStock object NoObject should be assigned
to stockObsModel argument and this function will return the NULL object.

The indicesObs element is a list with one element per index in the
FLIndices object. Each element of the list is at the same time a list
with the arguments necessary to run the third level function used two
generate the FLIndex object. In the list there must be at least one element,
indexObsModel, with the name of the third level function that will be
used two generate the FLIndex object. If it is not required to generate
a FLIndices object indicesObs element will be set equal to NoObject

instead of a list and this will return the NULL object instead of a FLIndices

for the corresponding stock.

3.2.5 Assessment Component: assess.om

The assessment component applies an existing assessment model to the
stock data (FLStock and FLIndices) objects generated by the observation
model. The assessment models are applied stock by stock, independently.

The call to assessment.mp function within BEIA is done as:

assessment.mp(stocks, fleets.obs, indices, assess.ctrl,

datayr)

15

Figure 2: obs.ctrl object scheme

The output of the function is a list of FLStocks with updated harvest,
stock.n and stock slots. Within FLBEIA no new assessment models are
provided but the models already available in FLR can be used.

assess.ctrl. This argument is a named list with one element per stock
where the names must coincide with those used in biols object. The
elements must have at least one element assess.model which defines the
name of the assessment model to be used for each stock. Furthermore if
the assessment model to be used is non trivial (not NoAssessment), the
list must contain a second argument control with the adequate control
object to run the assessment model.

3.2.6 Management Advice Component: advice.om

The Management Advice component generates an advice based on the
output of assessment and/or observation components.

The call to advice.mp function within BEIA is done as:

16

advice.mp(stocks, fleets.obs, indices, covars, advice,

advice.ctrl, year, season

First the advice is generated stock by stock, independently, and then a
function that generates advice based on the single stock advices, observed
fleets and others could be applied, FCube like approaches (Ulrich et al.
[2011]). The output of the function is an updated advice object.

Depending on the structure of the third level functions used to generate
advice and to simulate fleet dynamics the advice could be an input advice
(effort, temporal closures, spatial closures (implicitly through changes in
catchability)...) or an output advice (catch).

advice object. The structure of this object is open and it is completely
dependent on the third level functions used to describe fleet dynamics and
to generate the advice. For example if SMFB and annualTAC are used to
describe fleet dynamics and generate the advice respectively, advice is a
list with 2 elements, TAC and quota.share. TAC is an annual FLQuant with
the quant dimension used to store stock specific TACs and, quota.share
is a named list with one element per stock being the elements FLQuant-s
with quant dimension used to store fleet specific annual quota share.

advice.ctrl . It is a named list with one element per stock and one
more element for the whole fleet. The names must coincide with those
used to name biols object and the name of the extra argument must be
fleets. The elements of the list are at the same time list with at least
one element, HCR, with the name of the model used to generate the single
stock and fleet advice depending on the case.

3.3 Third level functions

3.3.1 Population growth functions

ASPG: Age Structured Population Growth function. ASPG de-
scribes the evolution of an age structured population using an exponential
survival equation for existing age classes and a stock-recruitment rela-
tionship to generate the recruitment. The recruitment can occur in one
or more seasons. However, the age is measured in integer years and the
seasonal cohorts are tracked separately. The seasonal cohorts and their
corresponding parameters are stored in the ’unit (u)’ dimension of the
FLQuant-s. And all the individuals move from one age group to the fol-
lowing one in the 1st of January. Thus, being φ the recruitment function,
RI the reproductive index, N the number of individuals, M the natural
mortality, C the catch, a0 the age at recruitment, s0 the season when the
recruitment was spawn, and a, y, u, s the subscripts for age, year, unit
and season respectively, the population dynamics can be written mathe-
matically as:

If s = 1,

17

Na,y,u,1 =


φ (RIy=y−a0,s=s−s0) a = a0

(Nia · e−
Mia

2 − Cia) · e−
Mia

2 a0 < a < A

(NiA−1 · e
−

MiA−1
2 − CiA−1) · e−

MiA−1
2 +

(NiA · e
−

MiA
2 − CiA) · e−

MiA
2 a = A,

(1)
where ia = (a − 1, y − 1, u, ns), iA−1 = (A − 1, y − 1, u, ns) and iA =

(A, y − 1, u, ns). If s>1,

Na,y,u,s =

{
φ (RIy=y−a0,s=s−s0) a = a0

(Nia · e−
Mia

2 − Cia) · e−
Mia

2 a0 < a < A
(2)

where ia = (a, y, u, s− 1) and the reproductive index RI is given by:

RIy−a0,s =
∑
a

∑
u

(N · wt · fec · spwn)a,y−a0,u,s (3)

Depending on what is stored in the fec slot RI can be SSB or any other
reproductive index of the population. The stock-recruitment relationship
φ is specified in the model slot of corresponding FLSRsim object. FLSR-

sim object enables modeling a great variety of stock-recruitment forms
depending on its functional form and seasonal dynamic.

BDPG: Biomass Dynamic Population Growth function. The
function BDPG describes the evolution of a biomass dynamic population,
i.e a population with no age, stage or length structure. The population is
aggregated in biomass and the growth of the population is a function of the
current biomass and the catch. The model is mathematically described in
equation 4:

Bs,y =

{
Bs−1,y + g(Bs−1,y)− Cs−1,y s 6= 1,
Bns,y−1 + g(Bns,y−1)− Cns,y−1 s = 1.

(4)

Because BEIA is seasonal the equation depends on season. The growth
model g and its parameters are specified, respectively, in the model and
params slot of corresponding FLBDsim class. Currently only Pella and
Tomlinson model Pella and Tomlinson [1969] is implemented to model
growth, but new models can be defined if needed. The following parame-
terization of the growth model has been implemented:

g(B) = B · r
p
·
(

1−
(
B

K

)p)
(5)

3.3.2 Effort models

fixedEffort. In this function all the parameters are given as input
except discards and landings (total and at age). The only task of this
function is to update the discards and landings (total and at age) according
to the catch production function specified in fleets.ctrl argument.

18

Two arguments need to be declared as elements of fleets.ctrl if
this function is used, effort.dyn = ’fixedEffort’ and catch.equation.
The last argument is used to specify the catch production function that
will be used to generate the catch. Note that both arguments must be
declare at fleet level, (i.e fleets.ctrl[[fleet.name]]$effort.dyn and
fleets.ctrl[[fleet.name]]$catch.model) and that catch production
model correspond with a fourth level function.

SMFB: Simple Mixed Fisheries Behavior. This model is a sim-
plified version of the behavior of fleets that work in a mixed fisheries
framework. The function is seasonal and assumes that effort share among
metiers is given as input parameter.

In each season the effort of each fleet, f , is restricted by the seasonal
landing quotas or catch quotas of the stocks that are caught by the fleet.
The following steps are followed in the calculation of effort:

1. Compare the overall seasonal quota,
∑
f Qf,s,st · TAC, with the

abundances of the stocks. If the ratio between overall quota and
abundance exceeds the seasonal catch threshold, γs,st, reduce the
quota share in the same degree. Mathematically:

Q′f,s,st =

Qf,s,st if
∑

f Qf,s,st·TAC
Bs,st

≤ γs,st,
Qf,s,st · Bs,st·γs,st∑

f Qf,s,st·TAC
otherwise.

(6)

2. According to the catch production function calculate the efforts cor-
responding to the landing or catch quotas, Q′f,s,st · TAC, of the
individual stocks, {Ef,s,st1 , . . . , Ef,s,stn}.

3. Based on the efforts calculated in the previous step, calculate a
unique effort, Ef,s. To calculate this effort there are the following
options:

max: The maximum among possible efforts, Êf,s = maxj=1,...,n Ef,s,stj

min: The minimum among possible efforts, Êf,s = minj=1,...,n Ef,s,stj

mean: The mean of possible efforts, Êf,s = meanj=1,...,nEf,s,stj
previous: The effort selected is the effort most similar to previous

year effort on that season,

Êf,s =

{
Ef,s,st : |1− Ef,s,st

Ef,y−1,s
| = min

j=1,...,n
|1−

Ef,s,stj
Ef,y−1,s

|
}

stock-name: The effort corresponding to stock-name is selected:
Êf,s = Ef,s,stock-name

4. Compare the effort, Êf,s, with the capacity of the fleet, κf (capacity
must be measured in the same units as effort and it must be stored
in the capacity slot of the FLFLeetsExt object). If the capacity is
bigger then the final effort is unchanged and if the capacity is smaller
the effort is set qual to the capacity, i.e:

Ef,s =

{
κf if κ < Êf,s,

Êf,s if κ ≥ Êf,s.
(7)

19

5. The catch corresponding to the effort selected is calculated for each
stock and compared with the corresponding quota. If the catch is
not equal to the quota and the season is not the last one, the sea-
sonal quota shares of the rest of the seasons are reduced or increased
proportionally to their weight in the total share. The shares are
changed in such a way that the resultant annual quota share is equal
to the original one. In case the difference between actual catch and
that corresponding to the quota exceed the quota left over in the
rest of the seasons, the quota in the rest of the seasons is canceled.
Mathematically for season i where s ≤ i ≤ ns′:

Q′′f,i,st = max

(
0, Q′f,i,st + (Q′f,s,st −Q′′f,s,st) ·

Q′f,i,st∑
j>sQ

′
f,j,st

)
(8)

where Q′ denotes the quota share obtained in the first step and Q′′

the new quota share.

The fleets.ctrl argument in SMFB function
SMFB function requires several arguments at global and fleet level that are
described below.
Global arguments:

catch.threshold : This element is used to store γs,st parameter de-
scribed in the first step of SMFB function description. The elements
must be a FLQuant object with dimension (stock = nstk, year =

ny, unit = 1, season = ns, area = 1, iter = nit) where the names
of the first dimension must match with those used to name FLBiols

object. Thus the thresholds may vary between stocks, seasons, years
and iterations. The elements of the object are proportions between
0 and 1 that indicate the maximum percentage of the stock that can
be caught in each season. The reason to used this argument is that
it is reasonable to think that it is impossible to fish all the fish in
the sea. Thus although the TAC is very large the actual catch will
be restricted to γs,st ·Bs,st.

seasonal.share : A named FLQuants object, one per stock, with the pro-
portion of the fleets’ TAC share that ’belongs’ to each season, so the
sum along seasons for each fleet, year and iteration is equal 1. The el-
ements must be FLQuant objects with dimension (fleet = nf, year

= ny, unit = 1, season = ns, area = 1, iter = nit), where the
names of the first dimension must match with those used to name
FLFleetsExt object. The names of the FLQuants’s must match stock
names.

Fleet specific arguments:

effort.dyn : ’SMFB’.

catch.model : The name of the fourth level function which gives the
catch production given effort and biomass (aggregated or at age).
The function must be coherent with SMFB and the function used
to simulate population growth. In this moment two functions are
available CobbDouglasAge and CobbDouglasBio.

20

effort.restr :’max’, ’min’, ’mean’,’previous’ or ’stock-name’ (the
name of one of the stocks caught by the fleet).

max : The fleet will continue fishing until the catch quotas of all the
stocks are exhausted.

min : The fleet will stop fishing when the catch quota of any of the
stocks is exhausted.

previous : Among the efforts obtained under each stock restric-
tion the effort most similar to the previous year effort will be
selected.

stock : The fleet will continue fishing until the catch quota of
’stock’ is exhausted. (This could correspond, for example, with
a situation where the catch of one stock is highly controlled.)

This options are explained mathematically above when the SMFB

function is described step by step.

restrictionn : ’catch’ or ’landings’. Are the efforts calculated ac-
cording to catch or landings restriction? (for the moment only catch
restriction is available).

SSFB: Simple Sequential Fisheries Behavior. Simple sequential
fisheries behaviour is related to those fleets that the fishing profile changes
with the season of the year. In each season the fleet (f) has only one
target species or stock (st), thus the metier (m) is defined on the basis of
the season and target species, resulting only one target species per each
metier. The effort allocated to each species or metier is restricted catch
quota, CR. Therefore production function is applied at metier level, but
the production has some restrictions, in both catches and effort, that are
described through following steps:

1. TAC is shared between different metiers through the quotashare,
which is a percentage of the TAC. The sum of all quotashare is
equal to 1.

2. Each quota corresponding to each metier is shared between all season
through the seasonal share. Seasonal share is the proportion of the
quota of a given species that belongs to each season and metier.

3. A seasonal quota threshold which limits the percentage of stock to
be captured is set. Total quota by season, year and iteration can
not exceed that threshold. The threshold is a proportion of the
abundance.

Qs,st =

{
Qst,f,s if

∑
f Qst,f,s ≤ Bst, s,

Qst,f,s · γs,st · Bst,s∑
f Qst,f,s

if
∑
f Qst,f,s > Bst, s.

If ? Qs,st,it,i > If ? Qs,st,it,i =<

Where Q is the whole quota allocate on one season s of stock st.

21

4. The necessary effort to achieve that quota is calculated from the pro-
duction function at metier and stock level. The defined production
function is the well known Cobb Douglas function:

Cst,f,m = qst,f,m · E
αst,f,m

f,m ·Bβst,f,mst

Where the effort, E, is the number of vessels multiplied by the num-
ber of operating days in a specific fishery.

5. If the sum of total efforts made in one season by all metiers that
belong to one fleet is bigger than fleet capacity κ the effort will be
reduced until fleet capacity. The capacity is the maximum number
of vessels multiplied by the maximum number of days that the fleet
can operate in one specific season (days expected to be effective).
Two rules to reduce the effort are provided:

(a) is reduced proportionally to the expected effort share.

(b) The effort of each metier, within a fleet is reduced depending
on the price of each stock in the same month of the previous
year. The reduction factor, r, will correspond to the solution of
the following equation:

κf = E1 · r3 + E2 · r2 + E3 · r1

Where E1 is the effort expected for the most valuable stock,
E2 is for the second most valuable and E3 for the sum of the
expected effort of rest of the stocks. E1 · r3 is the final effort
allocated to most valuable species, E2 · r2 the final effort allo-
cated to the second most valuable species and E3 · r1 the final
effort allocated rest of species.

6. Taking into account the new efforts of all metiers, catches are re-
calculated using again the production function. If the new catches
are smaller than catches resulted in the step 3, the remainder of the
catch is shared between following season. The seasonal quota will
be updated in the following season only if those seasons correspond
to the same year. The quota can not be transferred from one year
to another.

The advice argument in SSFB function

� quota.share: A named FLQuants object, one per stock, with the
total proportion of TAC that ’belongs’ to each fleet each year. The
’fleet’ dimension names must match fleets’ names. And the FLQuants
must match stock names. For each and iteration the sum of the pro-
portions must be equal to 1. (FLQuant (fleet = nf, year = ny,

unit = 1, season = 1, area =1, iter =1)).

The fleets.ctrl argument in SSFB function:

seasonal.share : A named FLQuants object, on per stock, with the pro-
portion of each fleet’s quota share corresponding to each season.
The ’fleet’ dimension names must match fleets’ names. And the
FLQuants must match stock names. For each year and iteration the
sum of the proportions must be equal to 1. (FLQuant (fleet = nf,

year = ny, unit = 1, season = ns, area =1, iter =1)).

22

catch.threshold : A FLQuant object, with the proportion of biomass
that total catch of stock can not exceed from it abundance each year,
season and iteration. (FLQuant (stock=nst, year = ny, unit =

1, season = ns, area =1, iter =1)).

fleet.dyn : ’SSFB’

restriction : ’catch’. Relate to quota threshold.

effReduce.rule : NULL or ’month.price’.

NULL : The fleet will reduce the effort of each metier proportionally
to the expected effort share.

month.price : The effort will reduce according to the price of the
species in the same month of the previous year.

effectiveDay.perc : A FLQuant object, on for each fleet, with the pro-
portion of days expected to be effective in each season (i.e. in which
the fleet will go out fishing). The ’fleet’ dimension names must
match fleets’ names (FLQuant (fleet=nf, year = ny, unit = 1,

season = ns, area =1, iter =1)).

3.3.3 Price Models

fixedPrice. The prices are given as input data and are unchanged
within the simulation. Only the function name, FixedPrice, must be
specified in price.dyn element in fleets.ctrl object.

fleets.ctrl[[fleet.name]][[stock.name]][['price.dyn']] <-

'FixedPrice'

elasticPrice. This function implements the price function used in
Kraak et al. [2004]:

Paysf = Pa0sf ·
(
La0sf
Laysf

)easf

(9)

This function uses base price, Pa0sf , and base landings, La0sf to calcu-
late the new price Paysf using a elasticity parameter easf , (e ≥ 0). If the
base landings are bigger than current landings the price is increased and
decreased if the contrary occurs. For simplicity the iteration subscripts
has been obviated but all the elements in the equation are iteration de-
pendent. As prices could depend on total landings instead of on fleet’s
landings there is an option to use La0s instead of La0sf in the formula
above.

Although price is stored at metier and stock level in FLFleetsExt, this
function assumes that prices is common to all metiers within a fleet and
it is calculated at fleet level.

The fleets.ctrl argument in fixedPrice function

The following arguments must be specified, at fleet and stock level
(i.e. fleets.ctrl[[fleet.name]][[stock.name]]), when elasticPrice

is used:

23

price.dyn : fixedPrice.

pd.Pa0 : An array with dimension (age = na, season = ns, iter =

it) to store base price, Pa0sf .

pd.La0 : An array with dimension (age = na, season = ns, iter =

it) to store base landings, La0sf .

pd.els : An array with dimension (age = na, season = ns, iter =

it) to store price elasticity, easf .

pd.total : Logical. If TRUE the price are calculated using total landings
and if FALSE the landings of the fleet in question are used.

3.3.4 Capital Models

fixedCapital. The capacity and catchability are given as input data
and are unchanged within the simulation. Only the function name, Fixed-
Capital, must be specified in capital.dyn element of fleets.ctrl ob-
ject.

fleets.ctrl[[fl.name]][[stk.name]][['capital.dyn']] <-

'FixedCapital'

SCD: Simple capital Dynamics In this simple function catchability
is not updated, it is an input parameter, and only capacity is updated
depending on some economic indicators. The following variables and in-
dicators are defined at fleet ant year level (fleet and year subscripts are
omitted for simplicity):

FuC : Fuel Cost.

CrC : Crew Cost.

V ac : Variable Costs.

FxC : Fixed Costs (repair, maintenance and other).

CaC : Capital Costs (depreciation and interest payment).

Rev : Revenue:
Revf =

∑
m

∑
s

∑
a

Lmsa · Pas

BER : Break Even Revenue, the revenues that make profit equal to 0.

BER =
FxC + Cac

1− Fuc
Rec
− CrC

Rec−Fuc + FuC·CrC
Rev·(Rev−FuC)

− V aC
Rev

In principle the investment, Inv, is determined by:

Inv0 =
Rev −BER

Rev
But not all the profits are dedicated to increase the fleet, thus:

Inv = η
Rev −BER

Rev
where η is the proportion of the profits that is used to buy new vessels.

Furthermore, investment in new vessels will only occur if the operational

24

days of existing vessels is equal to maximum days. If this occurs, the
investment/disinvestment decision, Ω will follow the rule below:

Ωy =


Inv1 if Inv0 < 0 and η · |Inv0| < ω1,

−ω1 ∗ κy−1 if Inv0 < 0 and η · |Inv0| > ω1,

Inv1 if Inv0 > 0 and η · |Inv0| < ω2,

ω2 ∗ κy−1 if Inv0 > 0 and η · |Inv0| > ω2.

(10)

where ω2 stands for the limit on the increase of the fleet relative to the
previous year, and ω1 for the limit on the decrease of the fleet relative to
the previous year.

3.3.5 Covariables Models

fixedCovar. The covariables that follow this model are given as input
data and are unchanged within the simulation. Only the function name,
FixedCovar, must be specified in covar.dyn element of covars.ctrl ob-
ject.

covars.ctrl[[covar.name]]<- ’FixedCovar’

3.3.6 Observation Models: Catch and biological parame-
ters

The functions in this section are used to generate a FLStock from FLBiol

and FLFleetsExt objects. The former is used to fill the slots relative to
biology, (***.wt,mat and m slots), and the last to fill the slots relative to
catch, landings and discards. harvest, stock and stock.n slots are leave
empty and harvest.spwn and m.spwn are set equal to 0.

age2ageDat. This function creates an age structured FLStock from
age structured FLBiol and FLFleetsExt objects. The slots ’catch’,

’catch.n’,

’catch.wt’, ’discards’, ’discards.n’, ’discards.wt’, ’landings’,

’landings.n’, ’landings.wt’, ’m’, ’mat’, ’harvest.spwn’ and ’m.spwn’

of the FLStock are filled in the following way:

m : m slot in FLBiol object multiplied by varia.mort where varia.mort

is an FLQuant with dimension (age = na, year = ny, unit = 1,

season = 1, area = 1, iter = it). varia.mort is used to intro-
duce multiplicative uncertainty in the observation of natural mortal-
ity.

mat : fec slot in FLBiol object multiplied by varia.fec where varia.fec
is an FLQuant with dimension (age = na, year = ny,unit = 1,

season = 1, area = 1, iter = it). varia.fec is used to intro-
duce multiplicative uncertainty in the observation of fecundity.

landings.n : Landings at age are obtained from fleets object, sum-
ming them up along seasons, units, metiers and fleets. After sum-
ming up 2 sources of uncertainty are introduced, one related to

25

aging error and a second one related to misreporting. Aging er-
ror is specified through error.ages argument, an array with di-
mension (age = na, age = na, year = ny, iter = it). For each
year and iteration each element (i,j) in the first 2 dimensions in-
dicates the proportion of individuals of age i that are wrongly as-
signed to age j, thus the sum of the elements along the first di-
mension must be equal to 1. For each year and iteration the real
landings at age are multiplied matricially with the corresponding
sub-matrix of error.ages object. Afterwards the second source
of uncertainty is introduced multiplying the obtained landings at
age by varia.ltot an FLQuant with dimension (age = na, year =

ny,unit = 1, season = 1, area = 1, iter = it). Once uncer-
tainty is introduced in landings at age and weight at age, the total
landings are computed an compared with the TAC. If landings are
lower than ′TAC · TAC.ovrsht′ the observed landings at age are un-
changed but if they were higher the landings at age would be reduced
by 1

TAC.ovrsht
where TAC.ovrsht is a positive real number.

landings.wt : Landings weight at age is derived from fleets object, av-
eraging it along seasons, units, metiers and fleets. After averaging, 2
sources of uncertainty are introduced, one related to aging error and
a second one related to misreporting. Aging error is the same used
in the landings at age. For each year and iteration the real weight
at age is weighted by the proportion of landings in each age group
and multiplied matricially with the corresponding sub-matrix of er-
ror.ages object. Afterwards the second source of uncertainty is in-
troduced multiplying the obtained weight at age by varia.dwgt an
FLQuant with dimension (age = na, year = ny, unit = 1, sea-

son = 1, area = 1, iter = it).

discards.n : Observed discards at age are obtained in the same way
as the landings but summing up the discards instead of landings
and using, in the second source of error, the object varia.dtot, an
FLQuant with dimension (age = na, year = ny,unit = 1, season

= 1, area = 1, iter = it). The object error.ages is the same
used in the derivation of landings at age.

discards.wt : Observed weight at age is obtained in the same way as
the landings but averaging along discards weight instead of land-
ings weight and using, in the second source of error, the object
varia.dwgt, an FLQuant with dimension (age = na, year = ny,unit

= 1, season = 1, area = 1, iter = it). The object error.ages
is the same used in the derivation of landings at age.

discards, landings : Observed discards and landings are derived from
observed landings and discards at age and their corresponding weight.

catch, catch.n, catch.wt : These slots are derived from the observed
landings and discards at age and their corresponding weight.

bio2bioDat. This function creates an age structured FLStock from
FLBiol and FLFleetsExt objects aggregated in biomass .

26

m, mat, landings.n, landings.wt, discards.n, discards.wt , catch.n,
catch.wt: NA

discards : The discards are summed up along fleets and metiers and then
uncertainty (observation error) is introduced using a multiplicative
error. This multiplicative error is specified through varia.tdisc

argument an FLQuant with dimension (quant = 1, year = ny,unit

= 1, season = 1, area = 1, iter = it).

landings : Observed landings are derived in the same way as discards but
the argument used to introduce uncertainty is called varia.tland

in this case. Once uncertainty is introduced in landings they are
compared with the TAC. If the landings are lower than ′TAC ·
TAC.ovrsht′ the observed landings are unchanged but if there were
higher the landings would be reduced by 1

TAC.ovrsht
, where TAC.ovrsht

is a positive real number.

catch : This slot is equal to the sum of landings and discards.

age2bioDat. This function creates a FLStock aggregated in biomass
from age structured FLBiol and FLFleetsExt objects. The function works
exactly in the same way as bio2bioDat function.

3.3.7 Observation Model: Population

This type of models are useful when no assessment model is used in the
next step of the MPM and management advice is just based on the pop-
ulation ’observed’ in this step. age2agePop, bio2bioPop and age2bioPop

are equal to their relatives in the previous section but in this case stock
numbers, stock biomass and harvest are observed, with or without error,
depending on the arguments given.

perfectObs. This function creates a FLStock from FLBiol and FLFleet-

sExt objects. The FLBiol and FLFleetsExt objects can be either aggre-
gated in biomass or age structured and the returned FLStock object will
have the same structure but with unit and season dimensions collapsed.
This function does not introduced any observation uncertainty in the ob-
servation of the different quantities stored in the FLStock or FLFLeetsExt
objects. Slots relative to biological parameters are calculated averaging
across units and seasons, those relative to catch summing up across units
and seasons and numbers at age or biomass are taken from the start of
the first season, except recruitment that is obtained summing up the re-
cruitment produced along seasons. Finally fishing mortality is calculated
numerically from numbers at age and natural mortality.

age2agePop. This functions operates exactly in the same way as its
counterpart in the previous section age2ageDat but it also fills stock.n,

stock.wt, stock and harvest slots:

stock.n : First the numbers at age are calculated as in perfectObs func-
tion and then 2 sources of uncertainty are introduced as it is done
in landings and discards at age. The error attributed to aging error

27

is given by the same argument as in landings and discards at age,
error.ages. The second uncertainty is introduced in the same way
but by different argument, varia.ntot.

stock.wt : First the weight at age is calculated as in perfectObs function
and then 2 sources of uncertainty are introduced as it is done in
weight at age of landings but replacing landings by stock numbers
at age. The error attributed to aging error is given by the same
arguments as in landings, error.ages. The second uncertainty is
introduced in the same way but by different argument, varia.ntot.

stock : This is equal to the sum of the product of stock.n and stock.wt.

harvest : Harvest is numerically calculated from stock numbers at age
and natural mortality.

bio2bioPop. This function operates exactly in the same way as its
counterpart in the previous section bio2bioDat but it also fills stock and
harvest slots:

stock : Stock biomass is calculated multiplying n andt wt slots in the
FLBiol object and summing up along seasons (note that unit dimen-
sion is always equal to 1 in populations aggregated in biomass). After
that uncertainty in the observation is introduced multiplying the ob-
tained biomass by the argument varia.btot, which is an FLQuant

with dimension (quant = 1, year = ny, unit = 1, season = 1,

area = 1, iter = it)

harvest : Harvest is calculated as the ratio between catch and stock
biomass.

age2bioPop. This function operates exactly in the same way as its
counterpart in the previous section age2bioDat but it also fills stock and
harvest slots. These two slots are calculated as in bio2bioPop function
but summing up along ages in the case of stock slot.

3.3.8 Observation Model: Abundance Indices

In this moment, there are 2 functions that simulate abundance indices,
one that generates age structured abundance indices ageInd and a second
one that generates abundance indices in biomass bioInd. The last one
can be applied to both age structured and biomass dynamic populations.
In both cases a linear relationship between the index and the abundance
is assumed being the catchability q the slope, i.e:

I = q ·N or I = q ·B

ageInd. Age structured abundance indices are obtained multiplying the
slot n of FLBiol with the catchability of the index (catch.q in FLIndex

object). The FLIndex is an input object and the index slot is yearly
updated. Two sources of uncertainty are introduced, one related to aging
error and a second one related to random variation. Aging error is the
same as in the observation of landings at age and the argument is the same

28

error.ages. Afterwards the second source of uncertainty is introduced
multiplying the index by the slot index.var of the FLIndex object. The
indices do not need to cover the full age or year ranges.

bioInd. Biomass abundance indices are generated in the same way as
age structured indices but without the error associated to age.

3.3.9 Observation Model: Fleets

At this point there are no functions to observe the fleets, their catch or
catch at age is just observed in an aggregated way in the functions defined
in previous section. In the short term it is not planned to write such a
function. This function would be useful be able to test Fcube (Ulrich
et al. [2011]) like approaches in management advice module.

3.3.10 Management Advice Models

annualTAC. This function mimics the typical harvest control rule (HCR)
used in recovery and management plans used in Europe. The function is
a wrapper of the fwd function in FLash library. As fwd is only defined for
age structured populations within FLBEIA a new function fwdBD has been
coded. fwdBD is a tracing of fwd but adapted to work with populations
aggregated in biomass. The advice is produced in terms of catch, i.e TAC.
The call to annualTAC function within BEIA is done as:

annualTAC(stocks, advice, advice.ctrl, year, stknm, ...)

If the management is being running in year y, the function works as
follows:

1. Project the observed stock one year forward from 1st of January of
year y up to 1st of January of year y+1 (intermediate year).

2. Apply the HCR and get the TAC for year y+1. Depending on the
definition of the HCR the stock could be projected several years
forward.

advice.ctrl for annualTAC

HCR : annualTAC.

nyears : Number of years to project the observed stock from year y-1.

wts.nyears : Number of historic years to be used in the average of biolog-
ical parameters. The average is used in the projection of biological
parameters.

fbar.nyears : Number of historic years to be used in the average of
selection pattern. The average is used in the projection of selection
pattern.

f.rescale : Logical. If TRUE rescale to status quo fishing mortality.

disc.nyears : Number of years over which to calculate mean for dis-

cards.n and landings.n slots.

29

fwd.ctrl : Element of class fwdControl. For details on this look at the
help page in FLash object. The only difference is the way the years
are introduced. As this object is defined before simulation and it is
applied year by year the definition of the year should be dynamic.
Thus the following convention has been taken:

� year = 0 indicates the year when management is taking place,
(intermediate year).

� year = -1 corresponds with one year before the year when man-
agement is taking place. In this case, whithin annualTAC func-
tion, coincides with the year up to which data is available, (data
year). Then, -2 would indicate 2 years before,-3 would indicate
3 years before and so on.

� year = 1 corresponds with one year after the year when man-
agement is taking place. In this case, whithin annualTAC func-
tion, coincides with the year for which management advice is
going to be produced, (TAC year). Then, 2 would indicate 2
years after the year when management is taken place, 3 would
indicate 3 years after and so on.

In this way, within the simulation, each year, the intermediate year
is summed up to the year in the original control argument and the
correct year names are obtained.

advice : catch or landings. Is the TAC given in terms of catch or
landings?

sr : The stock recruitment relationship used to project the observed stock
forward, not needed in the case of population aggregated in biomass.
sr is a list with 3 elements, model, params and years. model is
mandatory and the other 2 are complementary, if params is given
years is not necessary. model can be any stock-recruitment model
defined for FLSR class. params is a FLPar model an if specified it
is used to parameterized the stock-recruitment model. years is a
numeric named vector with 2 elements ’y.rm’ and ’num.years’, for
example c(y.rm = 2, num.years = 10). This element is used to
determine the observeds years to be used to estimate the parameters
of the stock recruitment relationship. In the example the last 2
observations will be removed and starting from the year before to
the last 2 observed years 10 years will be used to estimate the stock-
recruitment parameters.

growth.years : This argument is used only for stocks aggregated in
biomass and it indicates the years to be used in the estimation of
annual population growth. This growth is used to project the pop-
ulation forward.
growth.years is a numeric named vector with 2 elements ’y.rm’

and ’num.years’ which play the same role played in sr[[’years’]]

argument defined in the previous point.

3.4 Fourth level functions

These functions are called by third level functions and, for the time being,
are the functions in the lowest level within FLBEIA.

30

3.4.1 Stock-Recruitment relationships

Stock-recruitment relationships are used, for example, within ASPG and
annualTAC functions. The stock-recruitment relationship used in ASPG is
defined in the slot model of FLSRsim and it defines the true recruitment
dynamics of the stocks. Within annualTAC the stock-recruitment relation-
ship used is defined in:

advice.ctrl[[’stknm’]][[’sr’]][[’model’]]

element and it describes the stock-recruitment dynamics ’observed’
(used) in the management process.

In FLCore package there are several stock-recruitment relationships
already defined and all can be used within FLBEIA. Some of the functions
available are:

bevholt : Beverton and Holt model with the following parameterization:

R =
α · S

(β + S)

where α is the maximum recruitment (asymptotically) and β is the
stock level needed to produce the half of maximum recruitment α/2.
(α, β > 0).

bevholt.ar1, ricker.ar1, shepherd.ar1 : Beverton and Holt, Ricker
and Shepherd stock-recruitment models with autoregressive normal
log residuals of first order. In the model fit the corresponding stock-
recruitment model is combined with an autoregressive normal log
likelihood of first order for the residuals. If Rt is the observed re-
cruitment and R̂t is the predicted recruitment, an autoregressive
model of first order is fitted to the log-residuals, xt = log(Rt/R̂t).

xt = ρ · xt−1 + ε

Where ε ∼ N(0, σ2
ar).

geomean : Recruitment is independent of the stock and equal to the geo-
metric mean of historical period.

R = α = n
√
R1 · . . . ·Rn

ricker : Ricker stock-recruitment model fit with the following parame-
terization:

R = α · S · e−β·S

where α is related to productivity and β to density dependence. α
is the recruit per stock unit at small stock levels. (α, β > 0).

segreg : Segmented regression stock-recruitment model fit:

R =

{
α · S if S < β,

α · β if S ≥ β.

α is the slope of the recruitment for stock levels below β, and α · β
is the mean recruitment for stock levels above β. (α, β > 0).

31

shepherd : Sheperd stock-recruitment model fit:

R = α · S

(1 + (S/β)γ)

This model generalizes Beverton and Holt and Ricker models, (γ = 1
corresponds with Beverton and Holt model, γ > 1 takes a ricker like
shape and with γ < 1 the curve rises indifenitely).

There could be more stock-recruitment relationships defined in FLCore,
thus if you are interested in using a model not defined here take a look at
SRModels help page in FLCore package. New stock-recruitment models to
be used in FLSRsim class can be defined in two ways:

1. Using a formula in slot model:

rec ∼ Φ(X)

where Φ is a function of ssb and parameters and covariables stored
in params and covar slots respectively.

2. Defining a function in R, foo <- function(X), and using the name
of the function, foo, in slot model. The function arguments must
be among ssb and parameters and covariables stored in params and
covar slots respectively.

3.4.2 Catch production functions

The catch production function can be different for the same third level ef-
fort model. At the moment there are two catch production functions avail-
able, both correspond with Cobb-Douglas production functions [Clark,
1990, Cobb and Douglas, 1928] but in one case the model operates at
stock level level and in the second one at age class level.

CobbDouglasBio: Cobb-Douglas production function at stock
level The total catch of the fleet is calculated according to the Cobb-
Douglas production function:

C = q · Eα ·Bβ (11)

where C denotes total catch and B total biomass, both in weight, q the
catchability and E the effort. α and β are elasticity parameters associated
to labor and capital (biomass in this case) respectively. These parameters
are associated to the existing technology.

As α and β parameters depend on the stock and the technology Cobb-
Douglas function is applied at metier level. Thus the catch of a certain
fleet f is given by:

Cf =
∑
m∈Mf

qfm ·Bβfm · (Ef · δfm)αfm (12)

where Mf represents the set of metiers of fleet f , δ the effort share
among metiers and m is the subscript that indicates the metier.

32

Derivation of Catch-at-age. Once the total catch is calculated
it is divided into catch at age using selectivity at age, safm and biomass
at age in the population, Ba:

Cafm =
Cfm∑

a safm ·Ba
· safm ·Ba (13)

Derivation of equation 13:

� If the whole population were accessible to the gear the catch of age
a would be:

safm ·Ba
� Thus, if the whole population were accessible to the gear the total

catch we would obtain would be:∑
a

safm ·Ba

� But, the actual total catch is Cf , so theoretically the proportion of
the population that have been accessible is 2:

Cafm =
Cfm∑

a safm ·Ba

� Then, if we assume the population is homogeneously distributed we
arrive to equation 13.

The catch at age is then further disaggregated in landings- and discards-
at-age using landing and discard specific selectivity:

Lafm =
slafm
safm

· Cafm and Dafm =
sdafm
safm

· Cafm (14)

CobbDouglasBio: Cobb-Douglass production function at age
class level. The catch of the fleets is calculated according to the Cobb-
Douglas production function applied at age class level, i.e:

C =
∑
a

Ca = qa · Eαa ·Bβaa (15)

where C denotes catch and B biomass, both in weight, q the catch-
ability, E the effort and a the subscript for age. α and β are elasticity
parameters associated to labor and capital (biomass in this case) respec-
tively. These parameters are associated to the existing technology.

As α and β parameters depend on age classes and technology Cobb-
Douglas function is applied at metier level. Thus the catch of a certain
fleet f is given by:

Cf =
∑
a

Caf =
∑
m∈Mf

∑
a

qafm ·B
βafm
a · (Ef · δfm)αafm (16)

where Mf represents the set of metiers of fleet f , δ the effort share
among metiers and m is the subscript that indicates the metier.

2If all the age classes were not accessible or completely accessible we would replace safm
by ´safm = γafm · safm where γafm is the porportion of individuals of age a accessible to
metier m in fleet f .

33

3.4.3 Costs functions

Cost functions have been developed in order to be used within fleets.om.
As cost structure could differ among fleets it has been defined as fourth
level function and it works at fleet level. In principle it could be useful in
both tactic and strategic dynamics of fleets.

TotalCostsPower. This function sums up the fixed costs (FxCf)
and the power functions of cost per unit of effort (CostPUE), crew
share per unit of landings (CSPUL) and capital cost per unit capital
(CapCostPUC), mathematically:

Costf =FxCf + CostPUEfm ·
∑
m

(Ef · τfm)γ1fm+∑
st

∑
mt

CSPULfmst · L
γ2fmst

fmst + CapCostPUCf · Cap
γ3f
f (17)

The fixed cost are given at fleet level, f , cost per unit of effort at
metier level, m, and crew share at fleet, metier and stock, st, level. And
γ1fm is the exponent of effort at fleet and metier level in cost of effort
addend, γ2fmst the exponent of landing at fleet, metier and stock level in
crew share cost addend and γ3f is the exponent of capital at fleet level in
capital cost addend.

References

D. S. Butterworth and A. E. Punt. Experiences in the evaluation and
implementation of management procedures. ICES Journal of Marine
Science, 56(6):985–998, 1999. TY - JOUR.

Doug S. Butterworth. Why a management procedure approach? some
positives and negatives 10.1093/icesjms/fsm003. ICES J. Mar. Sci., 64
(4):613–617, 2007.

Colin W. Clark. Mathematical Bioeconomics: The Optimal Management
of Renewable Resources. John Wiley & Sons, 1990.

C.W. Cobb and P.H. Douglas. A theory of production. American Eco-
nomic Reviews, 18:139–165, 1928.

William K. De la Mare. Tidier fisheries management requires a new mop
(management-oriented paradigm). Reviews in Fish Biology and Fish-
eries, 8:349–356, 1998.

Ayoe Hoff, Hans Frost, Clara Ulrich, Dimitrios Damalas, Christos D.
Maravelias, Leyre Goti, and Marina SanturtÃžn. Economic ef-
fort management in multispecies fisheries: the fcubecon model
10.1093/icesjms/fsq076. ICES Journal of Marine Science: Journal du
Conseil, 2010.

34

L. T. Kell, I. Mosqueira, P. Grosjean, J-M. Fromentin, D. Garcia,
R. Hillary, E. Jardim, S. Mardle, M. A. Pastoors, J. J. Poos, F. Scott,
and R. D. Scott. Flr: an open-source framework for the evaluation and
development of management strategies 10.1093/icesjms/fsm012. ICES
J. Mar. Sci., 64(4):640–646, 2007.

S.B.M. Kraak, F.C. Buisman, M Dickey-Collas, Poos J.J., M.A. Pastoors,
J.G.P. Smit, and N. Daan. How can we manage mixed fisheries? a sim-
ulation study of the effect of management choices on the sustainability
and economic performance of a mixed fishery. . Technical report, 2004.

J.J Pella and P.K. Tomlinson. A generalized stock-production model.
Bulletin of the Inter-American Tropical Tuna Comission, 13:421–458,
1969.

Andre E. Punt and Greg P. Donovan. Developing management procedures
that are robust to uncertainty: lessons from the international whaling
commission 10.1093/icesjms/fsm035. ICES J. Mar. Sci., 64(4):603–612,
2007.

R Development Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2010. URL http://www.R-project.org. ISBN 3-900051-07-0.

Rebecca A. Rademeyer, Eva E. Plaganyi, and Doug S. Butter-
worth. Tips and tricks in designing management procedures
10.1093/icesjms/fsm050. ICES J. Mar. Sci., 64(4):618–625, 2007.

Pavel Salz, Erik Buisman, Katrine Soma, Hans Frost, Paolo Accacia, and
Raúl Prellezo. Fishrent: Bio-economic simulation and optimization
model for fisheries. Technical report, 2011.

Clara Ulrich, Stuart A. Reeves, S. Holmes, and W. Vanhee. Reconciling
single-species tacs in the north sea demersal fisheries using the fcube
mixed-fisheries advice framework. ICES J. Mar. Sci., In press, 2011.

A New FLR - S4 classes

A.1 FLBDsim class

FLBDsim class has been created in order to facilitate the simulation of pop-
ulation growth in populations aggregated in biomass, i.e g(.) in equation
4. The population dynamics are simulated as follows:

By,s = By0,s0 + g(By0,s0) · εy,s − Cy0,s0 (18)

where B is the biomass, C the catch, y0 and s0 are the subscripts of
previous season’s year and season and ε is the uncertainty value in year y
and season s. It is a S4 class and has 10 slots:

name, desc, range : Slots common to all FLR objects.

35

model : character or formula. If character it must coincide with an
already existing growth model. If formula, the parameters must be
slots in the object or elements of covar slot. Currently there is
only one growth model available, "PellaTom" that corresponds with
Pella-Tomlinson growth model.

biomass : FLQuant to store biomass in weight. The dimension in quant,

unit and area must be equal 1 and in the rest the dimension must
be congruent with general simulation settings.

catch : FLQuant to store total catch in weight. The dimension in quant,

unit and area must be equal 1 and in the rest the dimension must
be congruent with general simulation settings.

uncertainty : FLQuant to store the error that is multiplied to the point
estimate of growth . The dimension in quant, unit and area must
be equal 1 and in the rest the dimension must be congruent with
general simulation settings. Thus, a different error can be used for
each year, season and iteration.

params : An array to store the paramters of the model. The dimensions
of the array are params, year, season, iter. The dimension in
year, season and iter must be congruent with general simulation
settings. Thus a different set of parameters can be used for each
year, season and iteration.

covar : An FLQuants object. The elements of the list are used to store co-
variables values and is used to apply growth models with covariables.
Its functionality is the same as in FLSR object.

A.2 FLSRSim Class

FLSRsim class has been created in order to facilitate the simulation of
recruitment in age structured populations. The recruitment dynamics are
simulated as follows:

Ry,s = Φ(Sy−tl0,s−tl1 , covarsy−tl0,s−tl1) · εy,s · ρy,s (19)

where Ry,s is the recruitment in year y and season s, Φ is the stock-
recruitment model, , tl0 is the year lag between spawning and recrutiment,
Sy−tl0,tl1 and covarsy−tl0,s−tl1 are the stock index and covariables in year
y − tl0 and season tl1, εy,s is the uncertainty value in year y and season
s and ρy,s is the proportion of recruitment that recruits in year y and
season s and is produced by stock index S in year y− tl0 and season tl1 .

rec: An FLQuant with dimension [1, ny, 1, ns, 1, it] used to store recruit-
ment.

ssb: An FLQuant with dimension [1, ny, 1, ns, 1, it] used to store SSB or
the stock index used in the stock-recruitment relationship.

covar: An FLQuants to store the covariables used in the stock-recruitment
relationship. For details on the use of this slot look at the description
of FLSR class.

36

uncertainty: An FLQuant with dimension [1, ny, 1, ns, 1, it] used to store
the uncertainty related to stock-recruitment process. The content
of this slot is multiplied to the point estimate of recruitment. As
its effect is multiplicative set it equal to 1 for all year, season and
iteration if uncertainty is not going to be considered around stock-
recruitment curve.

proportion: An FLQuant with dimension [1, ny, 1, ns, 1, it] used to store
the proportion of the recruitment produced by stock index in year
y−timelag[1, s] and season timelag[2, s] that recruits in year y and
season s. The content of this slot is multiplied to the point estimate
of recruitment. As its effect is multiplicative set it equal to 1 if all
the recruitment produced by certain stock index is recruited at the
same time and set it equal to 0 if none of the recruitment produced
by certain stock index is recruited in that season.

model: Character string or formula. If character it specifies the name of
the function used to simulate the recruitment. If formula the left
hand side of ∼ must be equal rec and the elements in right hand
side must be among ssb, covars and params.

params: An array with dimension [nparams, ny, ns, it], thus the pa-
rameters may be year, season and iteration dependent. Year dimen-
sion in parameters may be useful to model regime shifts.

timelag: A matrix with dimension [2, ns]. This object indicates the time
lag between spawning and recruitment in each season. For each
season, the element in the first row indicates the age at recruitment
and the element in the second row indicates the season at which the
recruitment was spawn.

B Graphical representation of FLR Ob-
jects

37

Figure 3: FLBiol object

Figure 4: FLFleetExt object

38

Figure 5: FLSRsim object

Figure 6: FLBDsim object

39

Figure 7: FLIndex object

Figure 8: FLStock object

40

