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Abstract

The auxiliary function log1pmx() (“log 1 plus minus x”), had been introduced
when R’s pgamma() (incomplete Γ function) had been numerically improved by Morten
Welinder’s contribution to R’s PR#7307, in Jan. 20051, it is mathematically defined
as log1pmx(x) := log(1 + x)− x and for numerical evaluation, suffers from two levels
of cancellations for small x, i.e., using log1p(x) for log(1 + x) is not sufficient.

In 2000 already, Catherine Loader’s contributions for more accurate computation of
binomial, Poisson and negative binomial probabilities, Loader (2000), had introduced
auxiliary functions bd0() and stirlerr(), see below.

Much later, in R’s PR#15628, in Jan. 20142, Welinder noticed that in spite of
Loader’s improvements, Poisson probabilities were not perfectly accurate (only ca. 13
accurate digits instead of 15.6 ≈ log10(2

52)), relating the problem to somewhat im-
perfect computations in bd0(), which he proposed to address using log1pmx() on one
hand, and additionally addressing cancellation by using two double precision numbers
to store the result (his proposal of an ebd0() function).

Here, I address the problem of providing more accurate bd0() (and stirlerr()
as well), applying Welinder’s proposal to use log1pmx(), but otherwise diverging from
the proposal.

1 Introduction

According to R’s reference documentation, help(dbinom), the binomial (point-mass) prob-
abilities of the binomial distribution with size = n and prob = p has “density” (point
probabilities)

p(x) := p(x;n, p) :=

(
n

x

)
px(1− p)n−x , (1)

for x = 0, . . . , n, and these are (in Rfunction dbinom()) computed via Loader’s algo-
rithm (Loader (2000)) which had improved accuracy considerably, also for R’s internal
dpois_raw() function which is used further directly in dpois(), dnbinom(), dgamma(),
the non-central dbeta() and dchisq() and even the cumulative Γ() probabilities pgamma()
and hence indirectly e.g., for cumulative central and non-central chisquare probabilities
(pchisq()).

Loader noticed that for large n, the usual way to compute p(x;n, p) via its logarithm
log(p(x;n, p)) = log(n!)−log(x!)−log((n−x)!)+x log(p)+(n−x) log(1−p) was inaccurate,

1https://bugs.R-project.org/show_bug.cgi?id=7307#c6
2https://bugs.r-project.org/show_bug.cgi?id=15628
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even when accurate log Γ(x) = lgamma(x) values are available to get log(x!) = log Γ(x+1),
e.g., for x = 106, n = 2× 106, p = 1/2, about 7 digits accuracy were lost from cancellation
(in substraction of the log factorials).

Instead, she wrote

p(x;n, p) = p(x;n,
x

n
) · e−D(x;n,p), (2)

where the “Deviance” D(.) is defined as

D(x;n, p) = log p(x;n,
x

n
)− log p(x;n, p)

= x log
( x

np

)
+ (n− x) log

( n− x

n(1− p)

)
, (3)

and to avoid cancellation, D() has to be computed somewhat differently, namely – correct-
ing notation wrt the original – using a two-argument version D0():

D(x;n, p) = npD̃0

( x

np

)
+ nqD̃0

(n− x

nq

)
= D0(x, np) +D0(n− x, nq), (4)

where q := 1− p and

D̃0(r) := r log(r) + 1− r and (5)

D0(x,M) := M · D̃0(x/M) (6)

= M ·
( x

M
log

( x

M

)
+ 1− x

M

)
= x log

( x

M

)
+M − x (7)

Note that since limx↓0 x log x = 0, setting

D̃0(0) := 1 and (8)

D0(0,M) := MD̃0(0) = M · 1 = M

defines D0(x,M) for all x ≥ 0, M > 0.
The careful C function implementation of D0(x,M) is called bd0(x, np) in Loader’s C

code and now R’s Mathlib ((lib)Rmath) at https://svn.r-project.org/R/trunk/src/
nmath/bd0.c, mirrored, e.g., at Winston Chen’s github mirror3. In 2014, Morten Welinder
suggested in R’s PR#156284 that the current bd0() implementation is still inaccurate in
some regions (mostly not in the one it has been carefully implemented to be accurate, i.e.,
when x ≈ M) notably for computing Poisson probabilities, dpois() in R; see more below.

Evaluating of p(x;n, p) in (1) and (2), in addition to D(x;n, p) in (4) also needs
p(x;n, xn) where in turn, the Stirling De Moivre series is used:

log n! =
1

2
log(2πn) + n log(n)− n+ δ(n), where the “Stirling error” δ(n) is (9)

δ(n) := log n!− 1

2
log(2πn)− n log(n) + n = (10)

=
1

12n
− 1

360n3
+

1

1260n5
− 1

1680n7
+

1

1188n9
+O(n−11). (11)

3https://github.com/wch/r-source/blob/trunk/src/nmath/bd0.c
4https://bugs.r-project.org/show_bug.cgi?id=15628
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See appendix C how δ(n) ≡stirlerr(n) is computed and implemented in the C code of
R, and can be improved.

Note that for the binomial, x is an integer in {0, 1, . . . , n} and M = np ≥ 0, but the
formulas (6), (7) for D0(x,M) apply and are needed, e.g., for pgamma() computations for
general non-negative (x,M > 0) where even the x = 0 case is well defined, see (8) above.

Summarizing, using (1), (6), (7), the binomial probabilities in R, dbinom(x, n,p) have
been computed as

p(x;n, p) = p(x;n,
x

n
) · e−D(x;n,p) = (12)

=

√
n

2πx(n− x)
eδ(n)−δ(x)−δ(n−x), (13)

the second line being eq. (5) of Loader which is derived by using Stirling’s (9) three times,
viz. for n, x, and n−x, and noticing that many log terms cancel and the three log(2π∗)/2
terms simplify to log

(
n

2πx(n−x)

)
/2.

Further, Loader showed that such a saddle point approach is needed for Poisson prob-
abilities, as well, where

pλ(x) = e−λλ
x

x!
(14)

log pλ(x) = −λ+ x log λ − log(x!)︸ ︷︷ ︸
log(1/

√
2πx)−(x log x−x+δ(x))

= log
1√
2πx

− x log
x

λ
+ x− λ− δ(x), (15)

is re-expressed using δ(x) and from (7) D0(x, λ) as

pλ(x) =
1√
2πx

e−δ(x)−D0(x,λ) (16)

Also, negative binomial probabilities, dnbinom(), . . . . . . . . . TODO . . . . . .

Even for the tν density, dt(), . . . . . . . . .
. . . but there have a direct approximations in package DPQ, currently functions c_dt(nu)
and even more promisingly, lb_chi(nu). . . . . . . . . . TODO . . . . . .

2 Loader’s “Binomial Deviance” D0(x,M) = bd0(x, M)

Loader’s “Binomial Deviance” function D0(x,M) = bd0(x, M) has been defined for x,M >
0 where the limit x → 0 is allowed (even though not implemented in the original bd0()),
here repeated from (6) :

D0(x,M) := M · D̃0

( x

M

)
, where

D̃0(u) := u log(u) + 1− u = u(log(u)− 1) + 1.
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Note the graph of D̃0(u),
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has a double zero at u = 1, such that for large M and x ≈ M , i.e., x
M ≈ 1, the direct

computation of D0(x,M) = M · D̃0

(
x
M

)
is numerically problematic. Further,

D0(x,M) = M ·
( x

M
(log(

x

M
)− 1) + 1

)
= x log(

x

M
)− x+M. (17)

We can rewrite this, originally by e-mail from Martyn Plummer, then also indirectly
from Morten Welinder’s mentioning of log1pmx() in his PR#15628 notably for the im-
portant situation when |x−M | ≪ M . Setting t := (x − M)/M , i.e., |t| ≪ 1 for that
situation, or equivalently, x

M = 1 + t. Using t,

t :=
x−M

M
(18)

D0(x,M) =

x︷ ︸︸ ︷
M · (1 + t) log(1 + t)−

x−M︷ ︸︸ ︷
t ·M = M ·

(
(t+ 1) log(1 + t)− t

)
=

= M · p1l1(t), (19)

where

p1l1(t) := (t+ 1) log(1 + t)− t =
t2

2
− t3

6
± · · · , (20)

= (log(1 + t)− t) + t · log(1 + t)

= log1pmx(t) + t · log1p(t) (21)

where

log1pmx(x) := log(1 + x)− x ≈ −x2/2 + x3/3− x4/4± . . . , (22)

and the Taylor series expansions for log1pmx(t) and p1l1(t) are useful for small |t|,

p1l1(t) =
t2

2
− t3

6
+

t4

12
± · · · =

∞∑
n=2

(−t)n

n(n− 1)
=

t2

2

∞∑
n=2

(−t)n−2

n(n− 1)/2
=

t2

2

∞∑
n=0

(−t)n(
n+2
2

) = (23)

=
t2

2

(
1− t

(1
3
− t

(1
6
− t

( 1

10
− t

( 1

15
− · · ·

)))))
, (24)
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which we provide in DPQ via function p1l1ser(t, k) getting the first k terms, and the
corresponding series approximation for

D0(x,M) = lim
k→∞

p1l1ser
(x−M

M
, k, F =

(x−M)2

M

)
, (25)

where the approximation of course uses a finite k instead of the limit k → ∞.
This Taylor series expansion is useful and nice, but may not even be needed typically,

as both utility functions log1pmx(t) and log1p(t) are available implemented to be fully
accurate for small t, t ≪ 1, and (21), indeed, with t = (x−M)/M the evaluation of

D0(x,M) = M · p1l1(t) = M ·
(
log1pmx(t) + t · log1p(t)

)
, (26)

seems quite accurate already on a wide range of (x,M) values.

> par(mfcol=1:2, mar = 0.1 + c(2.5, 3, 1, 2), mgp = c(1.5, 0.6, 0), las=1)
> p.p1l1(-7/8, 2, ylim = c(-1,2))
> zoomTo <- function(x,y=x, tx,ty){ arrows(x,-y, tx, ty)
+ text(x,-y, "zoom in", adj=c(1/3,9/8)) }
> zoomTo0 <- function(x,y=x) zoomTo(x,y, 0,0)
> zoomTo0(.3)
> p.p1l1(-1e-4, 1.5e-4, ylim=1e-8*c(-.6, 1), do.leg=FALSE)
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Figure 1: p1l1(t) = p1l1() and its constituents, x ∗ log1p(x) and log1pmx() = log1pmx(),
with Rfunctions from our DPQ package. On the right, zoomed in 4 and 8 orders of
magnitude, where the Taylor approximations x2/2 and x2/2 − x3/6 are visually already
perfect.

Note that x ∗ log1p(x) and log1pmx() have different signs, but also note that for small
|x|, are well approximated by x2 and −x2/2, so their sum p1l1(x) = log1pmx(x) + x ·
log1p(x) is approximately x2/2 and numerically computing x2 − x2/2 should only lose 1
or 2 bits of precision.
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A Accuracy of log1pmx(x) Computations

As we’ve seen, the “binomial deviance” function D0(x,M) = bd0(x, M) is crucial for ac-
curate (saddlepoint) computations of binomial, Poisson, etc probabilities, and (at the end
of section 2), one stable way to compute D0(x,M) is via (26), i.e., with t = (x−M)/M ,
to compute the sum of two terms D0(x,M) = M ·

(
log1pmx(t) + t · log1p(t)

)
.

Here, we look more closely at the computation of log1pmx(x) := log(1+x)−x, at first
visualizing the function, notably around (0, 0) where numeric cancellations happen if no
special care is taken.

> lcurve <- function(Fn, a,b, ylab = "", lwd = 1.5, ...)
+ plot(Fn, a,b, n=1001, col=2, ylab=ylab, lwd=lwd, ...,
+ panel.last = abline(h=0, v=-1:0, lty=3))
> par(mfrow=c(2,2), mar = 0.1 + c(2.5, 3, 1, 2), mgp = c(1.5, 0.6, 0), las=1)
> lcurve(log1pmx, -.9999, 7, main=quote(log1pmx(x) == log(1+x)-x))
> rect(-.1, log1pmx(-.1 ), .1 , 0); zoomTo0(1/2, 1)
> lcurve(log1pmx, -.1, .1 ); rect(-.01, log1pmx(-.01 ), .01 , 0); zoomTo0(.02, .001)
> lcurve(log1pmx, -.01, .01); rect(-.002,log1pmx(-.002), .002, 0); zoomTo0(2e-3,1e-5)
> lcurve(function(x) -log1pmx(x), -.002, .002, log="y", yaxt="n") -> l1r
> sfsmisc::eaxis(2); abline(v=0, lty=3)
> d1r <- cbind(as.data.frame(l1r), y.naive = with(l1r, -(log(1+x)-x)))
> c4 <- adjustcolor(4, 1/3)
> lines(y.naive ~ x, data=d1r, col=c4, lwd=3, lty=2)
> legend("left", legend=expression(- log1pmx(x), -(log(1+x)-x)),
+ col=c(palette()[2],c4), lwd=c(1,3), lty=1:2, bty="n")
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The accuracy of our log1pmx() is already vastly better than the naive log(1 + x) − x
computation:

> par(mfrow=1:2, mar = 0.1 + c(2.5, 3, 1, 2), mgp = c(1.5, 0.6, 0), las=1)
> d1r[, "relE.naive"] <- with(d1r, sfsmisc::relErrV(y, y.naive))
> plot(relE.naive ~ x, data=d1r, type="l", ylim = c(-1,1)*1e-6)
> y2 <- 1e-8
> rect(-.002, -y2, .002, y2, col=adjustcolor("gray",1/2), border="transparent")
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> zoomTo(15e-4, 9*y2, 13e-4, -y2)
> plot(relE.naive ~ x, data=d1r, type="l", ylim = c(-1,1)*y2); abline(h=0,lty=3)
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Now, we explore the accuracy achieved with R’s, i.e. Welinder’s algorithm, which uses
relatively few terms ao continued-fraction representation of the Taylor series of log1pmx(x),
using package Rmpfr and high precision arithmetic. see ‘../tests/dnbinom-tst.R’, 2b:
log1pmx(). From there, it seems that the (hardcoded currently in R’s ‘pgamma.c’ as
double minLog1Value = -0.79149064 could or should (?) be changed to around -0.7 or
e.g., -0.66.

In DPQ’s log1pmx() it is the argument minL1 = -0.79149064, there’ a switch constant
eps2, (hardwired in current Rto 1e-2, i.e., eps2 = 0.02) to switch from an explicit 5-term
formula to the full logcf() based procedure. In DPQ, we already use eps2 = 0.01 as
default. Note that this does not influence the choice of minL1 as long as eps2 (order of
0.01) is far from the range in which we choose minL1 ([−0.85,−0.4]).
((MM: Still: can we prove that 0.01 is “uniformly” better than 0.02 ?? ))

A.1 Testing dpois_raw() / dpois() Poisson probabilities

Testing the Poisson probabilities (‘density’) with several versions of bd0(), ebd0() and the
direct formula where more appropriate (non-log case, Look at examples in ‘"../man/dgamma-utils.Rd"’
and then also
/u/maechler/R/MM/NUMERICS/dpq-functions/15628-dpois_raw_accuracy.R .

B Accuracy of p1l1(t) Computations

Loader’s “Binomial Deviance” D0(x,M) = bd0(x, M) function can also be re-expressed
(mathematically) as bd0(x,M) = M ∗ p1l1((x − M)/M) where we look into providing
numerically stable formula for p1l1(t) as its mathematical formula p1l1(t) = (t+1) log(1+
t)−t suffers from cancellation for small |t| even when log1p(t) is used instead of log(1+t);
see the derivations (19), (20), and (22) above, and the Taylor series expansion (23) which
we provide in our Rfunctions p1l1(), and p1l1ser, respectively.

Using a hybrid implementation, p1l1() uses a direct formula, now the stable one in
p1l1p(), for |t| > c and a series approximation for |t| ≤ c for some cutoff c.
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NB: The re-expression via log1pmx() is almost perfect; it fixes the cancellation problem
entirely (and exposes the fact that log1pmx()’s internal cutoff seems sub optimal.

TODO — very unfinished. How much more here?
For now, look at the examples in ?p1l1, or even run example(p1l1).

C Accuracy of stirlerr(x)= δ(x) Computations

Note that the “Stirling error”, δ(x) ≡stirlerr(x), δ(x) := log x!− 1
2 log(2πx)−x log(x)+x

by Stirling’s formula is δ(x) = 1
12x − 1

360x3 + 1
1260x5 − 1

1680x7 + 1
1188x9 +O(x−11), see (10).

A C code implementation had been provided by Loader and for years now in R’s Math-
lib at https://svn.r-project.org/R/trunk/src/nmath/stirlerr.c. mirrored, e.g., at
https://github.com/wch/r-source/blob/trunk/src/nmath/stirlerr.c

TODO:
Look at examples in ‘../tests/stirlerr-tst.R’ to show the small accuracy loss with

Loader’s defaults (for the cut offs of the number of terms used) and also how we explore
improving these defaults to improve accuracy.
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