Asymptotic Tail Formulas For Gaussian Quantiles

Martin Machler
Seminar fur Statistik, ETH Zurich
NOV. 2022 IATEX’ed February 1, 2025

Abstract

R’s Gaussian quantile function gnorm(p, ..) has been based on the published al-
gorithm AS 241 of Wichura (1988) which is fully accurate only on the regular scale for
p down to the smallest double precision numbers > 0. When probabilities are used
on the log scale, i.e., qnorm(lp, log.p=TRUE), the argument is a log probability, and
lp= logp — —oo when p — 0, qnorm() using AS 241 has been very inaccurate in the
very extreme tails.

I have derived novel asymptotic formulas for that case, using recursive plug-in to the
asymptotic formula for ®(z) (which gnorm() should invert).

Using these formulas for order k¥ = 0,1,...,5, for six different regions (adjacent inter-
vals) allows to provide fully accurate qnorm() computations also on the log scale. Pure
R implementations of these are provided in R package DPQ (Maechler 2022a), functions
gnormAsymp () and gnormR() and have also been prepared to be added to (the C code in
Rmathlib in) the next version of R’s qnorm().

Keywords: asymptotic, approximation, extreme tail, Gaussian, Normal Quantile, R.

1. Gaussian quantiles in R — okay on regular probability range

Gaussian or normal quantiles have been made available in R (R Core Team 2022), from the
very beginning. Ross Thaka (one of the two “fathers” of R) wrote the first version; visible in
R’s subversion (svn) repository, rev 574, dated Jan. 14, 1998 basically interfacing R with a C
version of the published AS 111 algorithm (which was in Fortran 66 with GOTO etc), Beasley
and Springer (1977), but improving AS 111 already by using a more accurate formula from
Wichura for the “outer” tail (defined to have p’ := min(p,1 — p) close to zero, specifically,
when p’ € (1073% ¢.], where €., the computer epsilon, (= DBL_EPSILON in C’s math library
= R’s .Machine$double.eps is nowadays always €. = 2792 = 2.220446.. - 10716,

This first algorithm AS 111, e.g., in R 1.0.0, Feb.29, 2000, (svn rev 7639, 2000-01-18), the
version of <R>/src/nmath/qnorm.c had contained the description

Compute the quantile function for the normal distribution.

For small to moderate probabilities, algorithm referenced below is used to obtain
an initial approrimation which is polished with a final Newton step.

For very large arguments, an algorithm of Wichura is used.

and the reference to Beasley and Springer (1977).

https://orcid.org/0000-0002-8685-9910
https://CRAN.R-project.org/package=DPQ

2 Asymptotic Tail Formulas For Gaussian Quantiles

Also, already before releasing R 1.0.0 on Feb. 29, 2000, as R Core team, we had introduced
the log.p and lower.tail logical switches,

r7615 | maechler | 2000-01-17 12:18:30 +0100 (Mo, 17 Jan 2000)
add new argument lower.tail and loglpl; at first only to [dpglpois()

r7639 | maechler | 2000-01-18 12:10:44 +0100 (Di, 18 Jan 2000)
[dpglnorm() & [dpgllnorm() have new args

Already a few months after releasing R 1.0.0 (June 6, svn r9464), I had switched gnorm() to
use the more recent and accurate AS 241 with NEWS entry

o qgnorm() is now based on AS 241 instead of AS 111, and should
give precise results up to 16 digits precision.

Algorithm AS 241 is by Wichura (1988) which contains the promise of 16 digits precision!,
the last sentence on p.477: ... for 10736 < min(p,1 — p). The second routine, PPND16,
is accurate to about 16 figures over the same range.

Also in Wichura (1988),

2

ro= \/f log(min(p,1 —p)) (<= min(p,1 —p)=e"). (1)

For ease of notation, we assume p < %, for now, and hence the quantile gnorm(p)= ®~1(p) =
®~!(exp(—r?)) is negative. The “outermost” minimax rational approximation to —®~1(p)
used in AS 241 is in the interval r € (5,27] <= r2 € (25, 729], or equivalently,

pele™, e %) ~ [2.51-10737,1.389 - 107 1). (2)

At first, the above seems sufficient, since indeed, the lower bound is already “de-normalized”
in double precision, e = ¢7729 ~ 25110737 is smaller than DBL_XMIN in C’s math library
= R’s .Machine$double.xmin= 271022 ~ 2.225 . 107308,

Howewver, as mentioned above, in the R core team we had already seen that it is often advisable
to work on the log—scale with probabilities and therefore had introduced the option log.p
= TRUE for all our (cumulative) distribution and quantile functions. Now this changes the
picture of “sufficient” approximation dramatically, as, indeed, on the log scale, the AS 241
algorithm only goes up to logp = r2 = 729, and then quickly loses precision (see below).

The goal of the remaining part of this paper is to describe the research for finding accurate
approximations in these outermost tails.

1.1. DPQ’s gnormR() — documenting R history

Note that in DPQ, pure R code implementations of R’s gnorm() are provided by func-
tion gnormR () which has (almost?) the same arguments p, mu = 0, sd = 1, lower.tail =
TRUE, log.p = FALSE as R’s gnorm() and additionally trace = 0, version = c("4.0.x",
"2020-10-17", "2022-08-04"), where the default version = "4.0.x" corresponds to R
version up to 4.0.5 (2021-03-31) which uses basically the above AS 241, additionally treating
extreme cases including +Inf and NA, NaN well.

116 digits precision, i.e., about the usual IEEE 52-bit double precision (ec = 2752 2222 10716)
2mu’ # ‘mean’

Martin Méchler 3

These versions are explained subsequently, starting with the "4.0.x" version which may be
considered as “catastrophically wrong” if we look closely in log scale:

2. Correcting gnorm(.., log.p=TRUE)

In order to compare versions of qnorm() approximations with their “true" values, we use
the fact that it, x = ®~!(p) =qnorm(p), is defined as inverse of p = ®(z) =pnorm(x) and
we additionally assume that pnorm(x) is “fully accurate” which it basically is, also on the
log scale, demonstrably, e.g., using CRAN pkg Rmpfr (Maechler 2022b), with its own very
accurate pnorm()? , but we are not providing the evidence here.

With this assumption, the error of qgnorm() is the deviation from the identity ®~1(®(x)) = .
If z # 0, the relative error is

ST®@) =T 55 @)/ — 1,

—

and we “define” the relative error of qnorm() as gqnorm(pnorm(x)) / x - 1 where we need
to adjust for cases where x is (very close to) zero or not finite, etc. This is done by function
relErrV() from package sfsmisc (Maechler 2022c), shown in the appendix A, which takes
care of all special or boundary cases.

And as a matter of fact, we will work in log scale, hence using log.p = TRUE in both pnorm()
and qnorm(), and we want to use positive numbers both for argument and result (and nicer
formulae), so work with the upper tail, i.e., use lower.tail = FALSE. Consequently, in-
stead of computing and inverting ®(x), i.e., our qnorm(.) should compute the inverse of
log (1 — ®(x)).

gs <- 27seq(0, 29, by=1/256) # => s >= 1.84
lp <- pnorm(qs, lower.tail=FALSE, log.p=TRUE)
s <- -1p # = -pnorm(..) = -log(1 - Phi(gs)) > 0
require("DPQ") # --> qnormR():
qnrm <- gnorm (-s, lower.tail=FALSE, log.p=TRUE)
qnrm405 <- gnormR(-s, lower.tail=FALSE, log.p=TRUE, version= "4.0.x") # R <= 4.0.5
gnrm410 <- gnormR(-s, lower.tail=FALSE, log.p=TRUE, version= "2020-10-17")
qnrm43 <- gnormR(-s, lower.tail=FALSE, log.p=TRUE, version= "2022")
Rver <- sfsmisc::shortRversion()
if(getRversion() <= "4.0.5") { # our qnormR(.., version="4.0.x")
cat (sprintf("7s, \"4.0.5\",\n all.equal(*, tol=0): Js; identical(): J}s\n", Rver,
all.equal(qnrm, qnrm405, tolerance=0), identical(qnrm, qnrm405)))
stopifnot(all.equal (qurm, qnrm405, tolerance = le-12))
} else if(getRversion() < "4.3") { # our gnormR(*, version="2020-10-17") matches:
cat (sprintf("7s, \"4.1.0\",\n all.equal(*, tol=0): Js; identical(): Js\n", Rver,
all.equal(qnrm, qnrm410, tolerance=0), identical(qunrm, qnrm410)))
stopifnot(all.equal(qnrm, qnrm410, tolerance = le-12))
} else { # R version >= 4.3.x
cat (sprintf("}s, >= 4.3.x,\n all.equal(*, tol=0): J}s; identical(): 7s\n", Rver,
all.equal(qnrm, qnrm43, tolerance=0), identical(qnrm, qnrm43)))

vV VVVVYVVYVVYV

SRmpfr: :pnorm(<mpfr>) is limited in range because it currently has no log scale (or otherwise scaled)
version, and we need to take explicit log(.) the values it computes from its pnorm(x) := erfc(v/2 - z)/d)
which underflow to zero before x == 1e6 even with extended mpfr erange.

https://CRAN.R-project.org/package=Rmpfr
https://CRAN.R-project.org/package=sfsmisc

4 Asymptotic Tail Formulas For Gaussian Quantiles

rE6 <- gqnorm(-1e6, log.p=TRUE)/-1414.2077829910174 - 1
cat(sprintf (" rE(-1e6) = Jg\n", rE6))
if(abs(rE6) < 7e-16) # have R-devel with new 2022 code:

stopifnot(all.equal(qnrm, qnrm43, tolerance = le-14))
}

R 4.4.2 Patched 2025-01-28 r87664, >= 4.3.x,
all.equal(*, tol=0): TRUE; identical(): TRUE
rE(-1e6) =0

Computing a version of the above (with larger range for s, gs <- 27seq(0,70,by=1/8)) in
R version 4.0.5 and plotting in log-log scale,

> plot(qnrm405 ~ s, type="1", log="xy", col=2, ylim = c(1, max(qs)), asp = 1,
xaxt="n", yaxt="n"); require("sfsmisc"); eaxis(1); eaxis(2)
> lines(gs ~ s, col=(c4 <- adjustcolor(4, 1/4)), lwd=4)
> legend("top", c("qnorm(-s, lower.tail=FALSE, log.p=TRUE)", "true"),
col=c(palette() [2], c4), lwd=c(1,4), bty="n")

21
%820 —— gnorm(-s, lower.tail=FALSE, log.p=TRUE)
10 true

gnrm405

10° 10° 10° 10% 10% 10% 10% 10** 10?7 10%° 10% 10% 10% 10%
S

Figure 1: Extreme tail log scale gnorm(-s, ..) in R 4.0.5 or earlier, i.e., up to 2021; note
that is just

Figure 1 looks good up to about 10'2, i.e., gnorm() coinciding with the true z gs, but
beyond 10'* diverging for larger s, and for even larger s showing complete loss of accuracy as
gnorm(-s, *) converges (to 98340296.6), even though the true function should go to +oc.
We will see that indeed, asymptotically, gnorm(|s|,..) ~ /2|s| which in log-log scale is a line
(with intercept log /2 and slope 1/2).
Closer inspection, showing the relative errors in Figure 2 :
> if(lexists("version.txt")) version.txt <- R.version.string
> plot(abs(relE_gn) ~ s, type="1", log="xy",

main = "inaccuracy of qunorm(-s, log.p=TRUE, lower.tail=F)", axes=FALSE)
> eaxis(1, nintLog = 13, subl0 = 2); eaxis(2); ablaxisl(x=27)
> mtext(version.txt, line = -0.8, cex=.8, adj = 0.75)

for

Martin Méchler

> relE_gn <- relErrV(gs, qnrm405) ; version.txt <- "R versions up to R 4.0.5"

inaccuracy of gnorm(-s, log.p=TRUE, lower.tail=F)
! R versions up to R 4.0.5

1 10 100 10° 10* 10° 10° 107 10° 10° 10'° 10 10'210% 10% 10% 10% 10%’
S

Figure 2: Relative error of gnorm() in extreme tails in R version before R 4.1.0

From this, in September 2020, I started to investigate the visually obvious asymptotic behavior
of the correct inversion of gnorm(), using the classical first order asymptotic

1—@(%)~M, for x — oo, 4)
x
for the standard normal / Gaussian density ¢(z) := \/#276_‘”2/ 2 and cumulative distribution
function ®(x) := [¢(t) dt. On the log scale, this is equivalent to
log(1 — ®(z)) = log ¢(x) — log z + o(x), (5)
= —22/2 — 1/2log 2w — log x 4 o(x)
= —2/2 + o(x),

as O(log) = o(z), i.e., I, := log(1 — ®(z)) ~ —x?/2 for large = and hence,
T /=2, (6)

for large |z| or large |l,| = —I, =: s (using notation as in the R code above with 1p and s <-
-1p).
Consequently, a first order remedy against the “catastrophic” precision loss for extreme tail
gnorm() was to use the above v/2s approximation for upper tail probabilities specified in log
scale.

Computer experimentation was used to find a numerically optimal (for the double precision
implementation of AS 241) cutoff.

Computing the difference (“delta”) betwen the absolute value of the relative errors for R 4.0.x’s
gnorm() and for the asymptotic approximation (6):

6 Asymptotic Tail Formulas For Gaussian Quantiles

> delta.relE <- function(q, gNorm = function(...) gnormR(..., version = "4.0.x")) {
lp <- pnorm(q, lower.tail=FALSE, log.p=TRUE) # <==> q = true gnorm(lp, *)
the "delta" of the two relative errors qmnorm() vs sqrt(2+*s) approx:
abs(1 - gNorm(lp, lower.tail=FALSE, log.p=TRUE) / q) -
abs(1 - sqrt(-2*1p) / q)
}
> plot(delta.relE(gqs) ~ gqs, subset = 10 < gs & gs < 4e6, type="1", log="x")
> abline(h=0, col = adjustcolor(2, 1/2))

(90
Q_
o
D o
g o
w o
()]
b
= _
=
(]
—
° o |
o
|
o
o |
?

I I I I I I
le+01 le+02 1le+03 le+04 1le+05 1le+06

gs
looks like a well
defined zero, we now determine the root location as the optimal cutoff, as it will minimize
the absolute value of the relative error of computing qnorm(..). At first:

> cutP. <- uniroot(function(logq) delta.relE(exp(logq)) , c(3, 13))
> exp(cutP. $root)

[1] 1153.223

then, getting more accurate once we approximately know the region:
> str(cP. <- uniroot(delta.relE, interval = c(1000, 1300), tol = le-12))

List of 5
$ root : num 1153
$ f.root : num O
$ iter : int 7
$ init.it : int NA

$ estim.prec: num 2.43e-09

> qC <- cP.$root # 1153.242
> (1pC <- pnorm(qC, lower.tail=FALSE, log.p=TRUE))

[1] -664991

Martin Méchler 7

so the optimal cutoff where to use the sqrt-approximation is at 1p= logp = —664991 or
r = +/s = /—logp = 815.470 (with r defined in Equation 1), and for convenience (round
number), using the cutoff > 816 in gqnorm(), i.e., basically
if(r >= 816) value = sqrt(2) * r;
This consequently was added to the R (i.e., “R-devel”) sources after more testing, a few weeks
later
svn r79346 | maechler | 2020-10-17 21:42:17 +0200

to be in R 4.1.0 with NEWS entry
e gnorm(<very large negative>, log.p=TRUE) is now correct to at

least five digits where it was catastrophically wrong, previously.
Indeed, gnorm() was now “first order accurate” even in the extreme tails, and in a plot such
as Figure 1 one would not notice any inaccuracy. But then, there you’d visually only notice
deviations in the order of 1 %, i.e, already visible in 2 digits accuracy. Looking at the relative
errors directly in Figure 3 (cf. Figure 2 for the original version), indeed shows that the relative
error now is smaller than 10~° and maximal at the cutoff s = 8162 = 665856 :

> relE_qn <- relErrV(qs, qnrm410); version.txt <- "R 4.1.0 to 4.2.x"

inaccuracy of gnorm(-s, log.p=TRUE, lower.tail=F)

R 4.1.0to 4.2.x

1 10 100 10° 10* 10°"10° 107 10° 10° 10 10% 10'2 10" 10™ 10% 10% 10V
)

Figure 3: gqnorm() relative error in extreme tails, R ver. 4.1.0-4.2.x, ca. 202122

3. Fully accurate asymptotic qnorm(., log.p=TRUE)

In R, the function gnorm() and notably the underlying C API function gnorm()* are used in
other places, not the least also to (approximately) compute quantiles of other distributions,
such as the (non central) t.

In addition, ®~!(x) is a very smooth monotone function, it may naturally be desirable that
qnorm() computes its values to the same full (double precision) accuracy as most other
mathematically well defined functions in R.

“R’s C API gnorm() is an alias for gnorm5() in the source file <R>/src/nmath/qnorm. c

8 Asymptotic Tail Formulas For Gaussian Quantiles

Now, the classical simple first order asymptotic (4) for ®(.), i.e., R’s pnorm(), has been known
to many more terms, also for a long time. Mills (1926) builds already on work by Laplace,
said to have derived some of the two asymptotic series, in Abramowitz and Stegun (1972)[p.
932],

A. & S. (26.2.12).

1 1-3 (—1)"1-3---(2n—1)
Sttt o)+Rn, (7)

1—<I)(:E):<I>(—z):-(1—

where the remainder term R,, (which can be represented exactly as an integral) is smaller than
the first neglected term. Note that A.&S. use notation Q(z) = 1—®(x) and Z(x) = ¢(x), also
in the subsequent asymptotic series which is slightly more accurate numerically (but without
an explicit remainder term):

A. & S. (26.2.13).

o(x) a1 a2 -
o)~ O (1 g @@ 1) (@ 2@+)2+ 0))@

where a1 = as = 1,a3 = 5,a4 = 9,a5 = 129,

and the general coefficient a,, is defined via coefficients of a polynom expansion.

As previously, we need to use this in log-scale,

lp = log(1 — @(x)) ~ log(¢(x)) — log(z) +log(1 — g(2?)),

1132
=2 Lioglom) —log(e) + log(1 -), o)
. o1 1 5
where 4(@) = S T @@ D) T @)@t A6
1 1 1 9
::U2+2<17:U2—|—4(17x2+6(57$2+8+”.)))’ (10)

and [, is the log probability (given as first argument to qnorm()), and we would like to solve
for z, as in the simple 1% order case in (5) and (6) above, but of course that is not possible.

However, an amazingly versatile idea of recursive “plug-in” will work here: For the first step,
we may neglect q(z?) ~ 1/(z? + 2) entirely as we know that 22 ~ 2s for relatively large s,
and hence drop log(1 — g(z?)) ~ log(1) = 0, such that (—2) times Equation 9 becomes

—2l, = 2s ~ 22 + log(27) + 2log(z) =
2% + log(2m %), (11)

now subtracting the log term and replacing its #2 by its asymptotic approximation 3 = 2s
gives

25 — log (27 2s) ~ 2°, or,with
x2 = 2s, (12)

2132 ~ w% = 925 — log(27r iL'(2)) = 2s — IOg(47TS)7 (13)

Martin Méchler 9

and we do have a substantially better approximation, verified empirically in Figure 4 below
(k =0 vs k = 1), where we show further steps, continuing to recursively plug in z? itself, now
no longer neglecting g(z?) but still only using a first term, from Equation 9,

—2log(1 — ®(z)) = 25 = 2% + log(27 %) — 2log(1 — ¢(2?)) ~
22 + log(2m x2) + 2¢(z?), (14)

where the 2nd “~” is from log(1 — q) ~ —q for |q| < 1 and g¢(x?) ~ 1/(2? + 2) is assumed to
be very small here. Again solving for the first 22 and replacing the other 22 by our current
best approximation z? leads to

2%~ a3 = 2s — log(2m 23) — 2/ (2% + 2), (15)

and continuing recursively, always taking one more term for ¢(x?), but no longer replacing
log(1 — q) by —q but rather the fully accurate loglp(—gq),

2%~ x} = 25 — log(2m x3) + 2loglp(—(1 — 1/(4 4+ 23)) /(2 + 23)), and 2* =~ (16)
x7 = 2s — log(2m x3) + 2loglp(— (1 — (1 = 5/(6 +3)) /(4 + 3)) /(2 + 23)), and (17)

w3 = 25 — log(2m #3) + 2loglp(—(1 — (1 = (5 - 9/(8 + %)) /(6 + 23)) /(4 + wi))/(2(+ ;6421))-
18

Taking the square roots of these 6 approximations for z? for the inverse cumulative normal,
®~1(e*), namely

z0(s) =V/2s, from (12)

21(s) =y/2s — log(4rs), from (13)

za(s) =/25 — log(2m 22) — 2/(a +2), from (15)
z3(s) =/25 — log(2m 23) + 2loglp(r(x2)), sce (16)
za(s)=...... R . see (17), (18),

these xy(s) are provided as plain R function gnormAsymp (), in our DPQ package, specifically,
71(s) = qnormAsymp(lp = -s, order = k)°

> k.s <- 0:5; nks <- pasteO("k=", k.s)

> gnAsym <- sapply(setNames(k.s, nks), function(k) gnormAsymp(lp=lp, order = k))

> relEasym <- apply(qnAsym, 2, relErrV, target = gs) # rel.errors for all

In Figure 4 we depict the absolute values of their respective relative errors (in log-log scale
against s = —Ip = —log(1 — ®(z))), and and then zoom in more closely in Figure 5:

Swhich is the short form; indeed, gnormAsymp(lp = 1p, order = k) is identical to qnormAsymp(p = 1p,
lower.tail=FALSE, log.p=TRUE, order = k) .

https://CRAN.R-project.org/package=DPQ

10 Asymptotic Tail Formulas For Gaussian Quantiles

> matplot(-1p, abs(relEasym), log="xy", type="1", lwd=2, axes=FALSE, xlab = quote(s == -1p))
> eaxis(1, sub10=2); eaxis(2, subl10=c(-2,2), nintLog=16); grid(col="gray75")
> legend("right", nks, col=1:6, lty=1:5, lwd=2, bty="n")
1
0.1
0.01

(relEasym)
[e =
oS O o
OIS

abs
o
&

TAAAND
R WN RO

=

OI
[y
o

10—11

'_\

S
N
N

10—13
10—14
10—15
10—16]
100 10° 10* 10° 10° 10" 10® 10° 10%°10'! 1010 10™ 10° 10 10"
s=-Ip

Figure 4: |relative errors| of asymptotic approximations in log-log scale

and then zoomed in more closely in Figure 5:

Martin Méchler

Easym)
[

(o
o
5
s
/7
’

abs
=
o
A
=
| L T L 1

”

’
P N IR AN A NA)
a b wWwNEO

10718 TOELLCT TR Tl T Im” N | WL
I 1 1) B 1 e 1) R R R]

100 10° 10* 10° 10° 10’ 108 10°

s=-Ip

Figure 5: (Zoomed Fig. 4) |relative errors| of asymptotic approx. zo(s), z1(s), ..., x5(s)

Fully accurate gnorm()

Our package DPQ’s gqnormR(... version = "2022-08") now implements a (pure R im-
plementation) also to be used (in C) in the next version of R, which uses “the optimal”
asymptotic approximation xy(s) for s = 72 > 27% and k € {0,1,...,5} as defined above in
(12)—(18). “Optimal” is defined as the smallest k& which still provides full accuracy, e.g., when
s > 10'® clearly, zq(s) = v/2s is sufficient and hence optimal in that sense.

Consequently, we have determined (“round number”, approximate) optimal cut points /
regions for different approximation orders k and found the following “round number”
values,

| 5 4 3 2 1 0
r> 27 55 109 840 36000 6.48
=r?>| 729 3025 11830 705600 1296-10° 4.096¢17

Table 1: Optimal cutpoints to determine k to use z(s) for r = /s > 27.

e.g., k = 0 is fully accurate and hence optimal and used for r > 6.4e8 = 640 - 105, or
equivalently, for s = —lp > 4.096e17, where as for r € [55,109) <= s € [3025,11880) one
needs (and uses) k = 4. These were determined using function p.qnormAsy2() in appendix B,
for visualizing the optimal region for switching from k—1 to k, for k = 1,2, 3,4, 5, see Figure 6.

Empirically, we see that now most relative errors are numerically zero and the others are at
most €. = 27°2 &~ 2.22 - 10716, indeed the asymptotic x5(s), see Equation 18, may be seen

11

https://CRAN.R-project.org/package=DPQ

12 Asymptotic Tail Formulas For Gaussian Quantiles

to be even better than algorithm AS 241 for the small region s e [22.8%,272] = [519.84, 729].
19 I'= 20 21 22 23 25
1 1 L ' 1 il

Ik I w ”‘ | ';

N
absEgielEq43)
o

-16

=
o

5x107

I I 21.5° I 22.8° 2
361 400 500 600 700 800

> relE_qn <- relErrV(gs, qnrm43)
We tabulate the values as multiples of ¢, not needing a visualization:
> table(2752 * relE_qn) # all in [-2.5, 3]

-2.5 -2-1.5 -1-0.5 0 1 2 3
3 31 97 282 356 6264 370 21 1

> table(2752 * relE qun[s > 2772]) # in [-1, 1]

-1 -0.5 0 1
36 129 5763 152

To see how the final gnormR () is implemented, you can look at the length-1 version qnormR1 ().

4. Concluding summary

We have derived novel asymptotic formulas for gnorm(1lp, lower.tail=FALSE, log.p=TRUE),
ie., ®71(ef) = <I>_1(er2) for large s = 72, notably for r > 27 which is beyond the range where
the published algorithm AS 241, Wichura (1988), is accurate, see (12), (13), and (15)—(18).
For these formulas of order £k = 0, 1,...,5, implemented in DPQ’s R function qnormAsymp (*,
order=k) we have derived optimal regions, i.e., intervals for r, partitioning (27, cc), see Ta-
ble 1, and implemented in R function gnormR (*, version = "2022-08") for reproducibility
and to be used in (the C code in Rmathlib in) the next version of R’s gnorm().

5. Computational details, session information

For most of our plots we made use of utilities for log scale axis drawing, notably eaxis()
and also mult.fig() (for p.qnormAsy2() in appendix B) from our package sfsmisc (Maechler
2022c¢), from which also relErrV() was used, for computing relEasym, plotted in Figure 4
and 5.

> toLatex(sessionInfo(), locale=FALSE)

o R version 4.4.2 Patched (2025-01-28 r87664), x86_64-pc-linux-gnu

Sindeed, in the package source file DPQ/R/norm_£ .R, gqnormR() is defined to correctly vectorize in its main
arguments p, mu, and sd, by gnormR <- Vectorize(gnormR1, c("p", "mu", "sd"))

https://CRAN.R-project.org/package=sfsmisc

Martin Méchler

e Running under: Debian GNU/Linux 12 (bookworm)
e Matrix products: default
e BLAS: /srv/R/R-patched/build.25-01-29/1ib/1ibRblas.so

o LAPACK: /srv/R/R-patched/build.25-01-29/1ib/1ibRlapack.so; LAPACK
version3.12.0

o Base packages: base, datasets, grDevices, graphics, methods, stats, utils
e Other packages: DPQ 0.6-0, sfsmisc 1.1-20
o Loaded via a namespace (and not attached): compiler 4.4.2, tools 4.4.2

> unlist (packageDescription("DPQ") [c("Package", "Version", "Date")])

Package Version Date
"DPQ" "0.6-0" "2025-02-01"

A. Function relErrV() (package sfsmisc)

To compute relative (approximation) errors, in a way that works correctly, also with Inf, NA,
and NaNs, we make use of the function relErrV() from (our own) CRAN package sfsmisc,
defined” as

> ## Componentwise aka "Vectorized" relative error:
> ## Must not be NA/NaN unless one of the components is ==> deal with {0, Inf, NA}
> relErrV <- function(target, current, epsO = .Machine$double.xmin) {
n <- length(target <- as.vector(target))
assert(<length current> is multiple of <length target>)
lc <- length(current)
if(!n) {
if(!1c) return(numeric()) # everything length O
else stop("length(target) == 0 differing from length(current)")
} else if(!lc)
stop("length(current) == 0 differing from length(target)")
else n, 1c > 0
if(lc %% n)
stop("length(current) must be a multiple of length(target)')
recycle <- (lc != n) # explicitly recycle
R <- if(recycle)
target[rep(seq_len(n), length.out=1c)]
else
target # (possibly "mpfr")
R[] <=0
use *absolute* error when target is zero {and deal with NAs}:
t0 <- abs(target) < epsO & !(na.t <- is.na(target))
R[t0] <- current[t0]
absolute error also when it is infinite, as (-Inf, Inf) would give NaN:
dInf <- is.infinite(E <- current - target)

“currently; for updates, see https://github.com/mmaechler/sfsmisc/blob/master/R/relErr.R

13

https://CRAN.R-project.org/package=sfsmisc
https://github.com/mmaechler/sfsmisc/blob/master/R/relErr.R

14 Asymptotic Tail Formulas For Gaussian Quantiles

R[dInf] <- E[dInf]

useRE <- !dInf & !t0 & (na.t | is.na(current) | (current != target))

R[useRE] <- (current/target) [useRE] - 1

preserve {dim, dimnames, names} from 'current'’

if(!is.null(d <- dim(current)))
array (R, dim=d, dimnames=dimnames (current))

else if(!is.null(nm <- names(current)) && is.null(names(R))) # not needed for mpfr
“names<-" (R, nm)

else R

B. Function p.qgnormAsy2() for showing optimal cutpoints

This function, currently also used in DPQ’s example (qgnormAsymp), was used by the author
and may be used for reproducibility to visualize the five “cutpoint - regions”, Table 1, to
switch from approximation xzy_1(r) to zx(r), for k =1,...,5 and r = /s = /— log p, using
> r0 <- c(27, 55, 109, 840, 36000, 6.4e8) # <-- cutoffs <--> in ../R/norm_f.R
> # use k= 5 4 3 2 1 0 e.g. k =0 good for r >= 6.4e8
> for(ir in 2:length(xr0)) {

p.qnormAsy2(r0[ir], k = 5 +2-ir) # k = 5, 4,

if (interactive() && ir < length(r0)) {

cat ("[Enter] to continue: "); cat(readlLines(stdin(), n=1), "\n") }

}

> ## Zoom into each each cut-point region :

> p.qnormAsy2 <- function(rO, k, # use k-1 and k in region around r0
n = 2048, verbose=TRUE, ylim = c(-1,1) * 2.5e-16,
rr = seq(r0 * 0.5, rO * 1.25, length = n), ...)

stopifnot (is.numeric(rr), !is.unsorted(rr), # the initial 'r'
length(k) == 1L, is.numeric(k), k == as.integer(k), k >= 1)

k.s <- (k-1L) :k; nks <- pasteO("k=", k.s)
if (missing(r0)) rO0 <- quantile(rr, 2/3)# allow specifying rr instead of r0
if (verbose) cat("Around r0 =", r0,"; k =", deparse(k.s), "\n")
lp <= (-rr72) # = -r"2 = -s <==> rr = sqrt(- 1lp)
q. <- qnormR(1lp, lower.tail=FALSE, log.p=TRUE, version="2022-08")# #*not* depending on R ver!
pq <- pnorm (q., lower.tail=FALSE, log.p=TRUE) # ~= lp
the arg of pnorm() is the true qnorm(pg, ..) == q. by construction
r <- sqrt(- pq)
stopifnot(all.equal(rr, r, tol=le-15))
qnAsy <- sapply(setNames(k.s, nks), function(ord)

qnormAsymp (pq, lower.tail=FALSE, log.p=TRUE, order=ord))
relE <- gndsy / q. - 1
m <- cbind(r, pq, relE)
if (verbose) {

print (head(m, 9)); for(j in 1:2) cat(" \n")
print(tail(m, 4))
}
matplot(r, relE, type = "b", main = paste("around r0O = ", r0))
matplot(r, relE, type = "1", ylim = ylim,
main = paste("Relative error of qnormAsymp(*, k) around r0 = ", rO,
"for k =", deparse(k.s)),

Martin Méchler 15

xlab = quote(r == sqrt(-log(p))), ...)
legend("topleft", nks, horiz = TRUE, col=1:2, lty=1:2, bty="n", lwd=2)
for(j in seq_along(k.s))

lines(smooth.spline(r, relE[,j]), col=adjustcolor(j, 2/3), lwd=4, lty="6132")
cc <- "blue2"; lab <- substitute(r[0] == R, list(R = r0))
abline(v = r0, lty=2, lwd=2, col=cc)
axis(3, at= r0, labels=lab, col=cc, col.axis=cc, line=-1)
abline(h = (-1:1)*.Machine$double.eps, 1lty=c(3,1,3),

col=c("green3", "gray", "tan2"))

invisible(cbind(r = r, qn = q., relE))

16 Asymptotic Tail Formulas For Gaussian Quantiles

gnormAsymp(*, k) approximations in the 5 cutpoint regions

Relative error of gnormAsymp(*, k) around r0 = 55 for k = 4:5

Ig=55

30 40 60 70
r:J—me)

=~
l
i

2e-16
1

le-16

[
[
[]
[
[]
[
]
]
]
]
]
]
U

relE

-le-16 0e+00

—2e-16

Relative error of gnormAsymp(*, k) around r0 = 840 for k = 2:3
0

o=

— k=2 — - k=3

—le-16 0e+00

relE
le-16 2e-16
]]
: |
f—————————

Fesss===fF------—h
h =

—2e-16

Relative error of gnormAsymp(*, k) around r0 = 6.4e+08 for k = 0:1

Io=6 4e+08
— k=0 — - k=1 !
©
T
)
~
©
7
@
1
o
we | *l_
)
o
©
5
&
—
I
©
5
&
i

relE

-le-16 0e+00

relE
-le-16 0e+00

2e-16

le-16

-2e-16

2e-16

le-16

-2e-16

Relative error of gnormAsymp(*, k) around r0 = 109 for k = 3:4
=109

Relative error of gnormAsymp(*, k) around r0 = 36000 for k = 1:2
Ig=236000
— k=l — - k=2 !
i ! |
1 1
i ! !
| 1
| | !
i 1
| | !
I 1
i | !
|
' | .
!]
i
R S B
|
|
|
|
|
|
,,,,,,,,,,,,,,, Qo
1
T T T T T T
45000

20000 25000 300 000 40000
r=J—log(p3

Figure 6: qnormAsymp(*, k) approximation in the 5 cutpoint regions:
r0 <- c(27, 55, 109, 840, 36000, 6.4e8)
for(ir in 2:length(r0)) p.gnormAsy2(rO[ir], k = 5 + 2-ir, ..)

Martin Méchler

References

Abramowitz M, Stegun IA (1972). Handbook of Mathematical Functions. Dover Publications,
N.Y. URL https://en.wikipedia.org/wiki/Abramowitz_and_Stegun.

Beasley JD, Springer SG (1977). “Algorithm AS 111: The Percentage Points of the Normal
Distribution.” Applied Statistics — Journal of the Royal Statistical Society C, 26(1), 118~
121. doi:10.2307/2346889.

Maechler M (2022a). DPQ: Density, Probability, Quantile ("DPQ’) Computations. R package
version 0.5-3, URL https://CRAN.R-project.org/package=DPQ.

Maechler M (2022b). Rmpfr: R MPFR - Multiple Precision Floating-Point Reliable. R pack-
age version 0.9-0 from https://rmpfr.R-forge.R-project.org/, URL https://CRAN.
R-project.org/package=Rmpfr.

Maechler M (2022c). sfsmisc: Utilities from ‘Seminar fuer Statistik’ ETH Zurich. R package
version 1.1-14, URL https://CRAN.R-project.org/package=sfsmisc.

Mills JP (1926). “Table of the Ratio: Area to Bounding Ordinate, for Any Portion of Normal
Curve” Biometrika, 18(3-4), 395-400. ISSN 0006-3444. doi:10.1093/biomet/18.3-4.
395.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Wichura MJ (1988). “Algorithm AS 241: The Percentage Points of the Normal Distribution.”
Applied Statistics — Journal of the Royal Statistical Society C, 37(3), 477-484. doi:
10.2307/2347330.

Affiliation:

Martin Méchler

Seminar fur Statistik, HG G 16

ETH Zurich

8092 Zurich, Switzerland

E-mail: maechler@stat.math.ethz.ch
URL: http://stat.ethz.ch/~maechler

17

https://en.wikipedia.org/wiki/Abramowitz_and_Stegun
https://doi.org/10.2307/2346889
https://CRAN.R-project.org/package=DPQ
https://rmpfr.R-forge.R-project.org/
https://CRAN.R-project.org/package=Rmpfr
https://CRAN.R-project.org/package=Rmpfr
https://CRAN.R-project.org/package=sfsmisc
https://doi.org/10.1093/biomet/18.3-4.395
https://doi.org/10.1093/biomet/18.3-4.395
https://www.R-project.org/
https://doi.org/10.2307/2347330
https://doi.org/10.2307/2347330
mailto:maechler@stat.math.ethz.ch
http://stat.ethz.ch/~maechler

	Gaussian Quantiles in R
	DPQ's qnormR()

	Correcting qnorm(., log.p=TRUE)
	Fully accurate asymptotic qnorm(., log.p=TRUE)
	Concluding summary
	Computational details, session information
	relErrV() (from sfsmisc)
	p.qnormAsy2() for optimal cutpoints

