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0.1 Introduction

BIOMOD is an acronym for BIOdiversity MODelling. BIOMOD has been originally developed at
the Centre d’Ecologie Fonctionnelle et Evolutive of the CNRS in Montpellier (France) and was partly
funded by the FP5 ATEAM European Project. The package was developed for species distribution
modelling but it can be used for modelling any kinds of distributions. The only restriction is that
the dependent variable should be coded in a presence-absence binary format.
BIOMOD is a platform for ensemble forecasting of species distributions, enabling the explicit treat-
ment of model uncertainties and the examination of species-environment relationships. It includes
the ability to model species distributions with several techniques, test models with a wide range of
approaches, project species distributions into the future using different climate scenarios and disper-
sal functions, assess species temporal turnover, plot species response curves, and test the strength of
species interactions with predictor variables. Computationally, BIOMOD is a collection of functions
running within the R (CRAN) software (programmed in R language) and allows the user to apply
a range of statistical models to several dependent variables using a set of independent variables.

0.2 Installation

To run BIOMOD, please use the latest version of R. A large number of libraries are also required:
rpart, MASS, gbm, gam, nnet, mda, randomForest, Design, Hmisc, reshape, plyr) before attempting
to run BIOMOD.

Since march 2009, the BIOMOD functions are stored in a different format as it used to be. It is
now an R package that is to be downloaded from this web page :
http://r-forge.r-project.org/R/?group id=302

It contains all the functions BIOMOD needs to work and the datasets necessary to run the ex-
amples. All the functions scripts are available by simply typing their names in the R console. A new
user does not need to get into them, while more experienced users can eventually rewrite them and
modify some internal parameters if they want to, but this is at their own risks as many functions
have direct dependencies between them.

Once unzipped, you should put it in R’s library directory. This is the example of a general root to
get to that directory : C://Program Files//R//R-2.8.0//library. It will obviously depend on where
R is installed on your computer and on the R version you are using.

An extra file named ”BIOMOD-R User Functions” aims to help the user to run BIOMOD in opti-
mal conditions. This script presents pre-formatted calls to prepare the datasets, initialize BIOMOD,
and run the different models. This is the script recommended to use all the time. You may for that
reason modify it to your good will.

The recommended procedure is to first create a folder called BIOMOD. Then, create a new folder
where to store the datasets, run the models and save the outputs and results. This is called the
”workspace”. In the examples below, the workspace is the directory ”Biomod runs”.

It is from this folder that the files will be read and written. For example, you need to put a copy
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of the User Function file in order to be able to open it once R’s working directory is set to your
workspace.
In the latter version of BIOMOD, the results will be stored outside R’s workspace to counter the
memory storage limitations of the software.While running BIOMOD, you will realise that additional
folders will be created. First, the Models() function willcreated 2 folders named models and pred.
As you might have guessed, they will respectively contain the models and the current predictions.
Then, the Projection() function will create a folder to store the outputs for each projection scenario
that is run (see the Models’ Projection section).

0.3 Getting Started

0.3.1 Data preparation

In order to facilitate the learning of BIOMOD, a tutorial is provided here with artificial data. It is
recommended that the user follows each step and run the models on these artificial datasets. Once
the tutorial is completed the user should be able to run BIOMOD with his own data.

The first thing to do is to load the BIOMOD package like any other one. It will load all the
functions required to run BIOMOD.

> library(BIOMOD)

Design library by Frank E Harrell Jr

Type library(help=’Design’), ?Overview, or ?Design.Overview’)
to see overall documentation.

Loaded gbm 1.6-3

If you obtain the following error message, or anything similar, then the package might not be
located at the right place (see section above).

Error in library(BIOMOD) : no package named ’BIOMOD’ has been found.

If everything seems right, then R knows the different BIOMOD functions. You can type any
function name with a question mark in front to access to the help files. You will find a general
explanation of what the function does, an explanation for the use of each parameter to be set and
some examples. As a general case, the examples are more detailed and varied in the help files than
in this present document.

> ?response.plot
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All the information stored in the memory of the R software can be saved as a work session (or
workspace). When beginning a new work session within R, you can load any previously saved work
session, which will load all the functions, objects, results obtained in a previous session thus enabling
you to continue exactly from where you left it.

> save.image()

It procuces an object in your working directory with a .RData extension. It is the actual name
of the object produced if you run the example above, but you can (or should) add a name to it, for
example save.image(”mywork.RData”).

Now, BIOMOD is ready to run and the user can import the species and the environmental data.
For practical reasons, we can store them in the same file and load the species/environment dataset
provided with BIOMOD.

To load your own data from a text file, use the read.table() function:

> My.Data <- read.table("my_data.txt", h=T, sep="\t")

Type ?read.table to get to the help file for more details and other possible extensions.

Here the separator was a tabulation but it could be a comma. Your file might also be in a csv
format; in that case you should use the read.csv function to correctly load your data.

BIOMOD does not recognise geographical coordinates nor does it order the data according to
these. The user should ensure that all datasets are kept in the same order.
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NOTE: Missing values are not permitted in BIOMOD and will result in an error.

To load the example files :

> data(Sp.Env)
> data(CoorXY)
> #the head() function prints the five first rows of a dataset
> head(Sp.Env)

Idw X Y Var1 Var2 Var3 Var4 Var5 Var6 Var7 Sp281
1 73 -9.288 38.62 0.6683 4296 770.1 39.33 295.1 16.74 10.87 0
2 74 -9.292 39.52 0.7596 4174 928.1 57.32 348.7 16.41 10.51 0
3 75 -9.290 39.07 0.7424 4173 870.3 50.05 330.0 16.41 10.50 0
4 76 -8.715 37.72 0.5543 4264 620.0 24.99 239.1 16.66 10.93 0
5 77 -8.717 37.27 0.5489 4169 622.3 25.16 241.0 16.40 11.28 0
6 78 -8.148 37.72 0.5363 4206 591.8 25.74 222.9 16.49 10.13 0
Sp290 Sp277 Sp164 Sp163 Sp177 Sp185 Sp191

1 1 0 0 1 0 0 1
2 1 0 0 1 0 0 1
3 0 0 0 1 0 0 1
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0

- Idw: An Id to keep track of the row numbers
- X and Y: longitude and latitude of our sites (used for plotting)
- Var1 to Var7: Environmental variables (bioclimatic in that case)
- Sp281 to Sp191: Presence/absence of 8 species.

0.3.2 Initialisation

First, we need to set up the dataset in a correct format for BIOMOD by means of the Initial.State
function.

Reminder of the syntax - rows are specified before the comma and columns after with a semi-colon
separating the start and end column.

The syntax in the Initial.State function is the following:
Response: The response variables to model. In our example, the species occurrences are located
from the column 9 to 15.

Explanatory: The explanatory or independent variables. In our example, the environmental
variables, called Var1 to Var6 are located in the columns 2 to 8.

IndependentResponse: Truly independent response variables. This is used to evaluate the pre-
dictive accuracy of the models. If no truly independent data are available, type ”NULL”.
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IndependentExplanatory: Truly independent explanatory variables. This should be used to eval-
uate the predictive accuracy of the models. If no truly independent data are available, type ”NULL”.

The calibration procedure

Ideally, one should always evaluate the predictive performance of a species distribution model using
independent data. If this kind of data is available (informed in the IndependentResponse and In-
dependentExplanatory arguments), BIOMOD will calibrate the models on the calibration data and
evaluate them using the independent data.

If no independent data for model evaluation exists, two alternatives are available to assess the pre-
dictive performance of the modles (see below the Models() function explanations of the NbRunEval
argument)

In our example, we do not have truly independent data but I will give fake independant data
(our original dataset in fact) for the purpose of examples showing. Just ignore it for the moment.

> Initial.State(Response = Sp.Env[,c(11,13,14)], Explanatory = Sp.Env[,4:10],
IndependentResponse = Sp.Env[,c(11,13,14)], IndependentExplanatory = Sp.Env[,4:10])
> ls()

[1] "Biomod.material" "CoorXY" "DataBIOMOD"
[4] "DataEvalBIOMOD" "Sp.Env"

It creates one or several databases: DataBIOMOD and DataEvalBIOMOD, if you have indepen-
dent data. The latter will be used during the testing of the models. Make sure to always keep these
datasets unchanged and never delete them.

> head(DataBIOMOD)

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Sp281 Sp277 Sp164
1 0.6683 4296 770.1 39.33 295.1 16.74 10.87 0 0 0
2 0.7596 4174 928.1 57.32 348.7 16.41 10.51 0 0 0
3 0.7424 4173 870.3 50.05 330.0 16.41 10.50 0 0 0
4 0.5543 4264 620.0 24.99 239.1 16.66 10.93 0 0 0
5 0.5489 4169 622.3 25.16 241.0 16.40 11.28 0 0 0
6 0.5363 4206 591.8 25.74 222.9 16.49 10.13 0 0 0

DataBIOMOD contains the environmental variables in the first columns, followed by the species
occurrences. DataEvalBIOMOD has the same structure but it contains the data for testing of the
models.

An object called Biomod.material is also produced which contains vital informtaion for most of
the functions like the number of variables, the number of species, etc. Again, make sure to keep it
unchanged.
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0.4 Models

0.4.1 Short description

The function ”Models” runs the different models implemented in BIOMOD, as well as their evalua-
tion using three different techniques (kappa statistic, True Skill Statistics and ROC curve).

Nine different models are currently implemented:
- Generalised Linear Models (GLM)
- Generalised Additive Models (GAM)
- Classification Tree Analysis (CTA)
- Artificial Neural Networks (ANN)
- Surface Range Envelope (SRE)
- Generalised Boosting Model (GBM)
- Breiman and Cutler’s random forest for classification and regression (randomForest)
- Mixture Discriminant Analysis (MDA)
- Multiple Adaptive Regression Splines (MARS)

The selection of each model is made by typing T (TRUE) or F (FALSE). There are also various
parameters that needs setting up for some of the models. See below for the explanation.

All the selected models (= T) will run for each species on the calibration dataset. Below you
can find a short explanation of each model and each parameter of the function. Note that they are
not explained in the order they appear in the Models function. A more extensive description of the
models can be found at the end of the Manual (see section ”Models’ description”).

Models’ selection and parameters

- GLM = T, TypeGLM = ”poly”, Test = ”BIC”: Run a stepwise GLM (TRUE), using linear (”sim-
ple”), quadratic (”quad”) or polynomial (”poly”) terms. The stepwise procedure either uses the AIC
or BIC criteria.

- GBM = T, No.trees = 3000, CV.gbm = 5 : Run a generalised boosting model (GBM) (=
boosted regression trees). The maximum number of trees can be user defined (default=3000). A
cross-validation procedure to select the optimal number of trees is implemented. The defaul number
of cross-validation is 5.

- GAM = T, Spline = 4 : Run a generalised additive model (GAM) with a spline function with
a degree of smoothing of 4 (similar to a polynomial of degree 3).

- CTA = T, CV.tree = 50 : Run a classification tree analysis (CTA). The optimal length of the
tree is estimated using cross-validation (default=50).

- ANN = T, CV.ann = 2 : Run an artificial neural network (ANN). As different runs can provide
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different results, the best amount of weight decay and the number of units in the hidden layer is
selected by using N-fold cross-validation (3 by default). The user can also select the number of
cross-validations.

- SRE = T, Perc025=T, Perc05=F : Run an rectilinear surface range envelop (=BIOCLIM) using
the percentile 0.025 or 0.05 as recommended by Nix or Busby.

- MDA = T : Run a mixture discriminant analysis using the MARS function for the regression
part of the model.

- MARS = T : Run a multivariate adaptive regression spline.

- RF = T : Run a random forest model.

Evaluation of the models

- ROC = T : Evaluate the models using the Area Under the ROC (receiver operating characteristic
curve) Curve (AUC)

- Optimized.Threshold.ROC = T : ROC is a threshold independent method. However, if the user
wants to find the optimal threshold optimising the percentage of presence and absence correctly
predicted, this threshold can be used to transform the probabilities of occurrence from models into
presence and absence.

- Kappa = T : Evaluate the models using the Cohen’s Kappa statistic. The treshold optimising
the Kappa is kept.

- TSS = T : Evaluate the models using the True Skill Statistic (TSS). The treshold optimising
the TSS is kept.

- VarImport : if True, this parameter enables a direct comparison of the explanatory variable
importance across models. Once the models are trained (i.e. calibrated), a standard prediction is
made. Then, one of the variables is randomized and a new prediction is made. The correlation score
between that new prediction and the standard prediction is calculated and is considered to give an
estimation of the variable importance in the model : if there is a good correlation score, i.e., the
predictions do only slightly differ across the two methods, then the randomized variable does not
influence the model in its prediction. This step is repeated n times for each variable independently.
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NOTE : when the VarImportance function is run, the output is giving 1 minus the mean corre-
lation for each variable. Therefore, a high score means a high importance. The results can also be
given as a relative importance, i.e., the values are no longer related to the correlation scores but give
a ranking of the variable importance (which sums up to one).

Using pseudo-absences

- NbRepPA = 0 : This will set the use of a pseudo-absences selection if higher than 0. Please refer
to the Pseudo-absences section for detailed explanations. Various repetitions of this procedure can
be done, multiplying the total number of runs that are to be done for each model.

- strategy = ’random’ : the strategy to use for selecting pseudo absences. Can be either ”circles”,
”squares”, ”per”, ”random” or ”sre”.

- coor = CoorXY : a two columned matrix giving the coordinates of your data points. It is needed
for the ”per”, ”circles” and ”squares” strategies

- distance = 3 : a value giving the distance to use for the ”per”, ”circles” and ”squares” strategy
of the pseudo absences selection.

- nb.absences = 2000 : the number of pseudo absences wanted to run the models with. They are
randomly selected from the pool of pseudo absences available selected by the given strategy.

Determine the general evaluation procedure and the number of runs

The combination of the values given to the following arguments will determine in which way the
models will be built and tested. Pay particular attention to these.

- DataSplit : the ratio used for splitting the original database in calibration and evaluation subsets
during the evaluation procedure mentioned above. Note that the function ensures that prevalence
(ratio between the total number of presences and the total number of points) is conserved in the
calibration and evaluation datasets

- NbRunEval :
If no independent data for model evaluation exists, two alternatives are available. First, we can

use a random data splitting procedure into, e.g., 70/30 % as commonly used (Araújo, et al. 2005b,
Guisan and Thuiller 2005), where the models are calibrated on a random subset of 70 % of the data
and evaluated on the remaining 30 %.
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Secondly, a multiple cross-validation approach is available, where BIOMOD replicates the data
splitting procedure N times, runs the models, record the predictive performance and then provide
the mean of the cross-validation.

It gives a more robust estimate of the predictive performance of each selected model and it also
provides an assessment of the sensitivity of the model to the initial conditions, i.e., to the species
distribution data. Of course, it takes longer to run on basic personal computers.

a new way of calibrating / evaluating the models: To be reliable, predictions must be validated
using independent data. As this information is often unavailable, an alternative is to partition
randomly the data into a calibration (or training) and an evaluation (or testing) dataset. The cali-
bration data is used during the fitting or learning process of the models, while the evaluation data
ae used to estimate the prediction ability of the model. Within BIOMOD, this evaluation step can
be done according to three different techniques (Kappa, ROC, TSS). However, this classic splitting
method can add variability in the predictions when several runs are made: because the splitting of
the data is made at random, each run will have its own calibration and evaluation datasets resulting
in inevitable differences during the calibration of models and the subsequent predictions. To address
this problem, BIOMOD allows evaluation of model performance on different data split runs and then
allows using 100 % of the data to make a final calibration of the models for prediction. In this case,
the evaluation is more reliable and the predictions are not influenced by the random splitting of the
data. It does, however, require more time to go through all the evaluation runs than when using a
single run of the classic but necessarily biased splitting procedure. An extra evaluation of the final
model can also be done if independent data are available.

- Yweights: Weights that the user can set for the response variables (a matrix with N columns
for the N species). This is similar to an index of detectability for each site, which allows users to
give stronger weights to more reliable presences or absences. It can be scaled up and put as a weight
in the modeling process. For more information, see how weights is working in R.

- KeepindependentPred : If TRUE (and the truly independent data has been provided), theen the
prediction on the independent data will be saved. If FALSE, only the predictive accuracy on the
independent data are conserved (obtained by ROC, TSS and/or Kappa).

0.4.2 Running the models

We can now run the different models on our species. It takes only a few moments for
each model to run. Here we will have 9(models)*4(3 repetitions + final model)*2(PA
repetitions) which makes 72 models per species, it will thus take several minutes.

It might be appropriate to fraction the modelling effort on basic personal computers (i.e. lap-
tops), especially if your data has tens of thousands of rows (requiring longer calculation time). One
can run one species at a time with all the models being put to true.
Note that in contrast with earlier versions of BIOMOD, it is unwise to run one model at a time as the
results are now stored per species. Making several runs with different models will bring unwelcome
trouble for analysing the outputs.
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Please, be also aware that the NbRunEval and NbRepPA arguments can considerably enlarge
your calculation time by multiplying the number of runs to be made for each species. Do not enter
excessively high values for these two arguments unless you have sufficient patience and/or reason-
able calculation power.

> Models(GLM = T, TypeGLM = "poly", Test = "AIC", GBM = T, No.trees = 2000, GAM = T,
Spline = 3, CTA = T, CV.tree = 50, ANN = T, CV.ann = 2, SRE = T, Perc025=T, Perc05=F, MDA = T,
MARS = T, RF = T, NbRunEval = 3, DataSplit = 80, Yweights=NULL, Roc = T, Optimized.Threshold.Roc = T,
Kappa = T, TSS=T, KeepPredIndependent = T, VarImport=5, NbRepPA=2, strategy="circles",
coor=CoorXY, distance=2, nb.absences=1000)

##### Sp281 #####
##### pseudo-absence run 1 #####
Model=Artificial Neural Network

2 Fold Cross Validation + 3 Repetitions
Calibration and evaluation phase: Nb of cross-validations: 3
Evaluating Predictor Contributions in ANN ...
Model=Classification tree

50 Fold Cross-Validation
Evaluating Predictor Contributions in CTA ...
Model=GAM spline

3 Degrees of smoothing
Evaluating Predictor Contributions in GAM ...
Model=Generalised Boosting Regression

2000 maximum different trees and lambda Fold Cross-Validation
Evaluating Predictor Contributions in GBM ...
Model=GLM polynomial + quadratic Stepwise procedure using AIC criteria
Evaluating Predictor Contributions in GLM ...
Model=Multiple Adaptive Regression Splines
Evaluating Predictor Contributions in MARS ...
Model=Mixture Discriminant Analysis
Evaluating Predictor Contributions in MDA ...
Model=Breiman and Cutler’s random forests for classification and regression
Evaluating Predictor Contributions in RF ...
Model=Surface Range Envelop
Evaluating Predictor Contributions in SRE ...
##### pseudo-absence run 2 #####
Model=Artificial Neural Network

2 Fold Cross Validation + 3 Repetitions
Calibration and evaluation phase: Nb of cross-validations: 3
Evaluating Predictor Contributions in ANN ...
Model=Classification tree

50 Fold Cross-Validation
Evaluating Predictor Contributions in CTA ...
Model=GAM spline

3 Degrees of smoothing
Evaluating Predictor Contributions in GAM ...
Model=Generalised Boosting Regression

2000 maximum different trees and lambda Fold Cross-Validation
Evaluating Predictor Contributions in GBM ...
Model=GLM polynomial + quadratic Stepwise procedure using AIC criteria
Evaluating Predictor Contributions in GLM ...
Model=Multiple Adaptive Regression Splines
Evaluating Predictor Contributions in MARS ...
Model=Mixture Discriminant Analysis
Evaluating Predictor Contributions in MDA ...
Model=Breiman and Cutler’s random forests for classification and regression
Evaluating Predictor Contributions in RF ...
Model=Surface Range Envelop
Evaluating Predictor Contributions in SRE ...
##### Sp277 #####
##### pseudo-absence run 1 #####
Model=Artificial Neural Network

2 Fold Cross Validation + 3 Repetitions
Calibration and evaluation phase: Nb of cross-validations: 3
Evaluating Predictor Contributions in ANN ...
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Model=Classification tree
50 Fold Cross-Validation

Evaluating Predictor Contributions in CTA ...
Model=GAM spline

3 Degrees of smoothing
Evaluating Predictor Contributions in GAM ...
Model=Generalised Boosting Regression

2000 maximum different trees and lambda Fold Cross-Validation
Evaluating Predictor Contributions in GBM ...
Model=GLM polynomial + quadratic Stepwise procedure using AIC criteria
Evaluating Predictor Contributions in GLM ...
Model=Multiple Adaptive Regression Splines
Evaluating Predictor Contributions in MARS ...
Model=Mixture Discriminant Analysis
Evaluating Predictor Contributions in MDA ...
Model=Breiman and Cutler’s random forests for classification and regression
Evaluating Predictor Contributions in RF ...
Model=Surface Range Envelop
Evaluating Predictor Contributions in SRE ...
##### Sp164 #####
##### pseudo-absence run 1 #####
Model=Artificial Neural Network

2 Fold Cross Validation + 3 Repetitions
Calibration and evaluation phase: Nb of cross-validations: 3
Evaluating Predictor Contributions in ANN ...
Model=Classification tree

50 Fold Cross-Validation
Evaluating Predictor Contributions in CTA ...
Model=GAM spline

3 Degrees of smoothing
Evaluating Predictor Contributions in GAM ...
Model=Generalised Boosting Regression

2000 maximum different trees and lambda Fold Cross-Validation
Evaluating Predictor Contributions in GBM ...
Model=GLM polynomial + quadratic Stepwise procedure using AIC criteria
Evaluating Predictor Contributions in GLM ...
Model=Multiple Adaptive Regression Splines
Evaluating Predictor Contributions in MARS ...
Model=Mixture Discriminant Analysis
Evaluating Predictor Contributions in MDA ...
Model=Breiman and Cutler’s random forests for classification and regression
Evaluating Predictor Contributions in RF ...
Model=Surface Range Envelop
Evaluating Predictor Contributions in SRE ...
##### pseudo-absence run 2 #####
Model=Artificial Neural Network

2 Fold Cross Validation + 3 Repetitions
Calibration and evaluation phase: Nb of cross-validations: 3
Evaluating Predictor Contributions in ANN ...
Model=Classification tree

50 Fold Cross-Validation
Evaluating Predictor Contributions in CTA ...
Model=GAM spline

3 Degrees of smoothing
Evaluating Predictor Contributions in GAM ...
Model=Generalised Boosting Regression

2000 maximum different trees and lambda Fold Cross-Validation
Evaluating Predictor Contributions in GBM ...
Model=GLM polynomial + quadratic Stepwise procedure using AIC criteria
Evaluating Predictor Contributions in GLM ...
Model=Multiple Adaptive Regression Splines
Evaluating Predictor Contributions in MARS ...
Model=Mixture Discriminant Analysis
Evaluating Predictor Contributions in MDA ...
Model=Breiman and Cutler’s random forests for classification and regression
Evaluating Predictor Contributions in RF ...
Model=Surface Range Envelop
Evaluating Predictor Contributions in SRE ...

For the purpose of the example (even though the data does not ask for it) we used 2 pseudo-
absences (PA) runs. Note that there has only been one PA run for Sp277 because too little absences
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were available compared to the ones wanted. The nb.absences argument was set to 1000, but:

> #the number of data selected by the pseudo-absences procedure
> length(Biomod.PA.data$Sp277)

[1] 1791

> #the number of presences for Sp277
> sum(Sp.Env[,"Sp277"])

[1] 1080

> #Hence, the number of absences available for calibration
> length(Biomod.PA.data$Sp281) - sum(Sp.Env[,"Sp277"])

[1] 679

Too little absences are available. In this case, a single pseudo-absences run is made using all the
absences available.

Your working folder should now look like this.

15



0.4.3 Analysing the outputs

There are now various objects stored in the workspace:

> ls()

[1] "Biomod.material" "Biomod.PA.data"
[3] "Biomod.PA.sample" "CoorXY"
[5] "DataBIOMOD" "DataEvalBIOMOD"
[7] "Evaluation.results.Kappa" "Evaluation.results.Roc"
[9] "Evaluation.results.TSS" "Models.information"
[11] "predind" "Sp.Env"
[13] "SpNoName.circles.2" "VarImportance"
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Some of them are results from the run, like the Evaluation.results or the VarImportance objects,
some others are usefull values to keep in memory (like Biomod.material, Biomod.PA.data, etc.) and
some are dataframes (Sp.Env, DataBIOMOD).

Each model (excepted SRE) generates an object storing the different parameterisation, the im-
portance of each variable (for GBM, GAM, randomForest), and the ANOVA for variable significance
(GLM, GAM), and so on. This output is essential as it allows generating predictions, to know which
variable has been selected and so on.

The models themselves are now stored out of the R workspace directly on the computers’ hard
disk. They are named after the model and the species’ names, i.e. Sp164 MDA for example. There
is also extensions of the names concerning the repetitions and the pseudo-absences runs, so that now
one of our models will be Sp164 MDA PA1 rep2.

Back loading the models and having them directly usable is very straightforward : simply use the
load function to have the model restored in the R workspace, with the same name plus the directory
root. This is also the case with the other outputs stored outside of R (predictions and projections).
Let’s see an example with the GLM for the first species modelled (the syntax is not always handy
but you will get used to it after a while):

> load("models/Sp277_GLM_PA1")
> Sp277_GLM_PA1

Call: glm(formula = Sp277 ~ poly(Var2, 3) + poly(Var7, 3) + poly(Var5, 3) + poly(Var1, 3) + poly(Var3, 3) + poly(Var4, 3) + poly(Var6, 3), family = binomial, data = DataBIOMOD[calib.lines, ], weights = Yweights[calib.lines, i])

Coefficients:
(Intercept) poly(Var2, 3)1 poly(Var2, 3)2 poly(Var2, 3)3

0.300 -675.516 -729.451 -38.843
poly(Var7, 3)1 poly(Var7, 3)2 poly(Var7, 3)3 poly(Var5, 3)1

-116.825 -732.385 117.058 -121.811
poly(Var5, 3)2 poly(Var5, 3)3 poly(Var1, 3)1 poly(Var1, 3)2

81.527 213.243 -17.307 -35.502
poly(Var1, 3)3 poly(Var3, 3)1 poly(Var3, 3)2 poly(Var3, 3)3

-77.222 178.069 -419.923 -252.552
poly(Var4, 3)1 poly(Var4, 3)2 poly(Var4, 3)3 poly(Var6, 3)1

111.601 46.512 280.707 1095.447
poly(Var6, 3)2 poly(Var6, 3)3

1201.551 249.093

Degrees of Freedom: 1790 Total (i.e. Null); 1769 Residual
Null Deviance: 2410
Residual Deviance: 249 AIC: 293

It shows the different variables retained in the final model.
The outputs also give the different coefficient values, the degrees of freedom, the residual deviance
and the AIC of the final model. Of course, each model’s outputs will not give the same information,
as it depends on its specificity . A description of the outputs of each model is provided below (cf.
OUPUTS and INTERPRETATION).

So, we have the outputs generated by Initial.State :
- Sp.Env
- CoorXY
- DataBIOMOD
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- Biomod.material

We also have the objects produced by the Models function in the workspace in addition to the
models and the predictions stored on the hard disk.

These are :
- Evaluation.results.Roc
- Evaluation.results.Kappa
- Evaluation.results.TSS
- VarImportance
- Models.information.

The 3 first ones contain the scores of the evaluation procedure and the cutoffs for each model and
for each species. VarImportance is rather explicit and contains the results of the variables’ contribu-
tion analysis. Models.information is of little interest for the user, it contains essential informations
to be used directly by the models to render projections.

We also get the following if NbRepPA is higher than 0 :
- Biomod.PA.data
- Biomod.PA.sample
- SpNoName.circles.2 (or something close)

Biomod.PA.data contains the amount of data available after the inner run the pesudo-absence
function. Biomod.PA.sample contains the rows to take from DataBIOMOD to get the data that
has been used for the calibration of each species and each PA run. The last object is a result of
the pesudo-absence function inner run and is of no importance here (but see the ”Pseudo-absences”
section for explanations)

The predictions on the original dataset are stored independently for each species in an object
following a ’Pred.Speciesname’ logic and contains the probability of occurrence (habitat suitability
index) for each run (if several runs) of the selected models.

NOTE: for calculation and memory storage purposes, this index is on a scale between 0 and
1000. To obtain a true probability of occurrence, rescaled between 0 and 1, simply divide each value
by a thousand.

The same objects are produced for the independent data (if any) and the same logic is respected
for the projections.

18



> load("pred/Pred_Sp277")

The trick is that these objects are no longer matrices but arrays (multiple dimensions) with 4
dimensions. The dimensions can be visualised as follows :

The first two build up a matrix where each column is the prediction of one of the models. The
number of rows corresponds to the amount of data used for building those models.

> Pred_Sp277[1:20,,1,1]

ANN CTA GAM GBM GLM MARS MDA RF SRE
1 68 0 4 19 0 365 0 5 0
2 68 0 51 12 0 460 0 1 0
3 68 0 34 12 0 427 0 1 0
4 68 0 0 7 0 304 0 0 0
5 68 0 0 7 0 316 0 0 0
6 68 0 2 7 0 314 0 0 0
7 68 0 1 7 0 327 0 0 0
8 68 0 1 15 0 315 0 4 0
9 68 0 1 7 0 315 0 0 0
10 68 0 8 11 0 356 0 1 0
11 68 0 3 7 0 303 0 0 0
12 68 0 187 11 0 501 0 2 0
13 68 0 14 18 0 368 0 5 0
14 68 0 133 16 0 435 0 6 0
15 68 0 18 21 0 373 0 4 0
16 69 0 359 11 1 527 0 4 0
17 68 0 5 8 0 298 0 0 0
18 68 0 2 7 0 293 0 0 0
19 68 0 19 7 0 353 0 0 0
20 68 0 2 9 0 247 0 0 0

Now, the third dimensions consists of a collection of 2-D matrices, one behind another, cor-
responding to the prediction produced by each repetition. The minimum for this dimension is 1.
Considering that BIOMOD always produces a final model calibrated with 100% of the data given,
the length of this third dimension is the value of the NbRunEval argument + 1. For example, with
NbRunEval=10, you have 11 layers.
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Note that the firts layer is always the final model, then come the repetitions.

> #the final model
> Pred_Sp277[1:20,,1,1]

ANN CTA GAM GBM GLM MARS MDA RF SRE
1 68 0 4 19 0 365 0 5 0
2 68 0 51 12 0 460 0 1 0
3 68 0 34 12 0 427 0 1 0
4 68 0 0 7 0 304 0 0 0
5 68 0 0 7 0 316 0 0 0
6 68 0 2 7 0 314 0 0 0
7 68 0 1 7 0 327 0 0 0
8 68 0 1 15 0 315 0 4 0
9 68 0 1 7 0 315 0 0 0
10 68 0 8 11 0 356 0 1 0
11 68 0 3 7 0 303 0 0 0
12 68 0 187 11 0 501 0 2 0
13 68 0 14 18 0 368 0 5 0
14 68 0 133 16 0 435 0 6 0
15 68 0 18 21 0 373 0 4 0
16 69 0 359 11 1 527 0 4 0
17 68 0 5 8 0 298 0 0 0
18 68 0 2 7 0 293 0 0 0
19 68 0 19 7 0 353 0 0 0
20 68 0 2 9 0 247 0 0 0

> #the first repetition model
> Pred_Sp277[1:20,,2,1]

ANN CTA GAM GBM GLM MARS MDA RF SRE
1 0 0 2 23 0 424 0 1 0
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2 0 0 31 12 0 496 0 1 0
3 0 0 20 13 0 466 0 2 0
4 0 0 0 8 0 384 0 0 0
5 0 0 0 8 0 389 0 0 0
6 0 0 2 7 0 401 0 0 0
7 0 0 1 8 0 406 0 0 0
8 0 0 1 12 0 396 0 1 0
9 0 0 1 9 0 394 0 0 0
10 0 0 5 9 0 432 0 1 0
11 0 0 2 7 0 398 0 0 0
12 0 0 135 12 0 526 0 1 0
13 0 0 6 23 0 431 0 1 0
14 0 0 78 20 0 483 0 5 0
15 0 0 9 21 0 444 0 1 0
16 0 0 291 11 0 547 0 4 0
17 0 0 4 8 0 404 0 0 0
18 0 0 2 8 0 394 0 0 0
19 0 0 17 8 0 453 0 0 0
20 0 0 1 15 0 374 0 0 0

> #the second repetition model
> Pred_Sp277[1:20,,3,1]

ANN CTA GAM GBM GLM MARS MDA RF SRE
1 239 0 4 18 0 215 0 0 0
2 276 0 39 9 0 330 0 0 0
3 265 0 25 12 0 289 0 1 0
4 228 0 0 11 0 135 0 0 0
5 222 0 0 11 0 118 0 0 0
6 250 0 1 11 0 186 0 0 0
7 227 0 1 11 0 172 0 0 0
8 238 0 1 16 0 175 0 2 0
9 238 0 1 11 0 168 0 1 0
10 279 0 7 15 0 254 0 5 0
11 257 0 2 11 0 190 0 0 0
12 339 0 148 10 0 382 0 0 0
13 268 0 11 18 0 240 0 2 0
14 348 0 100 17 0 337 0 5 0
15 289 0 15 19 0 274 0 1 0
16 403 0 295 12 0 414 0 6 0
17 259 0 4 10 0 203 0 0 0
18 231 0 1 11 0 166 0 0 0
19 310 0 14 11 0 296 0 0 0
20 233 0 1 19 0 138 0 0 0

The fourth dimension represents the number of pseudo-absences repetitions that have been made.
In the case where NbRepPA=0, the dimension is simply 1 (not 0).

21



You will never visualise it this way with R though. It is just an abstract view of how it is sorted.
Some usefull functions for not getting lost are dim() and dimnames(). The first one gives you the
number of layers for each dimension, the second will give you their names respectively.

> load("pred/Pred_Sp281")
> dim(Pred_Sp281)

[1] 1392 9 4 2

> dimnames(Pred_Sp281)

[[1]]
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9"
[10] "10" "11" "12" "13" "14" "15" "16" "17" "18"
[19] "19" "20" "21" "22" "23" "24" "25" "26" "27"
[28] "28" "29" "30" "31" "32" "33" "34" "35" "36"
[37] "37" "38" "39" "40" "41" "42" "43" "44" "45"
[46] "46" "47" "48" "49" "50" "51" "52" "53" "54"
[55] "55" "56" "57" "58" "59" "60" "61" "62" "63"
[64] "64" "65" "66" "67" "68" "69" "70" "71" "72"
[73] "73" "74" "75" "76" "77" "78" "79" "80" "81"
[82] "82" "83" "84" "85" "86" "87" "88" "89" "90"
[91] "91" "92" "93" "94" "95" "96" "97" "98" "99"
[100] "100" "101" "102" "103" "104" "105" "106" "107" "108"
[109] "109" "110" "111" "112" "113" "114" "115" "116" "117"
[118] "118" "119" "120" "121" "122" "123" "124" "125" "126"
[127] "127" "128" "129" "130" "131" "132" "133" "134" "135"
[136] "136" "137" "138" "139" "140" "141" "142" "143" "144"
[145] "145" "146" "147" "148" "149" "150" "151" "152" "153"
[154] "154" "155" "156" "157" "158" "159" "160" "161" "162"
[163] "163" "164" "165" "166" "167" "168" "169" "170" "171"
[172] "172" "173" "174" "175" "176" "177" "178" "179" "180"
[181] "181" "182" "183" "184" "185" "186" "187" "188" "189"
[190] "190" "191" "192" "193" "194" "195" "196" "197" "198"
[199] "199" "200" "201" "202" "203" "204" "205" "206" "207"
[208] "208" "209" "210" "211" "212" "213" "214" "215" "216"
[217] "217" "218" "219" "220" "221" "222" "223" "224" "225"
[226] "226" "227" "228" "229" "230" "231" "232" "233" "234"
[235] "235" "236" "237" "238" "239" "240" "241" "242" "243"
[244] "244" "245" "246" "247" "248" "249" "250" "251" "252"
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[253] "253" "254" "255" "256" "257" "258" "259" "260" "261"
[262] "262" "263" "264" "265" "266" "267" "268" "269" "270"
[271] "271" "272" "273" "274" "275" "276" "277" "278" "279"
[280] "280" "281" "282" "283" "284" "285" "286" "287" "288"
[289] "289" "290" "291" "292" "293" "294" "295" "296" "297"
[298] "298" "299" "300" "301" "302" "303" "304" "305" "306"
[307] "307" "308" "309" "310" "311" "312" "313" "314" "315"
[316] "316" "317" "318" "319" "320" "321" "322" "323" "324"
[325] "325" "326" "327" "328" "329" "330" "331" "332" "333"
[334] "334" "335" "336" "337" "338" "339" "340" "341" "342"
[343] "343" "344" "345" "346" "347" "348" "349" "350" "351"
[352] "352" "353" "354" "355" "356" "357" "358" "359" "360"
[361] "361" "362" "363" "364" "365" "366" "367" "368" "369"
[370] "370" "371" "372" "373" "374" "375" "376" "377" "378"
[379] "379" "380" "381" "382" "383" "384" "385" "386" "387"
[388] "388" "389" "390" "391" "392" "393" "394" "395" "396"
[397] "397" "398" "399" "400" "401" "402" "403" "404" "405"
[406] "406" "407" "408" "409" "410" "411" "412" "413" "414"
[415] "415" "416" "417" "418" "419" "420" "421" "422" "423"
[424] "424" "425" "426" "427" "428" "429" "430" "431" "432"
[433] "433" "434" "435" "436" "437" "438" "439" "440" "441"
[442] "442" "443" "444" "445" "446" "447" "448" "449" "450"
[451] "451" "452" "453" "454" "455" "456" "457" "458" "459"
[460] "460" "461" "462" "463" "464" "465" "466" "467" "468"
[469] "469" "470" "471" "472" "473" "474" "475" "476" "477"
[478] "478" "479" "480" "481" "482" "483" "484" "485" "486"
[487] "487" "488" "489" "490" "491" "492" "493" "494" "495"
[496] "496" "497" "498" "499" "500" "501" "502" "503" "504"
[505] "505" "506" "507" "508" "509" "510" "511" "512" "513"
[514] "514" "515" "516" "517" "518" "519" "520" "521" "522"
[523] "523" "524" "525" "526" "527" "528" "529" "530" "531"
[532] "532" "533" "534" "535" "536" "537" "538" "539" "540"
[541] "541" "542" "543" "544" "545" "546" "547" "548" "549"
[550] "550" "551" "552" "553" "554" "555" "556" "557" "558"
[559] "559" "560" "561" "562" "563" "564" "565" "566" "567"
[568] "568" "569" "570" "571" "572" "573" "574" "575" "576"
[577] "577" "578" "579" "580" "581" "582" "583" "584" "585"
[586] "586" "587" "588" "589" "590" "591" "592" "593" "594"
[595] "595" "596" "597" "598" "599" "600" "601" "602" "603"
[604] "604" "605" "606" "607" "608" "609" "610" "611" "612"
[613] "613" "614" "615" "616" "617" "618" "619" "620" "621"
[622] "622" "623" "624" "625" "626" "627" "628" "629" "630"
[631] "631" "632" "633" "634" "635" "636" "637" "638" "639"
[640] "640" "641" "642" "643" "644" "645" "646" "647" "648"
[649] "649" "650" "651" "652" "653" "654" "655" "656" "657"
[658] "658" "659" "660" "661" "662" "663" "664" "665" "666"
[667] "667" "668" "669" "670" "671" "672" "673" "674" "675"
[676] "676" "677" "678" "679" "680" "681" "682" "683" "684"
[685] "685" "686" "687" "688" "689" "690" "691" "692" "693"
[694] "694" "695" "696" "697" "698" "699" "700" "701" "702"
[703] "703" "704" "705" "706" "707" "708" "709" "710" "711"
[712] "712" "713" "714" "715" "716" "717" "718" "719" "720"
[721] "721" "722" "723" "724" "725" "726" "727" "728" "729"
[730] "730" "731" "732" "733" "734" "735" "736" "737" "738"
[739] "739" "740" "741" "742" "743" "744" "745" "746" "747"
[748] "748" "749" "750" "751" "752" "753" "754" "755" "756"
[757] "757" "758" "759" "760" "761" "762" "763" "764" "765"
[766] "766" "767" "768" "769" "770" "771" "772" "773" "774"
[775] "775" "776" "777" "778" "779" "780" "781" "782" "783"
[784] "784" "785" "786" "787" "788" "789" "790" "791" "792"
[793] "793" "794" "795" "796" "797" "798" "799" "800" "801"
[802] "802" "803" "804" "805" "806" "807" "808" "809" "810"
[811] "811" "812" "813" "814" "815" "816" "817" "818" "819"
[820] "820" "821" "822" "823" "824" "825" "826" "827" "828"
[829] "829" "830" "831" "832" "833" "834" "835" "836" "837"
[838] "838" "839" "840" "841" "842" "843" "844" "845" "846"
[847] "847" "848" "849" "850" "851" "852" "853" "854" "855"
[856] "856" "857" "858" "859" "860" "861" "862" "863" "864"
[865] "865" "866" "867" "868" "869" "870" "871" "872" "873"
[874] "874" "875" "876" "877" "878" "879" "880" "881" "882"
[883] "883" "884" "885" "886" "887" "888" "889" "890" "891"
[892] "892" "893" "894" "895" "896" "897" "898" "899" "900"
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[901] "901" "902" "903" "904" "905" "906" "907" "908" "909"
[910] "910" "911" "912" "913" "914" "915" "916" "917" "918"
[919] "919" "920" "921" "922" "923" "924" "925" "926" "927"
[928] "928" "929" "930" "931" "932" "933" "934" "935" "936"
[937] "937" "938" "939" "940" "941" "942" "943" "944" "945"
[946] "946" "947" "948" "949" "950" "951" "952" "953" "954"
[955] "955" "956" "957" "958" "959" "960" "961" "962" "963"
[964] "964" "965" "966" "967" "968" "969" "970" "971" "972"
[973] "973" "974" "975" "976" "977" "978" "979" "980" "981"
[982] "982" "983" "984" "985" "986" "987" "988" "989" "990"
[991] "991" "992" "993" "994" "995" "996" "997" "998" "999"
[1000] "1000" "1001" "1002" "1003" "1004" "1005" "1006" "1007" "1008"
[1009] "1009" "1010" "1011" "1012" "1013" "1014" "1015" "1016" "1017"
[1018] "1018" "1019" "1020" "1021" "1022" "1023" "1024" "1025" "1026"
[1027] "1027" "1028" "1029" "1030" "1031" "1032" "1033" "1034" "1035"
[1036] "1036" "1037" "1038" "1039" "1040" "1041" "1042" "1043" "1044"
[1045] "1045" "1046" "1047" "1048" "1049" "1050" "1051" "1052" "1053"
[1054] "1054" "1055" "1056" "1057" "1058" "1059" "1060" "1061" "1062"
[1063] "1063" "1064" "1065" "1066" "1067" "1068" "1069" "1070" "1071"
[1072] "1072" "1073" "1074" "1075" "1076" "1077" "1078" "1079" "1080"
[1081] "1081" "1082" "1083" "1084" "1085" "1086" "1087" "1088" "1089"
[1090] "1090" "1091" "1092" "1093" "1094" "1095" "1096" "1097" "1098"
[1099] "1099" "1100" "1101" "1102" "1103" "1104" "1105" "1106" "1107"
[1108] "1108" "1109" "1110" "1111" "1112" "1113" "1114" "1115" "1116"
[1117] "1117" "1118" "1119" "1120" "1121" "1122" "1123" "1124" "1125"
[1126] "1126" "1127" "1128" "1129" "1130" "1131" "1132" "1133" "1134"
[1135] "1135" "1136" "1137" "1138" "1139" "1140" "1141" "1142" "1143"
[1144] "1144" "1145" "1146" "1147" "1148" "1149" "1150" "1151" "1152"
[1153] "1153" "1154" "1155" "1156" "1157" "1158" "1159" "1160" "1161"
[1162] "1162" "1163" "1164" "1165" "1166" "1167" "1168" "1169" "1170"
[1171] "1171" "1172" "1173" "1174" "1175" "1176" "1177" "1178" "1179"
[1180] "1180" "1181" "1182" "1183" "1184" "1185" "1186" "1187" "1188"
[1189] "1189" "1190" "1191" "1192" "1193" "1194" "1195" "1196" "1197"
[1198] "1198" "1199" "1200" "1201" "1202" "1203" "1204" "1205" "1206"
[1207] "1207" "1208" "1209" "1210" "1211" "1212" "1213" "1214" "1215"
[1216] "1216" "1217" "1218" "1219" "1220" "1221" "1222" "1223" "1224"
[1225] "1225" "1226" "1227" "1228" "1229" "1230" "1231" "1232" "1233"
[1234] "1234" "1235" "1236" "1237" "1238" "1239" "1240" "1241" "1242"
[1243] "1243" "1244" "1245" "1246" "1247" "1248" "1249" "1250" "1251"
[1252] "1252" "1253" "1254" "1255" "1256" "1257" "1258" "1259" "1260"
[1261] "1261" "1262" "1263" "1264" "1265" "1266" "1267" "1268" "1269"
[1270] "1270" "1271" "1272" "1273" "1274" "1275" "1276" "1277" "1278"
[1279] "1279" "1280" "1281" "1282" "1283" "1284" "1285" "1286" "1287"
[1288] "1288" "1289" "1290" "1291" "1292" "1293" "1294" "1295" "1296"
[1297] "1297" "1298" "1299" "1300" "1301" "1302" "1303" "1304" "1305"
[1306] "1306" "1307" "1308" "1309" "1310" "1311" "1312" "1313" "1314"
[1315] "1315" "1316" "1317" "1318" "1319" "1320" "1321" "1322" "1323"
[1324] "1324" "1325" "1326" "1327" "1328" "1329" "1330" "1331" "1332"
[1333] "1333" "1334" "1335" "1336" "1337" "1338" "1339" "1340" "1341"
[1342] "1342" "1343" "1344" "1345" "1346" "1347" "1348" "1349" "1350"
[1351] "1351" "1352" "1353" "1354" "1355" "1356" "1357" "1358" "1359"
[1360] "1360" "1361" "1362" "1363" "1364" "1365" "1366" "1367" "1368"
[1369] "1369" "1370" "1371" "1372" "1373" "1374" "1375" "1376" "1377"
[1378] "1378" "1379" "1380" "1381" "1382" "1383" "1384" "1385" "1386"
[1387] "1387" "1388" "1389" "1390" "1391" "1392"

[[2]]
[1] "ANN" "CTA" "GAM" "GBM" "GLM" "MARS" "MDA" "RF" "SRE"

[[3]]
[1] "total.data" "rep1" "rep2" "rep3"

[[4]]
[1] "PA1" "PA2"

> #you can avoid having the rownames to be printed in the console as they
> #are generally not very usefull
> dimnames(Pred_Sp281)[-1]
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[[1]]
[1] "ANN" "CTA" "GAM" "GBM" "GLM" "MARS" "MDA" "RF" "SRE"

[[2]]
[1] "total.data" "rep1" "rep2" "rep3"

[[3]]
[1] "PA1" "PA2"

For instance, we examine the probability of occurrence of the first species, modelled with GBM.
Here we just display 20 rows (or sites) in the middle.

> #if you don’t inform the 3rd and 4th dimension (you still need commas), you will have all of them
> #at once in a matrix.
> load("pred/Pred_Sp281")
> Pred_Sp281[481:500,"GBM",,]

, , PA1

total.data rep1 rep2 rep3
481 33 46 37 52
482 24 31 29 23
483 22 28 26 22
484 22 27 26 22
485 48 55 57 35
486 42 51 54 34
487 29 30 39 31
488 17 22 22 15
489 21 26 24 16
490 140 76 92 117
491 70 56 70 110
492 50 47 39 88
493 26 31 28 27
494 37 39 29 56
495 24 27 26 21
496 41 37 32 69
497 25 31 27 24
498 6 9 8 5
499 6 8 8 5
500 31 36 29 44

, , PA2

total.data rep1 rep2 rep3
481 19 25 26 17
482 48 58 51 53
483 26 32 34 28
484 46 48 44 36
485 122 207 130 207
486 54 89 54 88
487 53 50 62 43
488 48 47 56 32
489 25 24 27 17
490 47 44 50 32
491 6 7 7 5
492 6 7 8 6
493 45 43 45 34
494 22 20 24 13
495 7 7 9 7
496 27 28 33 24
497 26 29 32 21
498 31 32 36 28
499 34 67 37 45
500 44 60 45 48

Note that because GBM contains a stochastic component, you might end up with slightly differ-
ent values on these example runs.
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To plot the predictions, use the level.plot function. It requires two inputs : the vector of values
that you want to plot and the coordinates of your data points. This function works with any type
of data. Because we have chosen to run the models with pseudo-absence data, plotting the partial
predictions is not very convinient. We will plot instead the values of the fake independant data
(which is just the full original dataset) for the GAM, and the values of one the variables used to
calibrate the models.

> load("pred/Pred_Sp164_indpdt")
> level.plot(Pred_Sp164_indpdt[,"GAM",1,1], CoorXY, title=’sp164_GAM_indpdt’)
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sp164_GAM_indpdt
c(

0,
 1

)

995

746.25

497.5

248.75

0

> #and the level plot for the third variable used
> level.plot(Sp.Env[,6], CoorXY, title=’variable 3’)

26



●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●
●
●

●
●

●●
●
●

●
●

●
●

●
●

●
●

●
●
●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●●

●
●
●

●
●

●
●
●

●●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●

●

●
●
●
●

●
●

●
●

●

●
●

●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●●

●
●

●
●
●

●
●

●
●

●
●

●●

●
●
●
●

●
●
●

●
●

●
●
●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●●

●●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●

●
●
●

●
●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●

●
●
● ●

● ●
●

●●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●
●

●
●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●
●●

●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●●

●
●
●

●
●

●
●

●
●
●
●
●

●
●

●
●●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●●
●
●

●
●

●
●

●
●

●
●●

●●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●
●

●
●

●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●
●●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●
●

●

●
●●

●
●

●
●

●●

●
●●
●

●
●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●
●

●●
●
●

●
●

●
●

●

●●

●
●

●
●
●
●

●

●
●

●
●

●
●

●
●

●
●
●

●●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●

●

●
●
●

●
●
●

●
●
●

● ●

●
●

●

●
●

●
●

●
●

●
●

●
●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●●

●●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●
●

●

●
●
●

●
●

●
●
●

●
●
●

●
●

●

●
●●

●

●●
●●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●●

●
●
●

●
●

●
●

●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
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variable 3

c(
0,

 1
)

2862.84

2218.62

1574.39

930.17

285.94

Note that the independent predictions are only made on the final 100% model and not on the
repetitions. To check it :

> Pred_Sp164_indpdt[1:10,,,]

, , total.data, PA1

ANN CTA GAM GBM GLM MARS MDA RF SRE
1 112 0 0 20 0 153 0 2 0
2 112 0 0 12 0 80 0 1 0
3 112 0 0 13 0 104 0 1 0
4 112 0 7 16 8 288 0 0 0
5 112 0 7 16 24 279 0 0 0
6 112 0 35 18 25 371 0 0 0
7 112 0 36 18 55 361 0 0 0
8 112 0 2 17 0 215 0 0 0
9 112 0 5 16 3 272 0 0 0
10 112 0 19 17 9 334 0 0 0

, , rep1, PA1

ANN CTA GAM GBM GLM MARS MDA RF SRE
1 NA NA NA NA NA NA NA NA NA
2 NA NA NA NA NA NA NA NA NA
3 NA NA NA NA NA NA NA NA NA
4 NA NA NA NA NA NA NA NA NA
5 NA NA NA NA NA NA NA NA NA
6 NA NA NA NA NA NA NA NA NA
7 NA NA NA NA NA NA NA NA NA
8 NA NA NA NA NA NA NA NA NA
9 NA NA NA NA NA NA NA NA NA
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10 NA NA NA NA NA NA NA NA NA

, , rep2, PA1

ANN CTA GAM GBM GLM MARS MDA RF SRE
1 NA NA NA NA NA NA NA NA NA
2 NA NA NA NA NA NA NA NA NA
3 NA NA NA NA NA NA NA NA NA
4 NA NA NA NA NA NA NA NA NA
5 NA NA NA NA NA NA NA NA NA
6 NA NA NA NA NA NA NA NA NA
7 NA NA NA NA NA NA NA NA NA
8 NA NA NA NA NA NA NA NA NA
9 NA NA NA NA NA NA NA NA NA
10 NA NA NA NA NA NA NA NA NA

, , rep3, PA1

ANN CTA GAM GBM GLM MARS MDA RF SRE
1 NA NA NA NA NA NA NA NA NA
2 NA NA NA NA NA NA NA NA NA
3 NA NA NA NA NA NA NA NA NA
4 NA NA NA NA NA NA NA NA NA
5 NA NA NA NA NA NA NA NA NA
6 NA NA NA NA NA NA NA NA NA
7 NA NA NA NA NA NA NA NA NA
8 NA NA NA NA NA NA NA NA NA
9 NA NA NA NA NA NA NA NA NA
10 NA NA NA NA NA NA NA NA NA

, , total.data, PA2

ANN CTA GAM GBM GLM MARS MDA RF SRE
1 26 0 1 23 1 123 0 2 0
2 19 0 0 20 1 12 0 20 0
3 20 0 0 22 0 36 0 17 0
4 84 0 10 24 16 368 0 0 0
5 115 0 12 25 74 439 0 0 0
6 114 0 44 26 31 452 0 0 0
7 199 0 51 25 113 505 0 0 0
8 39 0 3 24 0 175 0 0 0
9 70 0 7 24 4 297 0 0 0
10 125 0 23 24 6 348 0 0 0

, , rep1, PA2

ANN CTA GAM GBM GLM MARS MDA RF SRE
1 NA NA NA NA NA NA NA NA NA
2 NA NA NA NA NA NA NA NA NA
3 NA NA NA NA NA NA NA NA NA
4 NA NA NA NA NA NA NA NA NA
5 NA NA NA NA NA NA NA NA NA
6 NA NA NA NA NA NA NA NA NA
7 NA NA NA NA NA NA NA NA NA
8 NA NA NA NA NA NA NA NA NA
9 NA NA NA NA NA NA NA NA NA
10 NA NA NA NA NA NA NA NA NA

, , rep2, PA2

ANN CTA GAM GBM GLM MARS MDA RF SRE
1 NA NA NA NA NA NA NA NA NA
2 NA NA NA NA NA NA NA NA NA
3 NA NA NA NA NA NA NA NA NA
4 NA NA NA NA NA NA NA NA NA
5 NA NA NA NA NA NA NA NA NA
6 NA NA NA NA NA NA NA NA NA
7 NA NA NA NA NA NA NA NA NA
8 NA NA NA NA NA NA NA NA NA
9 NA NA NA NA NA NA NA NA NA
10 NA NA NA NA NA NA NA NA NA
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, , rep3, PA2

ANN CTA GAM GBM GLM MARS MDA RF SRE
1 NA NA NA NA NA NA NA NA NA
2 NA NA NA NA NA NA NA NA NA
3 NA NA NA NA NA NA NA NA NA
4 NA NA NA NA NA NA NA NA NA
5 NA NA NA NA NA NA NA NA NA
6 NA NA NA NA NA NA NA NA NA
7 NA NA NA NA NA NA NA NA NA
8 NA NA NA NA NA NA NA NA NA
9 NA NA NA NA NA NA NA NA NA
10 NA NA NA NA NA NA NA NA NA

A more fancy version of the level.plot function is the map.plot function. It works exclusively
within BIOMOD and enables a facilitated visualisation and comparison of the different outputs of
the model. It requires the model and the species for which you want the plot, but also the format
you want your predictions in, and with which method (if a method is needed, for instance having a
binary or filtered format which requires a threshold). For example, here we plot the predictions on
original data in probabilities for all the models and for the first species.

> #this example was made on prior versions, the function is under maintenance
> map.plot(Sp=1, model=’all’, method=’Kappa’, format.type=’probs’, wanted=’prediction’)
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You can modify the color gradient by setting the color.gradient argument to either red (the de-
fault), blue or grey.
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0.5 Output and interpretation

0.5.1 Interpretation and use of GLM

Depending on what options have been selected during the model setup, the GLM model can contain
the various components: the GLM object; This is a reference to the memory of the calibration
process. It provides an explanation of the dependent variables selected by the stepwise procedure as
well as the residual and null deviances of the model.

> load("models/Sp277_GLM_PA1")
> Sp277_GLM_PA1

Call: glm(formula = Sp277 ~ poly(Var2, 3) + poly(Var7, 3) + poly(Var5, 3) + poly(Var1, 3) + poly(Var3, 3) + poly(Var4, 3) + poly(Var6, 3), family = binomial, data = DataBIOMOD[calib.lines, ], weights = Yweights[calib.lines, i])

Coefficients:
(Intercept) poly(Var2, 3)1 poly(Var2, 3)2 poly(Var2, 3)3

0.300 -675.516 -729.451 -38.843
poly(Var7, 3)1 poly(Var7, 3)2 poly(Var7, 3)3 poly(Var5, 3)1

-116.825 -732.385 117.058 -121.811
poly(Var5, 3)2 poly(Var5, 3)3 poly(Var1, 3)1 poly(Var1, 3)2

81.527 213.243 -17.307 -35.502
poly(Var1, 3)3 poly(Var3, 3)1 poly(Var3, 3)2 poly(Var3, 3)3

-77.222 178.069 -419.923 -252.552
poly(Var4, 3)1 poly(Var4, 3)2 poly(Var4, 3)3 poly(Var6, 3)1

111.601 46.512 280.707 1095.447
poly(Var6, 3)2 poly(Var6, 3)3

1201.551 249.093

Degrees of Freedom: 1790 Total (i.e. Null); 1769 Residual
Null Deviance: 2410
Residual Deviance: 249 AIC: 293

> summary(Sp277_GLM_PA1)

Call:
glm(formula = Sp277 ~ poly(Var2, 3) + poly(Var7, 3) + poly(Var5,

3) + poly(Var1, 3) + poly(Var3, 3) + poly(Var4, 3) + poly(Var6,
3), family = binomial, data = DataBIOMOD[calib.lines, ],
weights = Yweights[calib.lines, i])

Deviance Residuals:
Min 1Q Median 3Q Max

-2.572929 -0.000178 0.000070 0.015122 2.300098

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.30 1.15 0.26 0.795
poly(Var2, 3)1 -675.52 373.83 -1.81 0.071 .
poly(Var2, 3)2 -729.45 139.07 -5.25 1.6e-07 ***
poly(Var2, 3)3 -38.84 21.89 -1.77 0.076 .
poly(Var7, 3)1 -116.83 148.93 -0.78 0.433
poly(Var7, 3)2 -732.38 95.98 -7.63 2.3e-14 ***
poly(Var7, 3)3 117.06 79.74 1.47 0.142
poly(Var5, 3)1 -121.81 76.07 -1.60 0.109
poly(Var5, 3)2 81.53 57.20 1.43 0.154
poly(Var5, 3)3 213.24 45.51 4.69 2.8e-06 ***
poly(Var1, 3)1 -17.31 37.04 -0.47 0.640
poly(Var1, 3)2 -35.50 14.97 -2.37 0.018 *
poly(Var1, 3)3 -77.22 14.80 -5.22 1.8e-07 ***
poly(Var3, 3)1 178.07 113.46 1.57 0.117
poly(Var3, 3)2 -419.92 106.38 -3.95 7.9e-05 ***
poly(Var3, 3)3 -252.55 58.17 -4.34 1.4e-05 ***
poly(Var4, 3)1 111.60 63.98 1.74 0.081 .
poly(Var4, 3)2 46.51 51.16 0.91 0.363
poly(Var4, 3)3 280.71 52.97 5.30 1.2e-07 ***
poly(Var6, 3)1 1095.45 465.85 2.35 0.019 *
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poly(Var6, 3)2 1201.55 232.34 5.17 2.3e-07 ***
poly(Var6, 3)3 249.09 58.94 4.23 2.4e-05 ***
---
Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2406.28 on 1790 degrees of freedom
Residual deviance: 249.26 on 1769 degrees of freedom
AIC: 293.3

Number of Fisher Scoring iterations: 10

The next call obtains the anova results and the details of the stepwise procedure type. Note that
the independent variables are ranked by their AIC importance.

> Sp277_GLM_PA1$anova

Stepwise Model Path
Analysis of Deviance Table

Initial Model:
Sp277 ~ 1

Final Model:
Sp277 ~ poly(Var2, 3) + poly(Var7, 3) + poly(Var5, 3) + poly(Var1,

3) + poly(Var3, 3) + poly(Var4, 3) + poly(Var6, 3)

Step Df Deviance Resid. Df Resid. Dev AIC
1 1790 2406.3 2408.3
2 + poly(Var2, 3) 3 1316.04 1787 1090.2 1098.2
3 + poly(Var7, 3) 3 423.42 1784 666.8 680.8
4 + poly(Var5, 3) 3 167.00 1781 499.8 519.8
5 + poly(Var1, 3) 3 79.98 1778 419.8 445.8
6 + poly(Var3, 3) 3 71.85 1775 348.0 380.0
7 + poly(Var4, 3) 3 53.02 1772 295.0 333.0
8 + poly(Var6, 3) 3 45.70 1769 249.3 293.3

The function plot of R will give the basic and usual outputs for GLM. They are useful but not
entirely relevant in the case of the logistic regression.

> par(mfrow=c(2,2))
> plot(Sp277_GLM_PA1)
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Cook's distance

10.5
0.51

Residuals vs Leverage

422

46

136

0.5.2 Interpretation and use of GBM

The same kind of outputs obtained for GLM can be extracted for GBM and for the others models.
Here we willjust present the outputs of GBM.

The function summary computes the relative influence of each variable in the gbm object. This
returns the reduction attributable to each variable in sum of squared error in predicting the gradient
on each iteration. It describes the relative influence of each variable in reducing the loss function. It
returns a data frame where the first component is the variable name and the second is the computed
relative influence, normalized to sum up to 100.
Make sure the GBM library is uploaded.

> load("models/Sp281_GBM_PA1")
> summary(Sp281_GBM_PA1)

var rel.inf
1 Var7 49.938
2 Var1 19.595
3 Var4 11.127
4 Var3 5.771
5 Var5 4.869
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Response curves.

The GBM library allows to plot the response curves of the species against the environmental
variables selected by the models.
i.var : a vector of indices or the names of the variables to plot. If using indices, the variables are
indexed in the same order as they appear in the initial ’gbm’ formula. For instance, here BIOMOD
will plot the first variable in the model.

> plot(Sp281_GBM_PA1, i.var=1)
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The user can also use the custom response.plot function presented for GLM.
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The gbm library also provides an experimental diagnostic tool that plots the fitted values versus
the actual average values. Uses gam to estimate E(y|p). Well-calibrated predictions imply that
E(y|p) = p. The plot also includes a pointwise 95 band.

> library(gbm)
> #let’s store the data that was used for calibration of the first PA run
> #for Sp277 to simplify the code
> data.used <- DataBIOMOD[Biomod.PA.sample$Sp277$PA1,"Sp277"]
> calibrate.plot(data.used, Pred_Sp277[,"GBM",1,1]/1000)
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The function requires the observed presence-absence of the selected species and the predictions.
Note that this function can also be used with any models in R-BIOMOD.

0.5.3 Interpretation and use of GAM

The outputs are very similar than for GLM.

Response curves can be plotted easily with an internal function from the gam.

All the tools provided by R to examine GAM results are available (make sure the GAM library is
uploaded). As shown for GBM outputs, the user can use the ”calibrate.plot” function of the library
gbm to plot the accuracy of the model:

> calibrate.plot(data.used, Pred_Sp277[,"GAM",1,1]/1000)
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0.5.4 Interpretation and use of CTA

There are several useful outputs in CTA models. A critical one is frame which gives the details of
the node, the explained deviance by each node (dev) and the probability of occurrences (yval).

> load("models/Sp277_CTA_PA1")
> names(Sp277_CTA_PA1)

[1] "frame" "where" "call" "terms" "cptable"
[6] "splits" "method" "parms" "control" "functions"
[11] "y" "ordered"

> Sp277_CTA_PA1$frame

var n wt dev yval complexity ncompete nsurrogate
1 Var2 1791 1791 428.7437 0.60302 0.4470241 4 5
2 Var7 669 669 98.4753 0.17937 0.0591982 4 5
4 <leaf> 362 362 0.0000 0.00000 0.0010000 0 0
5 Var7 307 307 73.0945 0.39088 0.0387378 4 4
10 <leaf> 84 84 0.9881 0.01190 0.0004387 0 0
11 Var1 223 223 55.4978 0.53363 0.0290918 4 5
22 Var6 104 104 21.3462 0.28846 0.0290918 4 5
44 Var1 75 75 4.6667 0.06667 0.0014951 4 0
88 Var6 70 70 2.8714 0.04286 0.0014951 4 1
176 <leaf> 65 65 0.9846 0.01538 0.0001435 0 0
177 <leaf> 5 5 1.2000 0.40000 0.0010000 0 0
89 <leaf> 5 5 1.2000 0.40000 0.0010000 0 0
45 Var3 29 29 3.4483 0.86207 0.0040444 4 3
90 <leaf> 7 7 1.7143 0.42857 0.0010000 0 0
91 <leaf> 22 22 0.0000 1.00000 0.0010000 0 0
23 Var5 119 119 22.4370 0.74790 0.0272122 4 5
46 Var1 33 33 6.0606 0.24242 0.0046139 4 3
92 Var3 26 26 2.6538 0.11538 0.0033909 4 4
184 <leaf> 21 21 0.0000 0.00000 0.0010000 0 0
185 <leaf> 5 5 1.2000 0.60000 0.0010000 0 0
93 <leaf> 7 7 1.4286 0.71429 0.0010000 0 0
47 Var5 86 86 4.7093 0.94186 0.0068144 4 3
94 <leaf> 5 5 0.8000 0.20000 0.0010000 0 0
95 <leaf> 81 81 0.9877 0.98765 0.0004377 0 0
3 Var4 1122 1122 138.6096 0.85561 0.1682079 4 5
6 Var6 107 107 7.4019 0.07477 0.0068979 4 3
12 <leaf> 89 89 0.0000 0.00000 0.0010000 0 0
13 Var3 18 18 4.4444 0.44444 0.0020413 4 4
26 Var1 13 13 2.7692 0.30769 0.0016192 4 5

36



52 <leaf> 8 8 0.8750 0.12500 0.0010000 0 0
53 <leaf> 5 5 1.2000 0.60000 0.0010000 0 0
27 <leaf> 5 5 0.8000 0.80000 0.0010000 0 0
7 Var6 1015 1015 59.0897 0.93793 0.0482866 4 1
14 <leaf> 23 23 0.0000 0.00000 0.0010000 0 0
15 Var7 992 992 38.3871 0.95968 0.0324546 4 5
30 Var1 189 189 30.3598 0.79894 0.0324546 4 5
60 <leaf> 31 31 0.9677 0.03226 0.0003912 0 0
61 Var7 158 158 7.5949 0.94937 0.0075149 4 5
122 Var3 10 10 2.4000 0.40000 0.0037318 4 5
244 <leaf> 5 5 0.0000 0.00000 0.0010000 0 0
245 <leaf> 5 5 0.8000 0.80000 0.0010000 0 0
123 <leaf> 148 148 1.9730 0.98649 0.0004198 0 0
31 <leaf> 803 803 1.9950 0.99751 0.0004794 0 0

This table is easier to read by plotting the tree in the same time.
Make sure the rpart library is loaded.

Note that the plot function does not display the label and text by default. The user must use
the text function to add the text

> plot(Sp277_CTA_PA1, margin=0.05)
> text(Sp277_CTA_PA1, use.n=T)
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Even with CTA, the response.plot function allows to plot the response curves. This shows the
categorical rule-based approach of CTA which makes sharp relationships.

0.5.5 Interpretation and use of ANN

Similarly to GLM, GAM, or CTA, we can plot the response curves of the species to the selected
environmental variables using the plot.response function.

The user can also plot the relative goodness of fit of the model, using the calibrate.plot function
from the library(gbm):

> load("models/Sp277_ANN_PA1")
> names(Sp277_ANN_PA1)

[1] "n" "nunits" "nconn" "conn"
[5] "nsunits" "decay" "entropy" "softmax"
[9] "censored" "value" "wts" "convergence"
[13] "fitted.values" "residuals" "lev" "call"
[17] "terms" "coefnames" "xlevels"

> calibrate.plot(data.used, Pred_Sp277[,"ANN",1,1]/1000)
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0.5.6 Interpretation and use of SRE

There are no models here as this is simply a rectilinear envelop, but Like all the other models the
predictions are stored.

Note also that there is no ROC evaluation available, since SRE does not provide probability values
but only the presence-absence of the species. For this reason also the calibrat.plot function cannot
work. Only TSS and Kappa are available.
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0.5.7 Interpretation and use of MDA

Depending on what options have been selected during the model setup, the model can contain the
following components: For instance for the first species:

> load("models/Sp277_MDA_PA1")
> summary(Sp277_MDA_PA1)

Length Class Mode
percent.explained 5 -none- numeric
values 5 -none- numeric
means 30 -none- numeric
theta.mod 25 -none- numeric
dimension 1 -none- numeric
sub.prior 2 -none- list
fit 14 mars list
call 4 -none- call
weights 2 -none- list
prior 2 table numeric
assign.theta 2 -none- list
deviance 1 -none- numeric
confusion 4 -none- numeric
terms 3 terms call

> Sp277_MDA_PA1

Call:
mda(formula = eval(parse(text = paste(SpNames[i], paste(scopeExpSyst(DataBIOMOD[1:10,

1:NbVar], "MDA"), collapse = "")))), data = DataBIOMOD[calib.lines,
], method = mars)

Dimension: 5

Percent Between-Group Variance Explained:
v1 v2 v3 v4 v5

54.87 76.87 87.89 96.23 100.00

Training Misclassification Error: 0.04411 ( N = 1791 )

Deviance: 941.3

Similarly to the previous models, we can also plot the response curves of the species against the
selected environmental variables using the response.plot function.

To plot the relative goodness of fit using the calibrate.plot function of the library(gbm).

> calibrate.plot(data.used, Pred_Sp277[,"MDA",1,1]/1000)
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0.5.8 Interpretation and use of MARS

Depending on what options have been selected during the model setup, MDA.list can contain the
following components: For instance for the first species

> load("models/Sp277_MARS_PA1")
> summary(Sp277_MARS_PA1)

Length Class Mode
call 4 -none- call
all.terms 20 -none- numeric
selected.terms 18 -none- numeric
penalty 1 -none- numeric
degree 1 -none- numeric
nk 1 -none- numeric
thresh 1 -none- numeric
gcv 1 -none- numeric
factor 147 -none- numeric
cuts 147 -none- numeric
residuals 1791 -none- numeric
fitted.values 1791 -none- numeric
lenb 1 -none- numeric
coefficients 18 -none- numeric
x 32238 -none- numeric

Like for the previous models, we can also plot the response curves of the species against the
selected environmental variables using the plot.response function.

To plot the relative goodness of fit using the calibrate.plot function of the library(gbm):

> calibrate.plot(data.used, (Pred_Sp277[,"MARS",1,1]/1000))
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0.5.9 Interpretation and use of RF

> load("models/Sp277_RF_PA1")
> summary(Sp277_RF_PA1)

Length Class Mode
call 6 -none- call
type 1 -none- character
predicted 1791 factor numeric
err.rate 2250 -none- numeric
confusion 6 -none- numeric
votes 3582 -none- numeric
oob.times 1791 -none- numeric
classes 2 -none- character
importance 28 -none- numeric
importanceSD 21 -none- numeric
localImportance 0 -none- NULL
proximity 0 -none- NULL
ntree 1 -none- numeric
mtry 1 -none- numeric
forest 14 -none- list
y 1791 factor numeric
test 0 -none- NULL
inbag 0 -none- NULL

The importance of each variable, as produced by random Forest, can be extracted.

> Sp277_RF_PA1$importance

0 1 MeanDecreaseAccuracy MeanDecreaseGini
Var1 0.07333 0.03277 0.04885 64.10
Var2 0.18360 0.20761 0.19789 295.73
Var3 0.04494 0.01607 0.02750 23.63
Var4 0.07396 0.02498 0.04438 97.10
Var5 0.06067 0.01723 0.03443 59.59
Var6 0.18819 0.19251 0.19061 166.00
Var7 0.18495 0.07481 0.11837 150.78

Here are the definitions of the variables’ importance measures.
- Mean Decrease Accuracy: For each tree, the prediction accuracy on the out-of-bag portion of the
data is recorded. Then the same is done after permuting each predictor variable. The difference
between the two accuracies are then averaged across all trees, and normalized by the standard error.
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- Mean Decrease Gini: The second measure is the total decrease in node impurities from splitting on
the variable, averaged over all trees. For classification, the node impurity is measured by the Gini
index.

Similarly, a dotchart of variable importance as measured by a Random Forest can be plotted.

> varImpPlot(Sp277_RF_PA1)
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An assesment of the importance of each variable using the permutation process (similar for all
the models) is also available if this option was selected. Similarly, the response curves using the
plot.response can be plotted.

To plot the relative goodness-of-fit using the calibrate.plot function of the library(gbm).

> calibrate.plot(data.used, (Pred_Sp277[,"RF",1,1]/1000))
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0.5.10 Evaluation of the predictive performance

There are three available techniques for making an assessment of a model’s performance (c.f. 0.14
Predictive Performance description). If ROC, Kappa and/or TSS is selected, the correspondant
technique will be run on the cross-validation step models (if any cross- validation are wanted) and
on the final model calibrated on 100% of the data. Performance measures are stored indidividually
for each species and model, and for each run.

A summary table of the type ”Evaluation.results.method” are produced by the Models function
containing the predictive performance of each model which is convenient for making comparisons
across methods and taxa.

> #Here we only display the info for the first species modelled
> Evaluation.results.Kappa[1:8]

$Sp281_PA1
Cross.validation indepdt.data total.score Cutoff Sensitivity

ANN 0.869 0.631 0.9139 330.0 97.19
CTA 0.873 0.686 0.9602 210.0 98.72
GAM 0.873 0.688 0.9057 389.2 96.17
GBM 0.900 0.706 0.9511 312.5 98.21
GLM 0.916 0.698 0.9342 419.6 95.92
MARS 0.913 0.678 0.9225 400.0 95.15
MDA 0.881 0.597 0.9040 350.0 94.90
RF 0.936 0.77 1.0000 380.0 100.00
SRE 0.692 0.407 0.7042 10.0 83.42

Specificity
ANN 94.2
CTA 97.3
GAM 94.4
GBM 96.9
GLM 97.5
MARS 97.1
MDA 95.5
RF 100.0
SRE 87.0

$Sp281_PA1_rep1
Cross.validation indepdt.data total.score Cutoff Sensitivity

ANN 0.839 none 0.8594 520.0 95.41
CTA 0.843 none 0.9028 420.0 90.82
GAM 0.840 none 0.8724 389.2 95.41
GBM 0.891 none 0.9224 559.0 91.84
GLM 0.909 none 0.9195 509.5 93.11
MARS 0.926 none 0.9290 440.0 91.07
MDA 0.866 none 0.8809 680.0 91.33
RF 0.914 none 0.9822 550.0 98.47
SRE 0.644 none 0.7278 10.0 81.12

Specificity
ANN 93.6
CTA 98.2
GAM 94.4
GBM 98.9
GLM 98.2
MARS 99.6
MDA 96.7
RF 99.6
SRE 92.0

$Sp281_PA1_rep2
Cross.validation indepdt.data total.score Cutoff Sensitivity

ANN 0.928 none 0.8930 350.0 91.58
CTA 0.873 none 0.9044 230.0 93.62
GAM 0.936 none 0.8824 449.1 93.37
GBM 0.946 none 0.9461 490.6 94.13
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GLM 0.947 none 0.9241 409.6 95.41
MARS 0.902 none 0.9164 410.0 93.62
MDA 0.892 none 0.8717 660.0 92.35
RF 0.947 none 0.9893 370.0 98.72
SRE 0.703 none 0.7170 10.0 81.12

Specificity
ANN 97.3
CTA 97.1
GAM 95.9
GBM 99.3
GLM 97.5
MARS 97.8
MDA 95.7
RF 99.9
SRE 91.3

$Sp281_PA1_rep3
Cross.validation indepdt.data total.score Cutoff Sensitivity

ANN 0.841 none 0.8420 630.0 92.09
CTA 0.902 none 0.9342 450.0 94.90
GAM 0.842 none 0.8791 539.5 88.78
GBM 0.864 none 0.9407 480.6 93.88
GLM 0.893 none 0.9322 449.6 94.39
MARS 0.909 none 0.9351 460.0 92.86
MDA 0.884 none 0.8911 850.0 91.33
RF 0.948 none 0.9894 330.0 100.00
SRE 0.728 none 0.6656 10.0 83.93

Specificity
ANN 94.0
CTA 98.3
GAM 97.7
GBM 99.1
GLM 98.4
MARS 99.2
MDA 97.3
RF 99.4
SRE 86.4

$Sp281_PA2
Cross.validation indepdt.data total.score Cutoff Sensitivity

ANN 0.865 0.66 0.9178 340.0 96.68
CTA 0.888 0.672 0.9578 260.0 98.98
GAM 0.888 0.695 0.9097 389.2 96.17
GBM 0.902 0.697 0.9556 382.0 97.96
GLM 0.908 0.704 0.9334 359.6 96.94
MARS 0.923 0.667 0.9265 380.0 95.15
MDA 0.892 0.597 0.9022 160.0 95.92
RF 0.923 0.756 1.0000 370.0 100.00
SRE 0.656 0.407 0.7132 10.0 83.42

Specificity
ANN 95.1
CTA 96.8
GAM 94.8
GBM 97.6
GLM 96.4
MARS 97.5
MDA 94.3
RF 100.0
SRE 87.9

$Sp281_PA2_rep1
Cross.validation indepdt.data total.score Cutoff Sensitivity

ANN 0.904 none 0.8872 470.0 97.96
CTA 0.879 none 0.9295 260.0 96.17
GAM 0.910 none 0.8829 408.8 94.13
GBM 0.900 none 0.9323 491.6 94.64
GLM 0.918 none 0.9270 489.5 94.39
MARS 0.929 none 0.9231 460.0 93.37
MDA 0.891 none 0.8933 700.0 89.54
RF 0.921 none 0.9841 450.0 99.23
SRE 0.608 none 0.6767 10.0 81.38

Specificity
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ANN 94.2
CTA 97.5
GAM 95.6
GBM 98.3
GLM 98.1
MARS 98.3
MDA 98.2
RF 99.4
SRE 88.5

$Sp281_PA2_rep2
Cross.validation indepdt.data total.score Cutoff Sensitivity

ANN 0.874 none 0.8402 550.0 93.62
CTA 0.913 none 0.9469 380.0 96.68
GAM 0.888 none 0.8943 478.6 93.62
GBM 0.929 none 0.9394 480.7 95.15
GLM 0.930 none 0.9178 529.5 93.11
MARS 0.929 none 0.9218 490.0 90.56
MDA 0.947 none 0.8938 670.0 92.86
RF 0.956 none 0.9911 470.0 99.49
SRE 0.646 none 0.6846 10.0 81.63

Specificity
ANN 93.2
CTA 98.3
GAM 96.5
GBM 98.5
GLM 98.1
MARS 99.4
MDA 96.8
RF 99.7
SRE 88.9

$Sp281_PA2_rep3
Cross.validation indepdt.data total.score Cutoff Sensitivity

ANN 0.818 none 0.8355 620.0 92.09
CTA 0.873 none 0.9190 210.0 95.41
GAM 0.865 none 0.8819 439.1 92.60
GBM 0.876 none 0.9362 351.6 95.66
GLM 0.875 none 0.9199 399.6 93.88
MARS 0.911 none 0.9257 430.0 95.15
MDA 0.840 none 0.8879 720.0 91.58
RF 0.894 none 0.9786 410.0 97.70
SRE 0.715 none 0.7499 10.0 81.12

Specificity
ANN 93.6
CTA 97.2
GAM 96.2
GBM 98.1
GLM 97.9
MARS 97.7
MDA 97.0
RF 99.7
SRE 93.4

Taking the example of the first PA run : there are 4 different matrices, one for each run
(3 repetitions with a 80-20% partitioning and the final 100% model). For the first repetition,
(Sp277 PA1 rep1), the first column is the score on the remaining 20% of the data after calibra-
tion of the model. The last four columns are determined with the 80% used for calibration and the
20% leftovers combined.

For the final model (Sp277 PA1), the first column is the average of the cross- validation of all
the repetitions. The second one is the score when the model is evaluated on independent data if any
is available, and the four following colums are results obtained from the final model itself.
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You can explore and see that the PA2 runs for Sp277 are empty matrices. That’s because there
has only been 1 PA run for that species (see page 13).

To display the predictive accuracy by Roc of the GLM for the second species modelled

> Evaluation.results.Roc$Sp277_PA1["GLM",]

Cross.validation indepdt.data total.score Cutoff Sensitivity
GLM 0.996 0.889 0.997 547.452 96.852

Specificity
GLM 96.906

As you can see the GLM has a high predictive accuracy on this particular species. The fairly
small decrease of accuracy from the Calibration to the Evaluation is an indication that the model
does not tend to overfit the data.
If the Optimized Threshold by ROC has been selected, a cutoff is available (fourth column) esti-
mated using the model built with all data for calibration. It represents the best probability threshold
maximising the percentage of presence and absence correctly predicted for the evaluation data. The
sensitivity and specifity associated with that threshold are given in the last two columns. This
threshold value will be used later to transform probabilities into presence-absence (binary format)
or filtered values.

As for the probabilities, the thresholds are scalled from 0 to 1000.

The same structure is kept for Roc, Kappa and TSS methods.

0.5.11 Importance of each variable

It is always difficult to compare predictions from different models as they do not rely on the same al-
gorithms, techniques and assumptions about the expected relationship between species distributions
and the environment. With a permutation procedure, BIOMOD can extract a measure of relative
importance of each variable that is independent of the model. As for the predictive accuracy, the
results are stored individually per species and per model. It might be more convenient to extract
the results in a summary table.
Running the Models function will produce an object called ”VarImportance” ( only if VarImp was
put higher than 0 in the function call). Let’s have a look at it.

> VarImportance

$Sp281
Var1 Var2 Var3 Var4 Var5 Var6 Var7

ANN 0.010 0.835 0.750 0.680 0.415 0.440 1.124
CTA 0.394 0.100 0.180 0.109 0.194 0.016 0.596
GAM 0.458 1.109 0.631 0.169 0.248 0.404 1.190
GBM 0.281 0.013 0.061 0.088 0.013 0.003 0.496
GLM 0.265 1.216 0.000 0.138 0.100 0.509 1.263
MARS 0.886 0.298 0.280 0.448 0.000 0.000 0.757
MDA 0.230 0.604 0.463 0.364 0.261 0.457 0.248
RF 0.151 0.053 0.078 0.078 0.031 0.046 0.443
SRE 0.073 0.036 0.007 0.022 0.067 0.021 0.103

$Sp277
Var1 Var2 Var3 Var4 Var5 Var6 Var7

ANN 0.000 0.023 0.917 0.807 0.674 0.014 0.569
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CTA 0.125 0.318 0.016 0.067 0.028 0.465 0.201
GAM 0.052 0.770 0.585 0.187 0.493 0.197 0.346
GBM 0.050 0.390 0.009 0.073 0.037 0.009 0.097
GLM 0.044 0.458 0.312 0.202 0.248 0.690 0.615
MARS 0.000 0.402 0.771 0.567 0.634 1.321 0.706
MDA 0.029 0.771 0.123 0.257 0.189 0.282 0.492
RF 0.040 0.261 0.013 0.047 0.025 0.221 0.118
SRE 0.023 0.008 0.022 0.016 0.037 0.002 0.088

$Sp164
Var1 Var2 Var3 Var4 Var5 Var6 Var7

ANN 0.194 0.610 0.849 0.827 0.682 0.675 0.091
CTA 0.615 0.280 0.430 0.217 0.404 0.049 0.322
GAM 0.614 0.040 0.917 0.843 0.659 0.000 0.089
GBM 0.728 0.096 0.207 0.048 0.184 0.007 0.170
GLM 0.499 0.952 0.815 0.726 0.626 0.651 0.848
MARS 0.703 0.000 0.937 0.798 0.717 0.315 0.227
MDA 0.399 0.471 0.782 0.700 0.548 0.482 0.197
RF 0.469 0.116 0.183 0.070 0.119 0.020 0.211
SRE 0.024 0.025 0.014 0.018 0.106 0.003 0.074

Note that the importance of the variables is only calculated for the final model.

Remember that the importance of each variable is one minus the correlation score between the
original prediction and the prediction made with a permuted variable. High values will therefore
reveal a high importance of the variable whereas a value of 0 means that there is no importance.

NOTE : The obtained correlation can be negative. We consider these cases to represent an even
bigger influence of the permutated variable on the prediction than with a correlation of 0. The
variable importance estimation will therefore still be given as 1 minus the correlation score and, as
a consequence, turn into values higher than 1. These cases are not so rare.

0.5.12 Response curves

BIOMOD allows plotting the response curves of every model in the good scale. The response.plot
function must be used to this matter. This function requires a selected model and a selected species
to plot the response curves.

Here are two examples of the GLM and RF for the first species modelled. You need to load the
model (those ones have already been loaded in prior calls), type its name in the first argument, then
give the variables for which you want to see the curves.

> response.plot(Sp277_GLM_PA1, Sp.Env[4:10])
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> response.plot(Sp277_RF_PA1, Sp.Env[4:10])
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For this, N-1 variables are held constant at their mean value whilst the variable of interest con-
tains 100 points varying across the maximum and the minimum of the variable’s range. Variation in
predictions, made to these 100 cells, only reflects the effects of variation of the one selected variable.
Thus, a plot of these predictions allows visualisation of the modelled response to the variable of
interest, contingent on the other variables being held constant.
This is done subsequently for all the selected variables.

0.5.13 Predictions on the original dataset

The predictions made by each model for each species are stored inside the pred folder. We considered
it to be more convenient to have a matrix with the predictions by species for all the models.

> CurrentPred(GLM=T, GBM=T, GAM=T, CTA=T, ANN=T, SRE=T, MDA=T, MARS=F, RF=T,
BinRoc=T, BinKappa=T, BinTSS=T, FiltKappa=T)

For each selected model (the models that were not run will be automatically switched off) an
new object will be created for each species of the type Pred Speciesname, Pred Sp277 for example
(do keep in mind that they are not stored directly in the workspace and that a loading of the file
is necessary). They contain the predictions made by all the models expressed as a probability of
occurrence (remember that the scale is between 0 and 1000).

It might be useful to extract the presence/absence predictions. To do so, switch BinRoc,
BinKappa and/or BinTSS to TRUE and each probability of occurence will be transformed into
presence and absence using the cutoff maximising the models accuracy according to Roc, Kappa or
TSS.

Additional datasets will be created: Pred Sp277 BinRoc, Pred Sp277 BinKappa, Pred Sp277 BinTSS,
Pred Sp277 FiltKappa, and so on. The files with no extensions are to be read with R only while
the text files can easily be used for other purposes (e.g. load it into another software).
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0.6 Models’ projection

For all the models currently implemented, BIOMOD is able to project potential distributions of
species or land-use classes for other areas, other resolutions or other times. BIOMOD does not
utilise the geographical coordinates nor does it perform a re-ordering of the data for making pro-
jections. The user should ensure that all datasets are kept in the same order in order to allow
unmistaken comparisons between observed and predicted maps.

To make the projections, use the function Projection.

Two hypothetical future climate databases are provided with BIOMOD. They are simply called
Future1 and Future2. Note that the labels of the columns should be exactly the same as those of
the explanatory variables (or independent variables) of the calibration datasets.

The syntax is very similar to previous functions. First add the new data (e.g. climate change
scenario), then the prefix name of the output (Proj.name), and then the models for which the pro-
jections have to be made. Then, the user can select if the data needs to be transformed into a binary
presence/absence format, or be filtered by a threshold (Kappa, ROC or TSS).

The Proj.name argument is very important as it will be used to store the results and also used by
other functions to reload this data. The Projection function will create a directory using that name.
In our case, it will produce ”proj.Future1” next to ”pred” and ”models” in the working directory. A
directory is created for each run of the function with a different scenario.

> #like for calibrating the models, you can load your own data
> #Here we use the example file
> data(Future1)
> Projection(Proj = Future1[,4:10], Proj.name=’Future1’, GLM = T, GBM = T, GAM = T,

CTA = T, ANN = T, SRE = T, Perc025=T, Perc05=F, MDA =T, MARS = T, RF = T,
BinRoc = T, BinKappa = T, BinTSS = T, FiltRoc = T, FiltKappa = T, FiltTSS = T,
repetition.models=T)

Sp281
Sp277
Sp164

Let’s check the future projections made by GLM:

> load("proj.Future1/Proj_Future1_Sp277")
> Proj_Future1_Sp277[740:760,,1,1]

ANN CTA GAM GBM GLM MARS MDA RF SRE
740 1000 997 999 998 999 868 1000 982 1000
741 1000 997 999 983 999 813 1000 956 0
742 1000 997 999 997 999 773 1000 998 1000
743 1000 997 999 981 999 789 1000 864 0
744 1000 987 991 818 999 648 999 792 0
745 1000 997 999 998 999 873 999 990 0
746 126 987 466 800 773 573 998 830 0
747 1000 400 998 909 999 732 999 870 1000
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748 473 997 999 994 999 730 999 992 1000
749 999 997 999 999 999 759 999 982 1000
750 124 997 999 997 999 715 999 1000 1000
751 123 987 803 923 994 536 999 984 1000
752 999 986 975 921 999 528 999 661 0
753 86 0 335 3 141 378 0 5 0
754 999 986 985 762 999 560 999 641 0
755 970 0 554 45 991 424 0 48 0
756 1000 986 999 988 999 702 1000 992 0
757 999 986 999 971 999 575 999 788 0
758 1000 997 999 996 999 718 1000 1000 0
759 999 986 999 976 999 633 1000 820 0
760 1000 997 999 983 999 665 1000 828 0

> load("proj.Future1/Proj_Future1_Sp277_BinRoc")
> Proj_Future1_Sp277_BinRoc[740:760,,1,1]

ANN CTA GAM GBM GLM MARS MDA RF SRE
740 1 1 1 1 1 1 1 1 1
741 1 1 1 1 1 1 1 1 0
742 1 1 1 1 1 1 1 1 1
743 1 1 1 1 1 1 1 1 0
744 1 1 1 1 1 1 1 1 0
745 1 1 1 1 1 1 1 1 0
746 0 1 1 1 1 1 1 1 0
747 1 1 1 1 1 1 1 1 1
748 0 1 1 1 1 1 1 1 1
749 1 1 1 1 1 1 1 1 1
750 0 1 1 1 1 1 1 1 1
751 0 1 1 1 1 1 1 1 1
752 1 1 1 1 1 1 1 1 0
753 0 0 0 0 0 1 0 0 0
754 1 1 1 1 1 1 1 1 0
755 1 0 1 0 1 1 0 0 0
756 1 1 1 1 1 1 1 1 0
757 1 1 1 1 1 1 1 1 0
758 1 1 1 1 1 1 1 1 0
759 1 1 1 1 1 1 1 1 0
760 1 1 1 1 1 1 1 1 0

0.7 Models’ optimisation

0.7.1 Predictions on the original datasets

BIOMOD has been programmed to allow direct comparisons between models during the process.
This provides a flexible way to derive optimised predictions.

The function PredictionBestModel will check, iteratively for each run, which model has the
highest predictive accuracy according to the selected method (Roc, Kappa or TSS). Type T (TRUE)
or F (FALSE) for each model you want for the optimisation. Note that if you have run the Models
function using all models, it is not necessary to run the optimisation on all the models, but only the
one which might be of interest.

The function will create new datasets prefixed PredBestModelByX (with X being replaced by the
evaluation method used, Kappa, Roc or TSS) where the predictions on the original dataset will be
stored according to the model selected. For instance, the first species could be predicted using GLM,
while the second one by GAM. The selected model, the predictive accuracy, the associated thresh-
old as well as the sensitivity and specificity of the selected models are stored in the new dataset:
BestModelByRoc. One could choose only the optimisation run on only one evaluation method (e.g.
method=’Kappa’ ), or all (e.g. method=’all’ ). Two additional options can also be selected : as
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the previous option generates probability values, users who want binary transformation can type:
Bin.trans = T. In this case, new datasets will be created depending on the evalution method used,
e.g. PredBestModelByRoc.BinRoc.

If users want probability values above the threshold used to predict presences to be kept (i.e.,
only probabilities below the threshold are set to zero, the others are left as they were), then type:
Filt.trans = T.

In our example, we could compare all the models we run for the different species using the three
different evaluation methods available. We also transform the probabilities into the presence/absence
and filtered probabilities.

> PredictionBestModel(GLM=T,GBM=T, GAM=T, CTA=T, ANN=T, MDA=T, MARS=F, RF=T, SRE=T,
method=’all’, Bin.trans = T, Filt.trans = T)

Multimodel comparison according to the TSS statistic:

> load("pred/BestModelByTSS")
> BestModelByTSS

$Sp281
Best.Model Cross.validation indepdt.data total.score Cutoff

PA1 RF 0.953 0.877 1.0000 380
PA1_rep1 RF 0.942 none 0.9828 370
PA1_rep2 RF 0.947 none 0.9862 370
PA1_rep3 RF 0.970 none 0.9940 330
PA2 RF 0.940 0.864 1.0000 370
PA2_rep1 RF 0.950 none 0.9863 450
PA2_rep2 RF 0.959 none 0.9919 470
PA2_rep3 RF 0.912 none 0.9741 310

Sensitivity Specificity
PA1 100.00 100.0
PA1_rep1 98.98 99.3
PA1_rep2 98.72 99.9
PA1_rep3 100.00 99.4
PA2 100.00 100.0
PA2_rep1 99.23 99.4
PA2_rep2 99.49 99.7
PA2_rep3 98.21 99.2

$Sp277
Best.Model Cross.validation indepdt.data total.score Cutoff

PA1 RF 0.964 0.784 1.0000 330
PA1_rep1 RF 0.977 none 0.9954 540
PA1_rep2 RF 0.956 none 0.9912 660
PA1_rep3 RF 0.960 none 0.9921 450

Sensitivity Specificity
PA1 100.00 100.00
PA1_rep1 99.54 100.00
PA1_rep2 99.26 99.86
PA1_rep3 99.63 99.58

$Sp164
Best.Model Cross.validation indepdt.data total.score Cutoff

PA1 RF 0.913 0.878 1.0000 390
PA1_rep1 RF 0.915 none 0.9771 280
PA1_rep2 RF 0.920 none 0.9830 370
PA1_rep3 RF 0.905 none 0.9642 320
PA2 RF 0.908 0.883 1.0000 370
PA2_rep1 RF 0.915 none 0.9751 280
PA2_rep2 RF 0.920 none 0.9761 400
PA2_rep3 RF 0.890 none 0.9771 380

Sensitivity Specificity
PA1 100.00 100.0
PA1_rep1 99.01 98.7
PA1_rep2 99.50 98.8
PA1_rep3 97.52 98.9
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PA2 100.00 100.0
PA2_rep1 99.01 98.5
PA2_rep2 98.51 99.1
PA2_rep3 98.51 99.2

Multimodel comparison according to the ROC:

> load("pred/BestModelByRoc")
> BestModelByRoc

$Sp281
Best.Model Cross.validation indepdt.data total.score Cutoff

PA1 RF 0.995 0.973 1 646
PA1_rep1 RF 0.994 none 1 354
PA1_rep2 RF 0.997 none 0.999 248
PA1_rep3 RF 0.993 none 0.999 368
PA2 RF 0.994 0.972 1 662
PA2_rep1 RF 0.995 none 1 445
PA2_rep2 RF 0.996 none 0.999 429
PA2_rep3 RF 0.992 none 0.999 249

Sensitivity Specificity
PA1 100 100
PA1_rep1 98.98 99
PA1_rep2 98.98 99
PA1_rep3 99.49 99.4
PA2 100 100
PA2_rep1 99.235 99.2
PA2_rep2 99.49 99.5
PA2_rep3 98.724 98.7

$Sp277
Best.Model Cross.validation indepdt.data total.score Cutoff

PA1 GBM 0.998 0.928 1 503.496
PA1_rep1 RF 0.999 none 1 494
PA1_rep2 RF 0.999 none 1 580
PA1_rep3 RF 0.997 none 1 596

Sensitivity Specificity
PA1 99.444 99.437
PA1_rep1 99.537 99.578
PA1_rep2 99.537 99.437
PA1_rep3 99.537 99.578

$Sp164
Best.Model Cross.validation indepdt.data total.score Cutoff

PA1 RF 0.983 0.945 1 600
PA1_rep1 RF 0.988 none 0.999 289
PA1_rep2 RF 0.984 none 0.998 377
PA1_rep3 RF 0.978 none 0.998 214
PA2 RF 0.982 0.949 1 644
PA2_rep1 RF 0.98 none 0.998 285
PA2_rep2 RF 0.982 none 0.998 374
PA2_rep3 RF 0.983 none 0.998 321

Sensitivity Specificity
PA1 100 100
PA1_rep1 98.515 98.7
PA1_rep2 99.01 98.9
PA1_rep3 97.525 97.5
PA2 100 100
PA2_rep1 98.515 98.5
PA2_rep2 98.515 98.8
PA2_rep3 98.515 98.5

Multimodel predictions according to the Kappa statistic

> load("pred/PredBestModelByKappa_Sp277")
> PredBestModelByKappa_Sp277[740:760,]

PA1 PA1_rep1 PA1_rep2 PA1_rep3
740 1 6 1 0
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741 42 41 40 50
742 0 0 0 0
743 0 1 2 0
744 89 276 78 89
745 0 9 8 0
746 993 997 998 997
747 978 986 954 970
748 998 1000 998 1000
749 969 977 956 964
750 994 1000 996 997
751 994 997 997 996
752 998 1000 997 997
753 826 834 829 864
754 986 980 982 966
755 949 961 950 948
756 0 0 1 0
757 0 0 0 0
758 0 0 0 0
759 0 0 0 0
760 37 33 45 129

Multimodel predictions according to the ROC, transformed in binary presence/absence

> load("pred/PredBestModelByRoc_Sp277_Bin")
> PredBestModelByRoc_Sp277_Bin[740:760,]

PA1 PA1_rep1 PA1_rep2 PA1_rep3
740 0 1 0 0
741 0 0 0 0
742 0 0 0 0
743 0 0 0 0
744 0 0 1 1
745 0 1 1 0
746 1 1 1 1
747 1 1 1 1
748 1 0 1 0
749 1 1 1 1
750 1 0 1 1
751 1 1 1 1
752 1 0 1 1
753 1 1 1 1
754 1 1 1 1
755 1 1 1 1
756 0 0 0 0
757 0 0 0 0
758 0 0 0 0
759 0 0 0 0
760 1 0 0 0

0.7.2 Projections onto the future or other areas

Depending on the model that has been selected as the best model into the PredictionBestModel
function, optimisation for the future can also be performed using the functions ProjectionBestModel
according to the selected evaluation method (ROC, Kappa or TSS).

The syntax is the same than in the Projections function. The user only needs to give the name
of the climatic that will be used when running the projection function. Similarly to the Predic-
tionBestModel function, the user can also specify if he wants the optimised-projections transformed
into presence-absence or filtered, respectively typing: Bin.trans=T and Filt.trans=T.

> ProjectionBestModel(Proj.name=’Future1’, Bin.trans=T, Filt.trans=T, method=’all’)
> load("proj.Future1/Proj_Future1_BestModelByTSS")
> dim(Proj_Future1_BestModelByTSS)
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[1] 2264 8 3

> dimnames(Proj_Future1_BestModelByTSS)[-1]

[[1]]
[1] "PA1" "PA1_rep1" "PA1_rep2" "PA1_rep3" "PA2" "PA2_rep1"
[7] "PA2_rep2" "PA2_rep3"

[[2]]
[1] "Sp281" "Sp277" "Sp164"

For projections, the best models results are stored in 3-D arrays where the second dimension is
the repetition runs and the third dimension is the species.

> Proj_Future1_BestModelByTSS[740:760,,"Sp277"]

PA1 PA1_rep1 PA1_rep2 PA1_rep3 PA2 PA2_rep1 PA2_rep2 PA2_rep3
740 982 977 970 988 NA NA NA NA
741 956 949 970 908 NA NA NA NA
742 998 1000 998 1000 NA NA NA NA
743 864 900 925 880 NA NA NA NA
744 792 766 746 738 NA NA NA NA
745 990 977 985 990 NA NA NA NA
746 830 772 774 761 NA NA NA NA
747 870 905 894 870 NA NA NA NA
748 992 993 988 998 NA NA NA NA
749 982 986 988 990 NA NA NA NA
750 1000 996 992 997 NA NA NA NA
751 984 976 980 965 NA NA NA NA
752 661 614 681 430 NA NA NA NA
753 5 10 8 10 NA NA NA NA
754 641 634 810 496 NA NA NA NA
755 48 80 56 34 NA NA NA NA
756 992 989 984 970 NA NA NA NA
757 788 718 745 502 NA NA NA NA
758 1000 1000 1000 1000 NA NA NA NA
759 820 781 908 584 NA NA NA NA
760 828 846 908 816 NA NA NA NA

> load("proj.Future1/Proj_Future1_BestModelByTSS_Bin")
> Proj_Future1_BestModelByTSS_Bin[740:760,,"Sp277"]

PA1 PA1_rep1 PA1_rep2 PA1_rep3 PA2 PA2_rep1 PA2_rep2 PA2_rep3
740 1 1 1 1 NA NA NA NA
741 1 1 1 1 NA NA NA NA
742 1 1 1 1 NA NA NA NA
743 1 1 1 1 NA NA NA NA
744 1 1 1 1 NA NA NA NA
745 1 1 1 1 NA NA NA NA
746 1 1 1 1 NA NA NA NA
747 1 1 1 1 NA NA NA NA
748 1 1 1 1 NA NA NA NA
749 1 1 1 1 NA NA NA NA
750 1 1 1 1 NA NA NA NA
751 1 1 1 1 NA NA NA NA
752 1 1 1 0 NA NA NA NA
753 0 0 0 0 NA NA NA NA
754 1 1 1 1 NA NA NA NA
755 0 0 0 0 NA NA NA NA
756 1 1 1 1 NA NA NA NA
757 1 1 1 1 NA NA NA NA
758 1 1 1 1 NA NA NA NA
759 1 1 1 1 NA NA NA NA
760 1 1 1 1 NA NA NA NA
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Note that it is necessary to have run the PredictionBestModel before running the
ProjectionBestModel .

You can check all the new objects that have been created by going through the ”pred” and
”proj.Future1” directories.

0.8 Ensemble Forecasting

One difficulty with the use of species distribution models is that the number of techniques available is
large and is increasing steadily, making it difficult for ’non-aficionados’ to select the most appropriate
methodology for their needs ((Elith, J. et al. 2006, Heikkinen, R. et al. 2006)). Recent analyses
have also demonstrated that discrepancies between different techniques can be very large, making
the choice of the appropriate model even more difficult. This is particularly true when models are
used to project distributions of species into independent situations, which is the case of projections
of species distributions under future climate change scenarios ((Pearson, R. G. et al. 2006, Thuiller,
W. 2004)). A solution for this inter-model variability is to fit ensembles of forecasts by simulat-
ing across more than one set of initial conditions, model classes, model parameters, and boundary
conditions (for a review see Araújo & New 2007) and analyse the resulting range of uncertainties
with bounding box, consensus and probabilistic methodologies rather than lining up with a single
modelling outcome ((Araújo, M. B. and New, M. 2007, Thuiller, W. 2007)). BIOMOD offers such a
platform for ensemble forecasting.

Several approaches are available for combining ensembles of models in BIOMOD. Here is an
example of the use of the Ensemble.Forecasting function as well as some details of the different
strategies:

Four straightforward means of ’committee averaging’ (giving the same weight to all the elements)
are done across all the models for each run:

- on the probabilities
- on the binary projection according to the Roc method,
- on the binary projection according to the Kappa method,
- on the binary projection according to the TSS method.

A weighted approach is also available that ranks the models using their evaluation score.

Making a mean on the 0-1 projections gives some sort of probability of presence. For example,
for a given site and with the TSS method, 6 projections give a ”1” and 2 give a ”0”. The mean will
be 0.75. It is extracted from binary projection and it is therefore not possible to determine a prior
threshold. Conversion into binary is nevertheless possible (see binary below).

The median value is also calculated on the probabilities given by the models. It is considered to
be more reliable because it is less influenced by extreme values. A weighting is not possible, nor the
determination of a threshold from the already existing ones.
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> Ensemble.Forecasting(Proj.name= "Future1", weight.method=’Roc’, PCA.median=T,
binary=T, bin.method=’Roc’, Test=F, decay=1.6, repetition.models=T)

Sp281
Sp277
Sp164

consensus_Future1_results
$Sp281
$Sp281$weights

ANN CTA GAM GBM GLM MARS MDA RF SRE
PA1 0.0229 0.1950 0.0366 0.195 0.0586 0.0937 0.0143 0.3839 0
PA1_rep1 0.0143 0.0366 0.0937 0.240 0.1500 0.0586 0.0229 0.3839 0
PA1_rep2 0.0394 0.0937 0.0394 0.240 0.1500 0.0394 0.0143 0.3839 0
PA1_rep3 0.0143 0.1500 0.0366 0.240 0.0937 0.0586 0.0229 0.3839 0
PA2 0.0762 0.1950 0.0297 0.195 0.0762 0.0297 0.0143 0.3839 0
PA2_rep1 0.0143 0.0366 0.0937 0.240 0.1500 0.0586 0.0229 0.3839 0
PA2_rep2 0.0229 0.1500 0.0366 0.240 0.0937 0.0586 0.0143 0.3839 0
PA2_rep3 0.0143 0.0366 0.0762 0.240 0.1500 0.0762 0.0229 0.3839 0

$Sp281$PCA.median
model.selected

PA1 "RF"
PA1_rep1 "MDA"
PA1_rep2 "RF"
PA1_rep3 "RF"
PA2 "MARS"
PA2_rep1 "MDA"
PA2_rep2 "CTA"
PA2_rep3 "RF"

$Sp281$thresholds
PA1 PA1_rep1 PA1_rep2 PA1_rep3 PA2 PA2_rep1

prob.mean 434.1 385.4 315.4 375.5 409.7 361.8
prob.mean.weighted 486.3 353.3 292.9 356.3 498.9 396.7
median NA NA NA NA NA NA
Roc.mean 500.0 500.0 500.0 500.0 500.0 500.0
Kappa.mean 500.0 500.0 500.0 500.0 500.0 500.0
TSS.mean 500.0 500.0 500.0 500.0 500.0 500.0

PA2_rep2 PA2_rep3
prob.mean 404.9 309.8
prob.mean.weighted 398.6 276.2
median NA NA
Roc.mean 500.0 500.0
Kappa.mean 500.0 500.0
TSS.mean 500.0 500.0

$Sp277
$Sp277$weights

ANN CTA GAM GBM GLM MARS MDA RF SRE
PA1 0.0143 0.1008 0.0366 0.312 0.1008 0.1008 0.0229 0.3120 0
PA1_rep1 0.0143 0.0366 0.0586 0.240 0.1219 0.1219 0.0229 0.3839 0
PA1_rep2 0.0143 0.0630 0.0630 0.240 0.1500 0.0630 0.0229 0.3839 0
PA1_rep3 0.0143 0.0366 0.0937 0.240 0.1500 0.0586 0.0229 0.3839 0

$Sp277$PCA.median
model.selected

PA1 "GBM"
PA1_rep1 "MARS"
PA1_rep2 "GAM"
PA1_rep3 "MARS"

$Sp277$thresholds
PA1 PA1_rep1 PA1_rep2 PA1_rep3

prob.mean 617.8 615.0 610.6 640.9
prob.mean.weighted 603.2 543.5 561.1 568.3
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median NA NA NA NA
Roc.mean 500.0 500.0 500.0 500.0
Kappa.mean 500.0 500.0 500.0 500.0
TSS.mean 500.0 500.0 500.0 500.0

$Sp164
$Sp164$weights

ANN CTA GAM GBM GLM MARS MDA RF SRE
PA1 0.0229 0.1500 0.0762 0.24 0.0762 0.0366 0.0143 0.3839 0
PA1_rep1 0.0366 0.0143 0.1500 0.24 0.0762 0.0762 0.0229 0.3839 0
PA1_rep2 0.0143 0.0366 0.1219 0.24 0.1219 0.0586 0.0229 0.3839 0
PA1_rep3 0.0143 0.0229 0.1500 0.24 0.0937 0.0586 0.0366 0.3839 0
PA2 0.0937 0.2400 0.0366 0.15 0.0586 0.0229 0.0143 0.3839 0
PA2_rep1 0.0229 0.0143 0.1500 0.24 0.0937 0.0586 0.0366 0.3839 0
PA2_rep2 0.0143 0.0229 0.1008 0.24 0.1008 0.1008 0.0366 0.3839 0
PA2_rep3 0.0366 0.0143 0.1500 0.24 0.0937 0.0586 0.0229 0.3839 0

$Sp164$PCA.median
model.selected

PA1 "MARS"
PA1_rep1 "MDA"
PA1_rep2 "MDA"
PA1_rep3 "MARS"
PA2 "MDA"
PA2_rep1 "MDA"
PA2_rep2 "MDA"
PA2_rep3 "MDA"

$Sp164$thresholds
PA1 PA1_rep1 PA1_rep2 PA1_rep3 PA2 PA2_rep1

prob.mean 282.2 225.3 227.9 191.0 321.2 251.0
prob.mean.weighted 384.1 269.1 303.6 220.9 405.1 263.1
median NA NA NA NA NA NA
Roc.mean 500.0 500.0 500.0 500.0 500.0 500.0
Kappa.mean 500.0 500.0 500.0 500.0 500.0 500.0
TSS.mean 500.0 500.0 500.0 500.0 500.0 500.0

PA2_rep2 PA2_rep3
prob.mean 293.9 243.5
prob.mean.weighted 316.9 289.7
median NA NA
Roc.mean 500.0 500.0
Kappa.mean 500.0 500.0
TSS.mean 500.0 500.0

The function returns a list that is also stored in R’s memory. In our case, it will be called con-
sensus Future1 results. It contains all the computational information that has been used to render
the ensemble forecasts, for example predictive performance of each method when applied to current
predictions (if Test = True), the weights awarded to the models in the weighting process, the model
selected by the PCA.median method (if set to True). The forecasts themselves are stored on the
hard disk directly in the corresponding folder.

Options:
repetition.models: You can choose to switch on or off the repetition models. If selected, the

function will calculate the ensemble forecasts for each run and generate a final one which produces
a general ensemble forecast across all the runs for each method.This total consensus is done incon-
sistently of this argument being set to TRUE or FALSE.

weight.method: the method for ranking the models according to their predictive performance.
The decay gives the relative importance of the weights. The default weight decay is 1.6; See the
example below.
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models GAM GBM GLM ANN RF MARS CTA MDA
score with Roc 0.96 0.92 0.90 0.88 0.87 0.75 0.72 0.68

decay of 1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
decay of 1.2 0.217 0.181 0.151 0.126 0.105 0.087 0.073 0.061
decay of 1.6 0.384 0.240 0.150 0.094 0.059 0.037 0.023 0.014
decay of 2 0.502 0.251 0.125 0.063 0.031 0.016 0.008 0.004

You can type in any value (it has however to be higher than 1) depending on the strength of
discrimination that you want. A decay of 1 is equivalent to a committee averaging (i.e. same weights
given to all elements).

PCA.median: this is an alternative approach for obtaining a hierarchie of models in an ensemble
that does not depend on the performance of each modelling technique.
A PCA is run with projected probabilities of all of the models selected. In the current version of
BIOMOD, the consensus model is the model whose projection is the most correlated with the first
axis of the PCA. However, the PCA approach can be used in several ways. It can be used to select
one single consensus model (as currently implemented in BIOMOD), but it can also be used to allow
committee averaging across consensus models (models with high loads in the first axis of PCA),
or be used to allow committee averaging across models ranking high in different axes of the PCA.
Implementations of these methods can be found in Thuiller (2004), Araújo et al. (2005), and Araújo
et al. (2006).
In the current version of BIOMOD no dataset is produced for this option, the name of the such
selected model is kept in the function’s information output.

binary: by setting this argument to True, the ensemble forecasting function will also render the
consensus projections in a binary format. The thresholds used differ from one method to the other:

- mean on probabilities: converted in binary format by a mean threshold (thus giving 3 possibil-
ities - Roc, Kappa or TSS; you need to set it in the bin.method argument),

- weighted mean on probabilities: converted in binary by a weighted mean threshold (using the
same method than for ranking, i.e. the weight.method argument),

- Roc-Kappa-TSS means: an arbitrary value of 500 (corresponding to a probability of 0.5) is used,
meaning that a site is considered suitable if at least half of the projections have projected a presence.

Test: This option will test the efficiency of the consensus method on the data given for cali-
bration. A Roc evaluation is run and the score will be given in the output of the function as the
”test.results”.

OUTPUTS
This function will be run for all the species at once. It will produce an object per species. These

objects are arrays of three dimensions :

> load("proj.Future1/consensus_Sp164_Future1")
> dim(consensus_Sp164_Future1)
> dimnames(consensus_Sp164_Future1)[-1]
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The second dimension is the repetition runs and the third dimension is the consensus methods.
There is also an object called ”Total consensus Future1” that makes a single output out of all the
repetitions.

> load("proj.Future1/Total_consensus_Future1")
> dim(Total_consensus_Future1)

[1] 2264 3 6

> dimnames(Total_consensus_Future1)[-1]

[[1]]
[1] "Sp281" "Sp277" "Sp164"

[[2]]
[1] "prob.mean" "prob.mean.weighted" "median"
[4] "Roc.mean" "Kappa.mean" "TSS.mean"

Now the second dimension is the species. Let’s see and plot some of these :

> Total_consensus_Future1[1:20,,1]

Sp281 Sp277 Sp164
1 345.4 54.83 62.01
2 425.9 61.78 67.44
3 372.5 59.97 64.04
4 507.5 46.75 88.75
5 562.8 46.44 88.93
6 542.4 46.42 102.38
7 572.1 46.25 96.15
8 345.9 48.50 69.29
9 366.5 48.08 84.38
10 351.6 49.39 85.32
11 538.1 45.78 107.82
12 404.8 63.39 72.50
13 258.6 51.61 59.31
14 244.3 55.14 67.11
15 239.2 50.11 62.61
16 401.2 68.69 73.61
17 580.0 122.17 96.43
18 551.6 43.72 125.57
19 564.9 43.36 109.85
20 596.5 50.00 121.74

> data <- Total_consensus_Future1
> par(mfrow=c(2,5))
> par(mar=c(0.6,0.6,2,0.6))
> level.plot(DataBIOMOD[,8], CoorXY, show.scale=F, title=’Sp281’, cex=0.5)
> level.plot(data[,1,1], CoorXY, show.scale=F, title=’Sp281_mean’, cex=0.5)
> level.plot(data[,1,2], CoorXY, show.scale=F, title=’Sp281_weighted_mean’, cex=0.5)
> level.plot(data[,1,3], CoorXY, show.scale=F, title=’Sp281_median’, cex=0.5)
> level.plot(data[,1,6], CoorXY, show.scale=F, title=’Sp281_TSS_mean’, cex=0.5)
> level.plot(DataBIOMOD[,9], CoorXY, show.scale=F, title=’Sp277’, cex=0.5)
> level.plot(data[,2,1], CoorXY, show.scale=F, title=’Sp277_mean’, cex=0.5)
> level.plot(data[,2,2], CoorXY, show.scale=F, title=’Sp277_weighted_mean’, cex=0.5)
> level.plot(data[,2,3], CoorXY, show.scale=F, title=’Sp277_median’, cex=0.5)
> level.plot(data[,2,4], CoorXY, show.scale=F, title=’Sp277_Roc_mean’, cex=0.5)
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Sp277_Roc_mean

if binary is set to True, the same names are used with a terminal Bin containing the consensus
results in binary format.

0.9 Migration

This function allows the inclusion of a very simple migration process when projecting species distri-
butions into the future. The function constraints the projection to occur in a delimited perimeter
around the current distribution. The delimited perimeter has to be decided by the user.
The function uses two datasets: the current species distributions and the the future (assuming by
default unlimited migration).

The latitude and longitude of the datasets need to be specified in order to calculate the distances
allowed for migration.
Note that to be able to use this function, both current and future datasets must be ordered in the
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same way and have the same coordinates and the same resolution.

Then the migration rate has to be specified. Two options are available. Either the user can
specify the same rate for all the species modelled (a number must be given) or specify a different
rate for every species modelled (a vector must be given).
For the generic migration rate, type the maximum distance the species could migrate according to
the time slice modelled.
For the species-specific migration rate, create a vector (number of rows = number of species) con-
taining for each species the maximum distance the species could migrate.

Finally, give the name where the projections using limited migration will be stored.
For instance Future1.Migration.1km.per.year.

Note that the rate of migration should be given in degrees. For instance for a species with a
maximum of 1 minute ( 1.6km) by 10 years. If we project its distribution in 50 years: Rate =
1x0.16667x5 (where 0.01667 is the conversion from minute to degree).

For projection in 2080: Rate = 1x0.16667x8.

For a maximum rate of 3 minutes per 10 years ( 4.8km) in 2080: Rate = 3x0.16667x8

> #we will run a projection with the original dataset to have it in the same
> #format as the Future1 projection. We will use the overall mean consensus
>
> Projection(Proj = Sp.Env[,4:10], Proj.name=’Current’,

GLM = T, GBM = T, GAM = T, CTA = T, ANN = T, SRE = T, Perc025=T, Perc05=F, MDA =T, MARS = T,
RF = T, BinRoc=T, BinKappa=T, BinTSS=T, FiltRoc=T, FiltKappa=T, FiltTSS=T, repetition.models=T)

Sp281
Sp277
Sp164

> Ensemble.Forecasting(Proj.name= "Current", weight.method=’Roc’, PCA.median=T,
binary=T, bin.method=’Roc’, Test=F, decay=1.6, repetition.models=T)

Sp281
Sp277
Sp164

consensus_Current_results
$Sp281
$Sp281$weights

ANN CTA GAM GBM GLM MARS MDA RF SRE
PA1 0.0229 0.1950 0.0366 0.195 0.0586 0.0937 0.0143 0.3839 0
PA1_rep1 0.0143 0.0366 0.0937 0.240 0.1500 0.0586 0.0229 0.3839 0
PA1_rep2 0.0394 0.0937 0.0394 0.240 0.1500 0.0394 0.0143 0.3839 0
PA1_rep3 0.0143 0.1500 0.0366 0.240 0.0937 0.0586 0.0229 0.3839 0
PA2 0.0762 0.1950 0.0297 0.195 0.0762 0.0297 0.0143 0.3839 0
PA2_rep1 0.0143 0.0366 0.0937 0.240 0.1500 0.0586 0.0229 0.3839 0
PA2_rep2 0.0229 0.1500 0.0366 0.240 0.0937 0.0586 0.0143 0.3839 0
PA2_rep3 0.0143 0.0366 0.0762 0.240 0.1500 0.0762 0.0229 0.3839 0

$Sp281$PCA.median
model.selected

PA1 "ANN"
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PA1_rep1 "MARS"
PA1_rep2 "MARS"
PA1_rep3 "MARS"
PA2 "MARS"
PA2_rep1 "CTA"
PA2_rep2 "MARS"
PA2_rep3 "ANN"

$Sp281$thresholds
PA1 PA1_rep1 PA1_rep2 PA1_rep3 PA2 PA2_rep1

prob.mean 434.1 385.4 315.4 375.5 409.7 361.8
prob.mean.weighted 486.3 353.3 292.9 356.3 498.9 396.7
median NA NA NA NA NA NA
Roc.mean 500.0 500.0 500.0 500.0 500.0 500.0
Kappa.mean 500.0 500.0 500.0 500.0 500.0 500.0
TSS.mean 500.0 500.0 500.0 500.0 500.0 500.0

PA2_rep2 PA2_rep3
prob.mean 404.9 309.8
prob.mean.weighted 398.6 276.2
median NA NA
Roc.mean 500.0 500.0
Kappa.mean 500.0 500.0
TSS.mean 500.0 500.0

$Sp277
$Sp277$weights

ANN CTA GAM GBM GLM MARS MDA RF SRE
PA1 0.0143 0.1008 0.0366 0.312 0.1008 0.1008 0.0229 0.3120 0
PA1_rep1 0.0143 0.0366 0.0586 0.240 0.1219 0.1219 0.0229 0.3839 0
PA1_rep2 0.0143 0.0630 0.0630 0.240 0.1500 0.0630 0.0229 0.3839 0
PA1_rep3 0.0143 0.0366 0.0937 0.240 0.1500 0.0586 0.0229 0.3839 0

$Sp277$PCA.median
model.selected

PA1 "GAM"
PA1_rep1 "ANN"
PA1_rep2 "GAM"
PA1_rep3 "GAM"

$Sp277$thresholds
PA1 PA1_rep1 PA1_rep2 PA1_rep3

prob.mean 617.8 615.0 610.6 640.9
prob.mean.weighted 603.2 543.5 561.1 568.3
median NA NA NA NA
Roc.mean 500.0 500.0 500.0 500.0
Kappa.mean 500.0 500.0 500.0 500.0
TSS.mean 500.0 500.0 500.0 500.0

$Sp164
$Sp164$weights

ANN CTA GAM GBM GLM MARS MDA RF SRE
PA1 0.0229 0.1500 0.0762 0.24 0.0762 0.0366 0.0143 0.3839 0
PA1_rep1 0.0366 0.0143 0.1500 0.24 0.0762 0.0762 0.0229 0.3839 0
PA1_rep2 0.0143 0.0366 0.1219 0.24 0.1219 0.0586 0.0229 0.3839 0
PA1_rep3 0.0143 0.0229 0.1500 0.24 0.0937 0.0586 0.0366 0.3839 0
PA2 0.0937 0.2400 0.0366 0.15 0.0586 0.0229 0.0143 0.3839 0
PA2_rep1 0.0229 0.0143 0.1500 0.24 0.0937 0.0586 0.0366 0.3839 0
PA2_rep2 0.0143 0.0229 0.1008 0.24 0.1008 0.1008 0.0366 0.3839 0
PA2_rep3 0.0366 0.0143 0.1500 0.24 0.0937 0.0586 0.0229 0.3839 0

$Sp164$PCA.median
model.selected

PA1 "ANN"
PA1_rep1 "RF"
PA1_rep2 "RF"
PA1_rep3 "GBM"
PA2 "RF"
PA2_rep1 "GBM"
PA2_rep2 "RF"
PA2_rep3 "GBM"
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$Sp164$thresholds
PA1 PA1_rep1 PA1_rep2 PA1_rep3 PA2 PA2_rep1

prob.mean 282.2 225.3 227.9 191.0 321.2 251.0
prob.mean.weighted 384.1 269.1 303.6 220.9 405.1 263.1
median NA NA NA NA NA NA
Roc.mean 500.0 500.0 500.0 500.0 500.0 500.0
Kappa.mean 500.0 500.0 500.0 500.0 500.0 500.0
TSS.mean 500.0 500.0 500.0 500.0 500.0 500.0

PA2_rep2 PA2_rep3
prob.mean 293.9 243.5
prob.mean.weighted 316.9 289.7
median NA NA
Roc.mean 500.0 500.0
Kappa.mean 500.0 500.0
TSS.mean 500.0 500.0

> load("proj.Future1/Total_consensus_Future1")
> load("proj.Current/Total_consensus_Current")
> Migration(CurrentPred = Total_consensus_Current[,,1], FutureProj = Total_consensus_Future1[,,1],
X=CoorXY[,1], Y=CoorXY[,2], MaxMigr=5*0.16667*8, Pred.Save="Future1.Migration")
> #
> #
> #
> Future1.Migration[740:760,]

V1 V2 V3
740 739.3 979.4 816.9
741 892.3 858.2 730.0
742 726.6 977.3 796.0
743 737.5 852.0 676.0
744 301.4 788.4 397.7
745 597.5 866.7 711.7
746 163.5 603.0 84.7
747 599.0 893.5 590.7
748 481.1 953.6 256.2
749 382.2 961.2 476.4
750 250.3 896.3 390.2
751 163.3 815.6 169.4
752 780.2 696.7 432.0
753 757.0 112.0 207.7
754 879.7 724.6 593.6
755 731.1 272.7 308.8
756 918.9 856.4 897.3
757 783.0 761.5 498.2
758 889.0 861.9 892.2
759 897.8 807.3 626.4
760 695.4 813.4 644.9

0.10 Species Turnover

This function allows to estimate species loss, gained, and turnover by pixel for the time slice con-
sidered. The function uses two datasets: the current species distributions and the future one (for
instance after accounting for migration). Note that predictions for current and future must be in a
binary (presence and absence) format. Finally, give the name where the turnover summaries will be
stored.

In the stored database, 10 columns are created.

The first four columns are relative numbers: Disa represents the number of species predicted to
disappear from the given pixel. Stable0 is the number of species which are currently not in the given
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pixel and not predicted to migrate. Stable1 represents the number of species currently occurring
in the given pixel, and predicted to remains into the future. Gain represent the number of species
which are currently absent but predicted to migrate in the given pixel.

PercLoss, PercGain and Turnover are the related percentage estimated as the following:
- PercLoss = 100 x L/(SR)
- PercGain = 100 x G/(SR)
- Turnover = 100 x (L+G)/(SR+G)
Where SR is the current species richness.

CurrentSR represent the current modelled species richness in the given pixel.
FutureSR0Disp represents the future modelled species richness assuming no migration of species
FutureSR1Disp represents the future modelled species richness assuming migration (depending on
the datasets given in input, if Migration has been used or not).

> ProjectionBestModel("Current")
> load("proj.Future1/Proj_Future1_BestModelByRoc_Bin")
> load("proj.Current/Proj_Current_BestModelByRoc_Bin")
> Biomod.Turnover(CurrentPred = Proj_Current_BestModelByRoc_Bin[,1,],

FutureProj = Proj_Future1_BestModelByRoc_Bin[,1,], Turnover.Save= "Turnover.2050")
> Turnover.2050[740:760,]

Disa Stable0 Stable1 Gain PercLoss PercGain Turnover CurrentSR
740 0 0 2 1 0.00 50 33.33 2
741 0 0 2 1 0.00 50 33.33 2
742 0 0 1 2 0.00 200 66.67 1
743 0 0 2 1 0.00 50 33.33 2
744 0 2 1 0 0.00 0 0.00 1
745 0 1 1 1 0.00 100 50.00 1
746 0 2 1 0 0.00 0 0.00 1
747 0 1 1 1 0.00 100 50.00 1
748 0 1 1 1 0.00 100 50.00 1
749 0 0 1 2 0.00 200 66.67 1
750 0 1 1 1 0.00 100 50.00 1
751 0 2 1 0 0.00 0 0.00 1
752 1 0 2 0 33.33 0 33.33 3
753 0 2 1 0 0.00 0 0.00 1
754 1 0 2 0 33.33 0 33.33 3
755 2 0 1 0 66.67 0 66.67 3
756 0 0 2 1 0.00 50 33.33 2
757 1 0 2 0 33.33 0 33.33 3
758 0 0 2 1 0.00 50 33.33 2
759 1 0 2 0 33.33 0 33.33 3
760 0 0 3 0 0.00 0 0.00 3

FutureSR.0Disp FutureSR.1Disp
740 2 3
741 2 3
742 1 3
743 2 3
744 1 1
745 1 2
746 1 1
747 1 2
748 1 2
749 1 3
750 1 2
751 1 1
752 2 2
753 1 1
754 2 2
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755 1 1
756 2 3
757 2 2
758 2 3
759 2 2
760 3 3

0.11 Species Range Change

This function allows to estimate the proportion and relative number of pixels (or habitat) lost, gained
and stable for the time slice considered.
The function uses two datasets. The current species distributions and the future one. Note that
predictions for current and future must be in a binary (presence and absence) format. Finally, give
the name where the species range change summaries will be stored.

> Biomod.RangeSize(CurrentPred = Proj_Current_BestModelByRoc_Bin[,1,],
FutureProj = Proj_Future1_BestModelByRoc_Bin[,1,], SpChange.Save="SpChange.2050")

A list of two datasets is created: Compt.By.Species and Diff.By.Pixel

Diff.By.Pixel stores useful information for each species. The species are in columns and the pixel
in rows. For each species, a pixel could have four different values:

-2 if the given pixel is predicted to be lost by the species.
-1 if the given pixel is predicted to be stable for the species.
0 is the given pixel was not occupied, and will not be into the future.
1 if the given pixel was not occupied, and is predicted to be into the future.

> SpChange.2050$Diff.By.Pixel[740:760,]

Sp281 Sp277 Sp164
740 -1 -1 1
741 -1 -1 1
742 1 -1 1
743 -1 -1 1
744 0 -1 0
745 0 -1 1
746 0 -1 0
747 1 -1 0
748 1 -1 0
749 1 -1 1
750 0 -1 1
751 0 -1 0
752 -1 -1 -2
753 -1 0 0
754 -1 -1 -2
755 -1 -2 -2
756 -1 -1 1
757 -1 -1 -2
758 -1 -1 1
759 -1 -1 -2
760 -1 -1 -1
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This table could be easily plotted into GIS software in order to represent the pattern of change
for the selected species.

Compt.By.Species stores the summary of range change for each species (by rows).
The first four columns are relative numbers: Disa represents the number of pixels predicted to be
lost by the given species. Stable0 is the number of pixels which are not currently occupied by the
given species and not predicted to be. Stable1 represents the number of pixels currently occupied
by the given species, and predicted to remain occupied into the future. Gain represent the number
of pixels which are currently not occupied by the given species but predicted to be into the future.
PercLoss, PercGain and SpeciesRangeChange are the related percentage estimating as the follow-
ing:
- CurrentRangeSize represent the modelled current range size (number of pixels occupied) of the
given species.
- FutureRangeSize0Disp represents the future modelled range size assuming no migration of the
given species.
- FutureRangeSize1Disp represents the future modelled range size assuming migration of the given
species (depending on the datasets given in input, if Migration has been used or not).

> SpChange.2050$Compt.By.Species

Disa Stable0 Stable1 Gain PercLoss PercGain SpeciesRangeChange
Sp281 55 1413 578 218 8.689 34.44 25.750
Sp277 119 711 1259 175 8.636 12.70 4.064
Sp164 145 1506 317 296 31.385 64.07 32.684

CurrentRangeSize FutureRangeSize.0Disp FutureRangeSize.1Disp
Sp281 633 578 796
Sp277 1378 1259 1434
Sp164 462 317 613
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0.12 Other Functionalities

This section presents a series of functionalities that are not directly related to the functioning of
BIOMOD. These are to be used on any datasets, considering that they follow the specific require-
ments. Thus, you do not need to run BIOMOD to use them.

However, do NOT copy the lines presented here and try to run them in an R console. This will
inevitably end up in an error message. The code here is used as an example.

0.12.1 Probability Density Function

Using a variety of parameters in modelling will inevitably bring variability in predictions, especially
when it comes to making future predictions. This function enables an overall viewing of the future
predictions range per species and gives the likelihood of range shift estimations.

The future range changes are calculated as a percentage of the species’ present state. For example,
if a species currently occupies 100 cells and is estimated by a model to cover 120 cells in the future,
the range change will be + 20%.

> ProbDensFunc(initial=Sp.Env[,9], projections=Proj[,1:120], distrib=T, cvsn=T, groups=gp, resolution=5)

initial: a vector in a binary format (ones and zeros) representing the current distribution of a
species which will be used as a reference for the range change calculations.
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projection: a matrix grouping all the predictions where each column is a single prediction. MAke
sure you keep projections in the same order as the initial vector (line1=site1, line2=site2, etc.).

distrib: if true, the optimal way for condensing 50, 75, 90 and 95% of the data will be calcu-
lated and shown on the graph.

Resolution: the step used for classes of prediction in graphics. The default value is 5.

NOTE: modifying the resolution will directly influence the probability scale. Bigger classes will
cumulate a greater number of predictions and therefore represent a greater fraction of the total
predictions. The probability is in fact that of the class and not of isolated events.

cvsn: stands for current vs new. If true, the range change calculations will be of two types: the
percentage of cells currently occupied by the species to be lost, and the relative percentage of cells
currently unoccupied but projected to be, namely ’new’ cells, compared to current surface range.

With the example above where the species will have 120 suitable sites in the future whilst only
100 at present, this might be the result of different events. A case could be that the 100 present
cells are kept and an additional 20 new sites makes the 120 cells. Another possibility is that the 100
current cells are predicted to be lost with 120 new cells, also giving 120 total cells in future.

These two cases bring the same SRC calculations results, but whilst the first case does not im-
ply much as in survival strategies (the current populations will still be in good conditions in future,
plus even having new potential territories to explore and colonise), the second case, however, implies
a strong migrating effort for the populations to stay in suitable environments. Those two cases and
all in-between possibilities are distinguishable with this method.
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Here, each dot is a projection. For example, the one furthest on the left gives the following in-
formation: approximately -60% of the current sites will be lost and 50% of new sites will be gained.
The SRC is very simply the addition of these two values : -10%. See how this single value does
not reflect every thing that is going on: it does not tell that more than half of current habitats are
projected to be lost, which would surely lead to different management decisions.

The two lines represent where the SRC value is 0 (no absolute change in the number of suitable
sites) and +100% (the species will double its current potential distribution size). Along those line,
you have all the possibilities for giving that one value (-10+10=0 ; -40+40=0 ; ...).

An extra feature on this graph is the colours. They enable to differenciate groups of projections
with the present example of the models. It enables to view where the variability in projection comes
from (see the description of groups below). You will have as many as these graphs as lines that you
have in the groups matrix.

groups: an option for ungrouping the projections enabling a separated visualisation of the pre-
diction range per given group. A matrix is expected where each column is a single prediction and
each line is giving details of one parameter. For example, if you have 9 different projections, with 3
models and 3 threshold possibilities, your matrix could look like this:
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[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] "GAM" "GAM" "GAM" "CTA" "CTA" "CTA" "RF" "RF" "RF"
[2,] "Roc" "Kappa" "TSS" "Roc" "Kappa" "TSS" "Roc" "Kappa" "TSS"

or like this:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] "GAM" "CTA" "RF" "GAM" "CTA" "RF" "GAM" "CTA" "RF"
[2,] "Roc" "Roc" "Roc" "Kappa" "Kappa" "Kappa" "TSS" "TSS" "TSS"

Do keep in mind that this matrix represents the projections the way you have put them into the
projection argument. Sort your matrix the way you have sorted your projections!

Uncertainty Estimation

This function enables an assessment of the variability in predictions. The PDF plot permits a visual
assessment but a calculated estimation of each parameter’s role in variability is also possible.

uncertainty: if True, the variability due to each parameter entered in the groups argument will
be calculated. For 3 or less parameters (i.e. 3 lines in the groups matrix) a table is given. Here is an
example with 3 parameters: 9 models, 3 threshold methods, 5 future climate scenarios. The output
will be in a standard R format but this presentation is just for making it easier to read.

Roc Kap Prev Sc1 Sc2 Sc3 Sc4 Sc5
GLM 0.047 0.050 0.046 0.106 0.107 0.109 0.113 0.109
GBM 0.072 0.092 0.070 0.115 0.118 0.119 0.119 0.118
GAM 0.068 0.074 0.067 0.100 0.098 0.098 0.100 0.097
CTA 0.168 0.167 0.175 0.175 0.184 0.182 0.185 0.181
ANN 0.205 0.225 0.173 0.196 0.206 0.197 0.210 0.200
MDA 0.138 0.136 0.140 0.139 0.154 0.149 0.144 0.150
MARS 0.329 0.271 0.211 0.387 0.368 0.379 0.366 0.374
RF 0.108 0.122 0.095 0.164 0.172 0.168 0.169 0.173
Roc NA NA NA 0.265 0.275 0.273 0.266 0.278
Kap NA NA NA 0.234 0.266 0.249 0.233 0.263
Prev NA NA NA 0.314 0.317 0.313 0.316 0.318.

You can identify 4 boxes: model/threshold (top left), model/scenarios (top right), threshold/scenarios(bottom
right) and threshold/threshold (bottom left which contains NA values meaning ’not available’).

Let’s take the first value on the top left corner of the matrix. The way to read is as follows:
only the projections concerning the GLM with the Roc evaluation method are taken into account.
That makes 5 projections, one for each scenario. The standard deviation is measured for each line
(i.e. site) of the data across these projections. The value printed in the matrix is the mean of the
standard deviations across all lines. It represents the variation due to the different scenarios.

You can see that the effect of the scenarios is more or less constant considering different thresh-
old methods (i.e. the 3 first values of each line) but is more varying across models (i.e. the first 8
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values of each column). The impact of different scenarios is the strongest for the MARS, a model
known for showing significant discrepancies when making projections. For this model, the threshold
method seems to have an even bigger influence.

NOTE: do keep in mind that standard deviations are influenced by how many values you use for
the calculation. The more you have, the bigger the chance to have a smoothing of the differences.
Also, for example, using extreme future scenarios will bring greater variations than with several
middle ones. Be careful when interpeting these values.

An example with repetitions

The help file of the ProbDensFunc function provides a full example. It is done with 20 repetitions for
half of the models to assess the variability in prediction making when the calibration of the model
is done on partial data. Only Sp163 is done. Please look in details the help file for an example of
the data preparation you should go through to run the function properly.

> example(ProbDensFunc)

As you will see on your own R session, it produces a series of plots that represents the variability
in the projections obtained.

0.12.2 Pseudo-absences

The majority of models need information about presences and absences for being able to determine
the suitable conditions for a given species. Some data sets, however, do not contain absences but
only presences and the construction of virtual absences is therefore needed. This is, for example,
the case of bird datasets where determining an absence can be rather tricky. The assumed absences
are called pseudo-absences for there is no field verification of this generated information.

These pseudo-absences are created by considering any point where the species was not recorded
and where the environmental conditions are known to cause potential absence. Feeding the models
with exceeding numbers of absences can significantly disturb the ability of models to discriminate
meaningful relationships between climate and species distributions. Moreover, running models on
such heavy databases is incredibly time consuming.

In addition, some of the chosen absences might unfortunately represent true presences (this is
particularlyl likely in the case of incomplete samples) and therefore the pseudo-absence data gives
false information for the estimation of the species-climate relationship. Hence, we propose various
strategies that seek to remove the spurious effects of using poorly seelcted pseudo-absences before
running the models.
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Use the pseudo.abs function as in the example below.

> pseudo.abs(coor=data[,1:2], status=data[,3], strategy=’per’, env=data[,4:16], distance=10000, plot=F,
species.name= ’Sp1’, acol=’grey80’, pcol=’red’, add.pres=T)

coor: a 2 columns matrix giving the coordinates of the points - presences and the whole set of
potential absences.
status: a vector containing the presence-absence (1-0) information for the coor data. Any point for
which a ”1” is not given will be taken as zero by default, thus considered as an absence.
strategy: (examples on the figure below)

- random: the absences will be taken at random from the whole set of potential absences
- per: stands for the perimeter to be drawn around the presences as a whole.
- perind: same as per but the perimeter is drawn individually around each presence. For this

strategy, information is needed on the distance wanted (distance argument)
- sre: sites where the environment is considered to be possibly favourable to the species (ac-

cording to the SRE model) are unselected as candidate sites for drawing pseudo-absences. For this
strategy, the env argument must be given.

distance: only used for the ”perind” strategy. The unit is the one of the coor data.

env: needed for the ”sre” strategy. A matrix giving information on the environment as a set of
variables (just like the one needed to run any model).

species.name: The output will be stored under the name given by this argument, plus the strat-
egy chosen separated by a dot. For example, if you give ”larix” in this argument and choose the sre
strategy, then the output is stored in a new object named: ”larix.sre”.

nb.points: an option for selecting only a limited number of absences at random. The default
(nb.points=NULL) keeps all the possible absences according to the strategy selected.

add.pres: if True, the output will be an object also containing the presence information (see section
below for further explanations).

plot: an option for plotting the outup set of presences and absences obtained.

acol and pcol: the colours wanted to plot the absences and presences respectively.

Example of the 4 available strategies in the region of the French Alps for Larix decidua miller.
The presences are in red and the pseudo-absences selected by each strategy are in grey.
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How to correctly use the pseudo.abs function output

The output of this function is an object containing the rows of the absences selected by a strategy
(and presences if add.pres was set to True) from the original full presence-absence dataset. Mind
that it will only contain a limited number of absences if you have used the nb.points argument. The
way to use the output correctly is the following.

Let’s say your original full data is stored in an object called ”fulldata” and you want to use the
sre strategy for selecting pseudo-absences. Run the pseudo.abs function:

> pseudo.abs(coor=data[,1:2], status=data[,3], strategy=’sre’, env=data[,4:16],
species.name= ’first.species’, add.pres=T)

An object called ”first.species.sre” will be produced containing all the possible absences but also
the presences (because I asked for it in the function call). The new data set will be called by:

> new.data.set <- fulldata[first.species.sre, ]

The appropriate lines of the original dataset are called, building a new dataset that was here
store under a new name. If you want to pick only 5,000 points from the absences strategy-selected
(supposedly that you have more available) or you don’t want the presences, the way to proceed is
exactly the same by setting the arguments with the appropriate values.

An example :

> pseudo.abs(coor=data[,1:2], status=data[,3], strategy=’perind’, distance=10000, plot=T,
species.name= ’Sp1’, nb.points=5000, add.pres=T)

And your dataset will look like this.
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0.13 Models’ description

0.13.1 GLM - Generalised Linear Models

This provides a less restrictive form than classic multiple regressions by providing error distributions
for the dependent variable other than normal and non-constant variance functions. If the response
with a predictor variable is not linear, then a transformation can be included where such poly-
nomial terms allow for the simulation of skewed and bimodal responses, -functions or hierarchical
sets of models. The associated shortcoming is that the nature of the relationship between species
and environmental gradients has to be known a priori. Furthermore, GLM is not always flexible
enough to approximate the true regression surface adequately. To select for the most parsimonious
model, BIOMOD uses an automatic stepwise model selection. The stepAIC function of Splus (li-
brary MASS) builds models by sequentially adding new terms and testing how much they improve
the fit, and by dropping terms that do not degrade the fit to a significant amount. The statistical
criteria used for selection of models of increasing fit could be either the Akaike Information Criterion
(AIC) or the Bayesian Information Criteria (BIC). The stepwise procedure allows the removal of
redundancy in variables and reduces multicolinearity (not always).

Three kinds of GLM can be run:
GLM Simple: Used only linear terms.
Y 1 = X1 + X2 + X3 + (X1 ∗X2) + (X2 ∗X3)
GLM Quad: Used linear, 2nd and 3rd order.
Y 1 = X1 + X12 + X13 + X22 + X33

GLM Poly: Use ordinary polynomial terms.
Y 1 = f(X1 + X12 + X13) + f(X2 + X22 + X23) +

If you select GLM, just type GLM = T inside the function call.
If you want to use polynomial terms, type TypeGLM = ”poly”, or quadratics, TypeGLM = ”quad”,
or using only linear terms, type TypeGLM = ”simple” If you want to use the AIC as a selection
criteria, just type Test = ”AIC”, or if you want to use the BIC, just type Test = ”BIC”.

Key reference.
McCullagh, P. and Nelder, J.A. (1989) Generalized linear models Chapman and Hall.

Key reference in ecology/biogeography.
Austin, M.P. and Meyers, J.A. (1996) Current approaches to modelling the environmental niche of
eucalypts: implication for management of forest biodiversity. Forest Ecology and Management, 85,
95-106.
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettman,
F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L., Loiselle, B.A., Manion, G., Moritz, C., Naka-
mura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S., Richardson, K., Schachetti
Pereira, R., Schapire, R.E., Soberón, J., Williams, S.E., Wisz, M., and Zimmermann, N.E. (2006)
Novel methods improve predictions of species’ distributions from occurrence data. Ecography, 29,
129-151.
Guisan, A. and Thuiller, W. (2005) Predicting species distribution: offering more than simple habi-
tat models. Ecology Letters, 8, 993-1009.
Guisan, A. and Zimmermann, N.E. (2000) Predictive habitat distribution models in Ecology. Eco-
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logical Modelling, 135, 147-186.
Thuiller, W., Araújo, M.B., and Lavorel, S. (2003) Generalized models versus classification tree
analysis: a comparative study for predicting spatial distributions of plant species at different scales.
Journal of Vegetation Science, 14, 669-680.
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0.13.2 GAM - Generalised Additive Models

This has been recently used in ecology to deal with various species response shapes to environmental
variables. GAMs are designed to capitalise on the strengths of GLMs without requiring the prob-
lematic steps of postulating a response curve shape or specific parametric response function. They
use a class of equations called ”smoothers” that attempt to generalise data into smooth curves by
local fitting to subsections of the data. GAMs are therefore useful when the relationship between
the variables are expected to be of a more complex form, not easily fitted by standard linear or
non-linear models, or where there is no a priori reason for using a particular model. The idea is to
’plot’ the value of the dependent variables (occurrences) along a single environmental variable, and
then to calculate a smooth curve that fits the data as closely as possible while being parsimonious.
The algorithm fits a smooth curve to each variable and then combines the results additively.
BIOMOD uses a cubic spline smoother, which is a collection of polynomials of degree less than or
equal to 3, defined on subintervals. A separate polynomial is fitted for each neighbourhood, thus
enabling the fitted curve to join all of the points. Similarly to GLM, BIOMOD uses an automated
stepwise process to select the most significant variables for each species.
Y = s(X1, 4) + s(X2, 4) + s(X3, 4).

The user needs to select the number of degree of freedom. By default, the value is 4. Just type
Spline = 4. In order words, 4 degrees of freedom is similar to a polynomial of degree 3.

Key reference.
Hastie, T.J. and Tibshirani, R. (1990) Generalized additive models Chapman and Hall, London.

Key reference in ecology/biogeography.
Austin, M.P. and Meyers, J.A. (1996) Current approaches to modelling the environmental niche of
eucalypts: implication for management of forest biodiversity. Forest Ecology and Management, 85,
95-106.
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettman,
F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L., Loiselle, B.A., Manion, G., Moritz, C., Naka-
mura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S., Richardson, K., Schachetti
Pereira, R., Schapire, R.E., Soberón, J., Williams, S.E., Wisz, M., and Zimmermann, N.E. (2006)
Novel methods improve predictions of species’ distributions from occurrence data. Ecography, 29,
129-151.
Guisan, A. and Thuiller, W. (2005) Predicting species distribution: offering more than simple habi-
tat models. Ecology Letters, 8, 993-1009.
Guisan, A. and Zimmermann, N.E. (2000) Predictive habitat distribution models in Ecology. Eco-
logical Modelling, 135, 147-186.
Thuiller, W., Araújo, M.B., and Lavorel, S. (2003) Generalized models versus classification tree
analysis: a comparative study for predicting spatial distributions of plant species at different scales.
Journal of Vegetation Science, 14, 669-680.
Yee, T.W. and Mitchell, N.D. (1991) Generalized additive models in plant ecology. Journal of
Vegetation Science, 2, 587-602.
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0.13.3 CTA - Classification Tree Analysis

This provides a good alternative to regression techniques. Like GAM, they do not rely on a pri-
ori hypotheses about the relationship between independent and dependent variables. This method
consists of recursive partitions of the dimensional space defined by the predictors into groups that
are as homogeneous as possible in terms of response. The tree is built by repeatedly splitting the
data, defined by a simple rule based on a single explanatory variable. At each split, the data are
partitioned into two exclusive groups, each of which is as homogeneous as possible. The algorithm
seeks to decrease the variance within the subset as much as possible. The heterogeneity of a node
can be interpreted as a deviance of a Gaussian model (regression tree) or of a multinomial model
(classification tree). The result is a graph representing the deviance function of the cost-complexity
parameter. The best tree is a trade-off between a high decrease of deviance and the smallest num-
ber of leaves. BIOMOD uses the rpart library to run the classification tree analysis. To control
the length of the tree, the program builds a nested sequence of sub-trees by recursively snipping
off the less important splits in terms of explained deviance. BIOMOD uses a procedure running
X-fold cross-validations to select the best trade-off between the number of leaves of the tree and the
explained deviance. The user can specify the number of cross-validation required.
If you want to use classification tree analysis model, just type Tree = TRUE. Then select the number
of cross-validation typing CV.tree = 10.
There is no optimal number of cross-validation. Note that high number increases the memory de-
mand.

Key reference.
Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984) Classification and regression trees
Chapman and Hall, New York.

Key reference in ecology/biogeography.
De’Ath, G. and Fabricius, K.E. (2000) Classification and regression trees: a powerful yet simple
technique for ecological data analysis. Ecology, 81, 3178-3192.
Thuiller, W., Vaydera, J., Pino, J., Sabaté, S., Lavorel, S., and Gracia, C. (2003) Large-scale en-
vironmental correlates of forest tree distributions in Catalonia (NE Spain). Global Ecology and
Biogeography, 12, 313-325.
Vayssières, M.P., Plant, R.E., and Allen-Diaz, B.H. (2000) Classification trees: an alternative non-
parametric approach for predicting species distributions. Journal of Vegetation Science, 11, 679-694.
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0.13.4 ANN - Artifical Neural Networks

Feed forward neural networks provide a flexible way to generalize linear regression functions. They
are non-linear regression models but with so many parameters that they are extremely flexible; flex-
ible enough to approximate any smooth function. The accuracy of ANN is mainly controlled by
two parameters: the amount of weight decay and the number of hidden unit. BIOMOD uses the
library nnet. As different runs can provide different results, the best amount of weight decay and
the number of units in the hidden layer [either equals to the number of variables (see Wierenga et
Kluytmans, 1994) or 75% of the number of variables (Venugopal et Baets, 1994)] is selected by using
N-fold cross-validation (3 by default). The user can also select the number of cross-validation. Note
than ANN is very time-consuming so avoid excessive number of cross-validations.

If you want to use ANN model, simply type ANN = T. Then select the number of cross-validation
typing CV.ann = 3.

Key reference.
Ripley, B.D. (1996) Pattern Recognition and Neural Networks Cambridge.

Key references in ecology/biogeography
Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J., and Aulagnier, S. (1996) Application
of neural networks to modelling nonlinear relationships in ecology. Ecological Modelling, 90, 39-52.
Luoto, M. and Hjort, J. (2005) Evaluation of current statistical approaches for predictive geomor-
phological mapping. Geomorphology, 67, 299-315.
Moisen, G.G. and Frescino, T.S. (2002) Comparing five modelling techniques for predicting forest
characteristics. Ecological Modelling, 157, 209-225.
Pearson, R.G., Dawson, T.P., Berry, P.M., and Harrison, P.A. (2002) SPECIES: A Spatial Evalua-
tion of Climate Impact on the Envelope of Species. Ecological Modelling, 154, 289-300.
Segurado, P. and Araújo, M.B. (2004) Evaluation of methods for modelling species probabilities of
occurrence. Journal of Biogeography, 31, 1555-1568.
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0.13.5 MDA - Mixture Discriminant Analysis

MDA is a method for classification (supervised) based on mixture models. It is an extension of
the well-known linear discriminant analysis. The mixture of normals is used to obtain a density of
estimation for each class. MDA has an implementation in the library mda. Very often, a single
Gaussian to model a class, as in LDA, is too restricted. MDA extends to a mixture of Gaussians.
Different regression methods can be used in the optimal scaling process. R-BIOMOD used mars (see
below) to increase the predictive power of the models.

Key reference.
Hastie, T., Tibshirani, R and Buja, A. (1994) Flexible Disriminant Analysis by Optimal Scoring,
JASA, 1255-1270.
Hastie, T. J., Buja, A., and Tibshirani, R. (1995) Penalized Discriminant Analysis. Annals of Statis-
tics.
Hastie, T. and Tibshirani, R. (1996) Discriminant Analysis by Gaussian Mixtures. JRSSB.

Key references in ecology/biogeography
Manel, D., Dias, J. M., Buckton, S. T. and Ormerod, S. J. (1999) Alternative methods for predicting
species distribution: an illustration with Himalayan river birds. Journal of Applied Ecology. 36,
734-747.
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0.13.6 MARS - Multivariate Adaptive Regression Splines

A major assumption of any linear process is that the coefficients are stable across all levels of the
explanatory variables and, in the case of a time series model, across all time periods. The MARS
model is a very useful method of analysis when it is suspected that the model’s coefficients have
different optimal values across different levels of the explanatory variables. There are many the-
oretical reasons consistent with this possibility occurring in many different applications including
energy, finance, economics, social science, and manufacturing. The MARS approach introduced by
Friedman (1991) will systematically identify and estimate a model whose coefficients differ based
on the levels of the explanatory variables. The breakpoints or thresholds that define a change in a
model coefficient is termed a spline knot and can be thought of similar to a piecewise regression.
An advantage of the MARS approach is that the spline knots are determined automatically by the
procedure. In addition, complex nonlinear interactions between variables can also be specified. The
MARS procedure is particularly powerful in situations where there are large numbers of right-hand
variables and low-order interaction effects. The equation switching model, in which the slope of the
model suddenly changes for a given value of the X variable, is a special case of the MARS model.
The MARS procedure can detect and fit models in situations where there are distinct breaks in the
model, such as are found if there is a change in the underlying probability density function of the
coefficients and where there are complex variable interactions.
R-BIOMOD uses the mars function from the mda library programmed by Trevor Hastie and Robert
Tibshirani. MARS automatically selects the amount of smoothing required for each predictor as
well as the interaction order of the predictors. It is considered a projection method where variable
selection is not a concern but the maximum level of interaction needs to be determined. Taking
a conservative approach, only two-level interactions are specified into R-BIOMOD (this could be
changed easily)
There is no specific parameterisation to modify here. More experience user could have a look at the
private functions.

Key reference.
J. Friedman, “Multivariate Additive Regression Splines”. Annals of Statistics, 1991

Key references in ecology/biogeography
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettman,
F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L., Loiselle, B.A., Manion, G., Moritz, C., Naka-
mura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S., Richardson, K., Schachetti
Pereira, R., Schapire, R.E., Soberón, J., Williams, S.E., Wisz, M., and Zimmermann, N.E. (2006)
Novel methods improve predictions of species’ distributions from occurrence data. Ecography, 29,
129-151.
Luoto, M. and Hjort, J. (2005) Evaluation of current statistical approaches for predictive geomor-
phological mapping. Geomorphology, 67, 299-315.
Moisen, G.G. and Frescino, T.S. (2002) Comparing five modelling techniques for predicting forest
characteristics. Ecological Modelling, 157, 209-225.
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0.13.7 GBM - Generalised Boosting Models (or boosting regression trees,
BRT)

Explanation adapted from Greg Ridgeway

Boosting: basic explanations Whereas GLM seeks to fit the single most parsimonious model that
best explains the relationship between species distribution and a set of ecological predictors, boost-
ing methods fit a large number of relatively simple models whose predictions are then combined to
give more robust estimates of the response. The algorithm used by BIOMOD is a boosted regression
tree (BRT, Friedman 2001, Ridgeway 1999) where each of the individual models consists of a simple
classification or regression trees, i.e. a rule based classifier that consists of recursive partitions of the
dimensional space defined by the predictors into groups that are as homogeneous as possible in terms
of response. The tree is built by repeatedly splitting the data, defined by a simple rule based on a
single explanatory variable. At each split, the data are partitioned into two exclusive groups, each
of which is as homogeneous as possible. Ordinary generalised linear models have the form: where
the algorithm seeks to estimate the ?j throughout various optimisation procedures (often maximum
likelihood estimation). Special cases of basis expansions like generalised additive models (GAM)
have also been using the same form: where h(x) is a non parametric function (e.g. spline). These
methods have so far fixed the hjs and then found ?j using standard techniques (e.g. ordinary least
squares regression - OLS). Regression trees also have this form where the hjs are indicator functions
indicating whether x falls into a particular ”box” and ? is just the terminal node means. Regres-
sion trees do not preselect the hjs nor J, rather they are estimated iteratively through the recursive
partitioning algorithm. GBM makes each hj take the form of a regression tree. They are fitted
incrementally so that h1(x) is the single best tree, h2(x) is the best tree that predicts the residuals
of h1(x), and so on (Friedman, et al. 2000). By this way, the BRT uses an iterative method for
developing a final model progressively adding trees to the model, while re-weighting the data to
emphasises cased poorly predicted by the previous trees.

In BIOMOD, the user has the possibility to set up the number of cross-validation to identify an
optimal number of trees that maximises the ability of a model to make accurate predictions to new,
independent sites while avoiding excessive model complexity. The user has also to define the maxi-
mum number of trees which are going to be fitted. There is no way to know a priori what is the best.
Between 2000 and 5000 is a good compromise. More importantly, BRT allowed the estimation of
the relative importance of each variable in the model. BIOMOD uses a permutation method, which
randomly permutes each predictor variable independently, and computes the associated reduction
in predictive performance.
For more details:
http://www.salford-systems.com/friedmankdd.php
www.i-pensieri.com/gregr/ ModernPrediction/L9boosting.pdf

R-BIOMOD uses the gbm library programmed by Greg Ridgeway. This package implements the
generalized boosted modelling framework. This implementation closely follows Friedman’s Gradient
Boosting Machine (Friedman, 2001). The interaction depth and the learning rate are set-up to 4
and 0.001 respectively (but could be easily changed).

Key reference.
Friedman, J.H. (2001) Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29, 1189-1232.
Friedman, J.H., Hastie, T.J., and Tibshirani, R. (2000) Additive logistic regression: a statistical
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view of boosting. Annals of Statistics, 28, 337-374.
Ridgeway, G. (1999) The state of boosting. Computing Science and Statistics, 31, 172-181.

Key references in ecology/biogeography
Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J.,
Huettman, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L., Loiselle, B. A., Manion, G.,
Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S., Richardson,
K., Schachetti Pereira, R., Schapire, R. E., Soberón, J., Williams, S. E., Wisz, M. and Zimmermann,
N. E. (2006) Novel methods improve predictions of species’ distributions from occurrence data.
Ecography. 29, 129-151.
Leathwick, J.R., Elith, J., Francis, M.P., Hastie, T.J., and Taylor, P. (2006) Variation in demersal
fish species richness in the oceans surroundings New Zealand: an analysis using boosted regression
trees. Marine Ecology Progress Series, In press.
Thuiller, W., Midgley, G.F., Rouget, M., and Cowling, R.M. (2006) Predicting patterns of plant
species richness in megadiverse South Africa. Ecography, 29, 733-744
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0.13.8 randomForest - Breiman and Cutler’s random forest for classifica-
tion and regression

The model randomForest implements Breiman’s random forest algorithm (based on Breiman and
Cutler’s original Fortran code) for classification and regression. It is implemented into the ”random-
Forest” library programmed by Andy Liaw and Matthew Wiener.
Random Forests grows many classification trees. To classify a new object from an input vector, put
the input vector down each of the trees in the forest. Each tree gives a classification, and we say the
tree ”votes” for that class. The forest chooses the classification having the most votes (over all the
trees in the forest).
Each tree is grown as follows:
If the number of cases in the training set is N, sample N cases at random - but with replacement,
from the original data. This sample will be the training set for growing the tree. If there are M
input variables, a number m << M is specified such that at each node, m variables are selected at
random out of the M and the best split on these m is used to split the node. The value of m is held
constant during the forest growing. Each tree is grown to the largest extent possible. There is no
pruning.
In the original paper on random forests, it was shown that the forest error rate depends on two
things:
- The correlation between any two trees in the forest. Increasing the correlation increases the forest
error rate.
- The strength of each individual tree in the forest. A tree with a low error rate is a strong classifier.
Increasing the strength of the individual trees decreases the forest error rate.
Reducing m reduces both the correlation and the strength. Increasing it increases both. Somewhere
in between is an ”optimal” range of m - usually quite wide. Using the oob error rate (see below)
a value of m in the range can quickly be found. This is the only adjustable parameter to which
random forests is somewhat sensitive.

Features of Random Forests.
It runs efficiently on large data bases.
It can handle thousands of input variables without variable deletion.
It gives estimates of what variables are important in the classification.
It generates an internal unbiased estimate of the generalization error as the forest building pro-
gresses.
It has methods for balancing error in class population unbalanced data sets.
It offers an experimental method for detecting variable interactions.

How random forests work. To understand and use the various options, further information about
how they are computed is useful. Most of the options depend on two data objects generated by
random forests. When the training set for the current tree is drawn by sampling with replacement,
about one-third of the cases are left out of the sample. This oob (out-of-bag) data is used to get a
running unbiased estimate of the classification error as trees are added to the forest. It is also used
to get estimates of variable importance.

The out-of-bag (oob) error estimate In random forests, there is no need for cross-validation or a
separate test set to get an unbiased estimate of the test set error. It is estimated internally, during
the run, as follows: Each tree is constructed using a different bootstrap sample from the original
data. About one-third of the cases are left out of the bootstrap sample and not used in the con-
struction of the kth tree. Put each case left out in the construction of the kth tree down the kth
tree to get a classification. In this way, a test set classification is obtained for each case in about
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one-third of the trees. At the end of the run, take j to be the class that got most of the votes every
time case n was oob. The proportion of times that j is not equal to the true class of n averaged over
all cases is the oob error estimate.

Variable importance In every tree grown in the forest, put down the oob cases and count the
number of votes cast for the correct class. Now randomly permute the values of variable m in the
oob cases and put these cases down the tree. Subtract the number of votes for the correct class in
the variable-m-permuted oob data from the number of votes for the correct class in the untouched
oob data. The average of this number over all trees in the forest is the raw importance score for
variable m. If the values of this score from tree to tree are independent, then the standard error can
be computed by a standard computation. The correlations of these scores between trees have been
computed for a number of data sets and proved to be quite low, therefore we compute standard
errors in the classical way, divide the raw score by its standard error to get a z-score, ands assign a
significance level to the z-score assuming normality. For each case, consider all the trees for which it
is oob. Subtract the percentage of votes for the correct class in the variable-m-permuted oob data
from the percentage of votes for the correct class in the untouched oob data.

R-BIOMOD uses 500 trees (this can be changed directly in the Biomod.Models function) and
extracts the importance of each selected variable.

Key References. Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32. Breiman,
L (2002), “Manual On Setting Up, Using, And Understanding Random Forests V3.1.

Key References in ecology/biogeography.
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettman,
F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L., Loiselle, B.A., Manion, G., Moritz, C., Naka-
mura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S., Richardson, K., Schachetti
Pereira, R., Schapire, R.E., Soberón, J., Williams, S.E., Wisz, M., and Zimmermann, N.E. (2006)
Novel methods improve predictions of species’ distributions from occurrence data. Ecography, 29,
129-151.
Prasad, A.M., Iverson, L.R., and Liaw, A. (2006) Newer classification and regression tree techniques:
bagging and random forests for ecological prediction. Ecosystems, 9, 181-199.
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0.13.9 SRE - Surface Range Envelops

This is a simple surface range envelop, similar to BioClim. The envelop is defined by identifying
maximum and minimum values for each input variable from the set of sites containing an observed
species’ presence. Any site with all variables falling between these maximum and minimum limits
is included within the range. This is the simplest method to model the distribution of species or
biomes. The Perc025 and Perc05 allow specifying a broad percentile range (2.5-97.5 % or 5-95 %
respectively) based on the chosen predictors. It allows removing the extreme presence (those who
are close to be outside the envelop) which might be considered as outliers.

Key reference.
Busby JR (1991) BIOCLIM - a bioclimate analysis and prediction system. In: Margules CR, Austin
MP, editors. Nature Conservation: Cost Effective Biological Surveys and Data Analysis. Canberra,
Australia: CSIRO. pp. 64-68.

Key References in ecology/biogeography.
Beaumont LJ and Hughes L (2002) Potential changes in the distribution of latitudinally restricted
Australian butterfly species in response to climate change. Global Change Biology 8:954-971.
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0.14 Predictive performance description

BIOMOD proposes three different evaluation procedures, namely the ROC curve, the True Skill
Statistic and the Kappa statistic. Any of them can be used independently but it is advisable to run
them all for cross-comparisons.

The accuracy of statistical models is often assessed by studying the agreement between observa-
tion and prediction using a confusion matrix (see below). Four fractions can be deduced from this
matrix.
- sensitivity (true positive fraction).
- specificity (true negative fraction).
- false positive fraction.
- false negative fraction.

Sensitivity can be described as the ratio of positive sites (presence) correctly predicted over the
number of positive sites in the sample. Specificity is the ratio of negatives sites (absence) correctly
predicted over the number of negative sites in the sample. False positive and false negative fractions
equal 1-specificity and 1-sensitivity respectively. To generate such a matrix and because a very
large fraction of the existing models produce predictions as a probability of presence, a probability
threshold must be decided to differentiate between a site (or cell) predicted to be occupied and a
site (or cell) predicted to be unoccupied.

BIOMOD is able to compute three different approaches.

Relative Operating Characteristic curve (ROC curve): This is not dependent on the threshold.
The ROC curve is a graphical method representing the relationship between the False Positive
fraction (1-specificity) and the sensitivity for a range of thresholds. If all predictions were possibly
expected by chance, the relation would be a 45ř line. Good model performance is characterised
by a curve that maximises sensitivity for low values of (1-specificity), i.e. when the curve passes
close to the upper left corner of the plot. The area between the 45ř line and the curve measures
discrimination, that is, the ability of the model to correctly classify a species as present or absent
in a given plot. This measure is therefore called the area under the curve (AUC). In the example
below, the GLM will show a better score than the MARS and is expected to be more reliable.
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Cohen’s Kappa statistic: This measure expresses the agreement not obtained randomly between
two qualitative variables (of which a binary variable is a particular case). Kappa is based on the
misclassification matrix which necessitates the calculation of a probability threshold. To do that,
BIOMOD calculated Kappa for all thresholds between zero to one. The greatest value was kept as
the best Kappa value. This measure expresses the best possible agreement.

The Hanssen-Kuiper Skill Score (KSS) or True Skill Statistic (TSS): This statistic, traditionally
used for assessing the accuracy of weather forecasts compares the number of correct forecasts, minus
those attributable to random guessing, to that of a hypothetical set of perfect forecasts.
For a 2x2 confusion matrix TSS is defined as:
TSS = sensitivity + specificity - 1

Like kappa, TSS takes into account both omission and commission errors, and success as a result
of random guessing, and ranges from -1 to +1, where +1 indicates perfect agreement and values of
zero or less indicate a performance no better than random. However, in contrast to kappa, TSS is
not affected by prevalence. It can also be seen that TSS is not affected by the size of the validation
set, and that two methods of equal performance have equal TSS scores. TSS is a special case of
kappa, given that the proportions of presences and absences in the validation set are equal.

Index for classifying model prediction accuracy.
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