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0.1 Introduction

BIOMOD is an acronym for BIOdiversity MODelling. BIOMOD has been originally developed at
the Centre d’Ecologie Fonctionnelle et Evolutive of the CNRS in Montpellier (France) and was partly
funded by the FP5 ATEAM European Project. The package was developed for species distribution
modelling but it can be used for modelling any kinds of distributions. The only restriction is that
the dependent variable should be coded in a presence-absence binary format.

What purpose was BIOMOD designed for
BIOMOD was originally created as a platform to gather various existing modelling techniques with
this simple question : why stick to a specific technic and on what criteria when several assessed ones
exist.

BIOMOD is a platform for ensemble forecasting of species distributions, enabling the explicit
treatment of model uncertainties and the examination of species-environment relationships. It in-
cludes the ability to model species distributions with several techniques, test models with a wide
range of approaches, project species distributions into the future using different climate scenarios
and dispersal functions, assess species temporal turnover, plot species response curves, and test the
strength of species interactions with predictor variables. Computationally, BIOMOD is a collection
of functions running within the R (CRAN) software (programmed in R language) and allows the
user to apply a range of statistical models to several dependent variables using a set of independent
variables.

0.2 Installation

To run BIOMOD, please use the latest version of R. A large number of libraries are also required:
rpart, MASS, gbm, gam, nnet, mda, randomForest, Design, Hmisc, reshape, plyr) and should be
installed before attempting to run BIOMOD.

Since march 2009, the BIOMOD functions are stored in a different format as it used to be. It is
now an R package that is to be downloaded from this web page :
http://r-forge.r-project.org/R/?group id=302

It contains all the functions BIOMOD needs to work and the datasets necessary to run the ex-
amples. All the functions scripts are available by simply typing their names in the R console. A new
user does not need to get into them, while more experienced users can eventually rewrite them and
modify some internal parameters if they want to, but this is at their own risks as many functions
have direct dependencies between them.
Once unzipped, you should put it in R’s library directory. This is the example of a general root to
get to that directory : C://Program Files//R//R-2.8.0//library. It will obviously depend on where
R is installed on your computer and on the R version you are using.

An extra file named ”BIOMOD-R User Functions” aims to help the user to run BIOMOD in opti-
mal conditions. This script presents pre-formatted calls to prepare the datasets, initialize BIOMOD,
and run the different models. This is the script recommended to use all the time. You may for that
reason modify it to your good will.
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0.2.1 Biomod Contents

BIOMOD is composed of a series of functions that enables to do species modelling :

running BIOMOD
Initial.State
Models
Projection
Ensemble.Forecasting

further BIOMOD steps
CurrentPred
PredictionBestModel
ProjectionBestModel
Biomod.Turnover
Biomod.RangeSize
Migration

plotting functions
level.plot
multiple.plot
response.plot

ProbDensFunc calculates density probabilities
pseudo.abs generating pseudo-absences
BiomodManual opens the pdf manual from R
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0.3 Models

BIOMOD attempts to span the different approaches that can be used in habitat suitability mod-
elling. It does not aim to be exhaustive but it aims to present the most commonly used modelling
approaches and the ones considered to be the most interesting and robust and which are imple-
mented in R.

With the rise of new powerful statistical techniques, the development of habitat suitability mod-
els has rapidly increased in ecology Guisan & Thuiller 2005; Araújo & Guisan 2006; Elith & Graham
2009. Such models are static and probabilistic in nature, since they statistically relate the distribu-
tion of population, species, communities or biodiversity to their contemporary environment. A wide
array of models has been developed to cover research aspects as diverse as macroecology, biogeog-
raphy, conservation biology, climate change, functional ecology and habitat or species management.

The function ”Models” runs the different models implemented in BIOMOD, as well as their eval-
uation using three different techniques (kappa statistic, True Skill Statistics and ROC curve). Nine
different models are currently implemented:

- Generalised Linear Models (GLM)
- Generalised Additive Models (GAM)
- Classification Tree Analysis (CTA)
- Artificial Neural Networks (ANN)
- Surface Range Envelope (SRE)
- Generalised Boosting Model (GBM)
- Breiman and Cutler’s random forest for classification and regression (RF)
- Flexible Discriminant Analysis (FDA)
- Multiple Adaptive Regression Splines (MARS)

The selection of each model is made by typing T (TRUE) or F (FALSE). There are also various
parameters that needs setting up for some of the models. See below for the explanation.

All the selected models (= T) will run for each species on the calibration dataset. Below you can
find a short explanation of each model and each parameter of the function. Note that they are not
explained in the order they appear in the Models function.

0.3.1 GLM - Generalised Linear Models

- GLM = T, TypeGLM = ”poly”, Test = ”BIC”: Run a stepwise GLM (TRUE), using linear (”sim-
ple”), quadratic (”quad”) or polynomial (”poly”) terms. The stepwise procedure either uses the AIC
or BIC criteria.

This provides a less restrictive form than classic multiple regressions by providing error distri-
butions for the dependent variable other than normal and non-constant variance functions. If the
response with a predictor variable is not linear, then a transformation can be included where such
polynomial terms allow for the simulation of skewed and bimodal responses, -functions or hierarchi-
cal sets of models. The associated shortcoming is that the nature of the relationship between species
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and environmental gradients has to be known a priori. Furthermore, GLM is not always flexible
enough to approximate the true regression surface adequately. To select for the most parsimonious
model, BIOMOD uses an automatic stepwise model selection. The stepAIC function of Splus (li-
brary MASS) builds models by sequentially adding new terms and testing how much they improve
the fit, and by dropping terms that do not degrade the fit to a significant amount. The statistical
criteria used for selection of models of increasing fit could be either the Akaike Information Criterion
(AIC) or the Bayesian Information Criteria (BIC). The stepwise procedure allows the removal of
redundancy in variables and reduces multicolinearity (not always).

Three kinds of GLM can be run:
GLM Simple: Used only linear terms.
Y 1 = X1 + X2 + X3 + (X1 ∗ X2) + (X2 ∗ X3)
GLM Quad: Used linear, 2nd and 3rd order.
Y 1 = X1 + X12 + X13 + X22 + X33

GLM Poly: Use ordinary polynomial terms.
Y 1 = f(X1 + X12 + X13) + f(X2 + X22 + X23) +

If you select GLM, just type GLM = T inside the function call.
If you want to use polynomial terms, type TypeGLM = ”poly”, or quadratics, TypeGLM = ”quad”,
or using only linear terms, type TypeGLM = ”simple” If you want to use the AIC as a selection
criteria, just type Test = ”AIC”, or if you want to use the BIC, just type Test = ”BIC”.

Key reference.
McCullagh, P. and Nelder, J.A. (1989) Generalized linear models Chapman and Hall.

Key reference in ecology/biogeography.
Austin, M.P. and Meyers, J.A. (1996) Current approaches to modelling the environmental niche of
eucalypts: implication for management of forest biodiversity. Forest Ecology and Management, 85,
95-106.
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettman,
F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L., Loiselle, B.A., Manion, G., Moritz, C., Naka-
mura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S., Richardson, K., Schachetti
Pereira, R., Schapire, R.E., Soberón, J., Williams, S.E., Wisz, M., and Zimmermann, N.E. (2006)
Novel methods improve predictions of species’ distributions from occurrence data. Ecography, 29,
129-151.
Guisan, A. and Thuiller, W. (2005) Predicting species distribution: offering more than simple habi-
tat models. Ecology Letters, 8, 993-1009.
Guisan, A. and Zimmermann, N.E. (2000) Predictive habitat distribution models in Ecology. Eco-
logical Modelling, 135, 147-186.
Thuiller, W., Araújo, M.B., and Lavorel, S. (2003) Generalized models versus classification tree
analysis: a comparative study for predicting spatial distributions of plant species at different scales.
Journal of Vegetation Science, 14, 669-680.
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0.3.2 GAM - Generalised Additive Models

- GAM = T, Spline = 4: Run a generalised additive model (GAM) with a spline function with a
degree of smoothing of 4 (similar to a polynomial of degree 3).

This has been recently used in ecology to deal with various species response shapes to environ-
mental variables. GAMs are designed to capitalise on the strengths of GLMs without requiring the
problematic steps of postulating a response curve shape or specific parametric response function.
They use a class of equations called ”smoothers” that attempt to generalise data into smooth curves
by local fitting to subsections of the data. GAMs are therefore useful when the relationship between
the variables are expected to be of a more complex form, not easily fitted by standard linear or
non-linear models, or where there is no a priori reason for using a particular model. The idea is to
’plot’ the value of the dependent variables (occurrences) along a single environmental variable, and
then to calculate a smooth curve that fits the data as closely as possible while being parsimonious.
The algorithm fits a smooth curve to each variable and then combines the results additively.
BIOMOD uses a cubic spline smoother, which is a collection of polynomials of degree less than or
equal to 3, defined on subintervals. A separate polynomial is fitted for each neighbourhood, thus
enabling the fitted curve to join all of the points. Similarly to GLM, BIOMOD uses an automated
stepwise process to select the most significant variables for each species.
Y = s(X1, 4) + s(X2, 4) + s(X3, 4).

The user needs to select the number of degree of freedom. By default, the value is 4. Just type
Spline = 4. In order words, 4 degrees of freedom is similar to a polynomial of degree 3.

Key reference.
Hastie, T.J. and Tibshirani, R. (1990) Generalized additive models Chapman and Hall, London.

Key reference in ecology/biogeography.
Austin, M.P. and Meyers, J.A. (1996) Current approaches to modelling the environmental niche of
eucalypts: implication for management of forest biodiversity. Forest Ecology and Management, 85,
95-106.
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettman,
F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L., Loiselle, B.A., Manion, G., Moritz, C., Naka-
mura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S., Richardson, K., Schachetti
Pereira, R., Schapire, R.E., Soberón, J., Williams, S.E., Wisz, M., and Zimmermann, N.E. (2006)
Novel methods improve predictions of species’ distributions from occurrence data. Ecography, 29,
129-151.
Guisan, A. and Thuiller, W. (2005) Predicting species distribution: offering more than simple habi-
tat models. Ecology Letters, 8, 993-1009.
Guisan, A. and Zimmermann, N.E. (2000) Predictive habitat distribution models in Ecology. Eco-
logical Modelling, 135, 147-186.
Thuiller, W., Araújo, M.B., and Lavorel, S. (2003) Generalized models versus classification tree
analysis: a comparative study for predicting spatial distributions of plant species at different scales.
Journal of Vegetation Science, 14, 669-680.
Yee, T.W. and Mitchell, N.D. (1991) Generalized additive models in plant ecology. Journal of Veg-
etation Science, 2, 587-602.
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0.3.3 GBM - Generalised Boosting Models (or boosting regression trees,
BRT)

- GBM = T, No.trees = 3000, CV.gbm = 5: Run a generalised boosting model (GBM) (= boosted
regression trees). The maximum number of trees can be user defined (default=3000). A cross-
validation procedure to select the optimal number of trees is implemented. The defaul number of
cross-validation is 5.

Explanation adapted from Greg Ridgeway

Boosting: basic explanations Whereas GLM seeks to fit the single most parsimonious model that
best explains the relationship between species distribution and a set of ecological predictors, boost-
ing methods fit a large number of relatively simple models whose predictions are then combined to
give more robust estimates of the response. The algorithm used by BIOMOD is a boosted regression
tree (BRT, Friedman 2001, Ridgeway 1999) where each of the individual models consists of a simple
classification or regression trees, i.e. a rule based classifier that consists of recursive partitions of the
dimensional space defined by the predictors into groups that are as homogeneous as possible in terms
of response. The tree is built by repeatedly splitting the data, defined by a simple rule based on a
single explanatory variable. At each split, the data are partitioned into two exclusive groups, each
of which is as homogeneous as possible. Ordinary generalised linear models have the form: where
the algorithm seeks to estimate the ?j throughout various optimisation procedures (often maximum
likelihood estimation). Special cases of basis expansions like generalised additive models (GAM)
have also been using the same form: where h(x) is a non parametric function (e.g. spline). These
methods have so far fixed the hjs and then found ?j using standard techniques (e.g. ordinary least
squares regression - OLS). Regression trees also have this form where the hjs are indicator functions
indicating whether x falls into a particular ”box” and ? is just the terminal node means. Regres-
sion trees do not preselect the hjs nor J, rather they are estimated iteratively through the recursive
partitioning algorithm. GBM makes each hj take the form of a regression tree. They are fitted
incrementally so that h1(x) is the single best tree, h2(x) is the best tree that predicts the residuals
of h1(x), and so on (Friedman, et al. 2000). By this way, the BRT uses an iterative method for
developing a final model progressively adding trees to the model, while re-weighting the data to
emphasises cased poorly predicted by the previous trees.

In BIOMOD, the user has the possibility to set up the number of cross-validation to identify an
optimal number of trees that maximises the ability of a model to make accurate predictions to new,
independent sites while avoiding excessive model complexity. The user has also to define the maxi-
mum number of trees which are going to be fitted. There is no way to know a priori what is the best.
Between 2000 and 5000 is a good compromise. More importantly, BRT allowed the estimation of
the relative importance of each variable in the model. BIOMOD uses a permutation method, which
randomly permutes each predictor variable independently, and computes the associated reduction
in predictive performance.
For more details:
http://www.salford-systems.com/friedmankdd.php
www.i-pensieri.com/gregr/ ModernPrediction/L9boosting.pdf

R-BIOMOD uses the gbm library programmed by Greg Ridgeway. This package implements the
generalized boosted modelling framework. This implementation closely follows Friedman’s Gradient
Boosting Machine (Friedman, 2001). The interaction depth and the learning rate are set-up to 4
and 0.001 respectively (but could be easily changed).
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Key reference.
Friedman, J.H. (2001) Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29, 1189-1232.
Friedman, J.H., Hastie, T.J., and Tibshirani, R. (2000) Additive logistic regression: a statistical
view of boosting. Annals of Statistics, 28, 337-374.
Ridgeway, G. (1999) The state of boosting. Computing Science and Statistics, 31, 172-181.

Key references in ecology/biogeography
Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J.,
Huettman, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L., Loiselle, B. A., Manion, G.,
Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S., Richardson,
K., Schachetti Pereira, R., Schapire, R. E., Soberón, J., Williams, S. E., Wisz, M. and Zimmer-
mann, N. E. (2006) Novel methods improve predictions of species’ distributions from occurrence
data. Ecography. 29, 129-151.
Leathwick, J.R., Elith, J., Francis, M.P., Hastie, T.J., and Taylor, P. (2006) Variation in demersal
fish species richness in the oceans surroundings New Zealand: an analysis using boosted regression
trees. Marine Ecology Progress Series, In press.
Thuiller, W., Midgley, G.F., Rouget, M., and Cowling, R.M. (2006) Predicting patterns of plant
species richness in megadiverse South Africa. Ecography, 29, 733-744.

0.3.4 CTA - Classification Tree Analysis

- CTA = T, CV.tree = 50: Run a classification tree analysis (CTA). The optimal length of the tree
is estimated using cross-validation (default=50).

This provides a good alternative to regression techniques. Like GAM, they do not rely on a pri-
ori hypotheses about the relationship between independent and dependent variables. This method
consists of recursive partitions of the dimensional space defined by the predictors into groups that
are as homogeneous as possible in terms of response. The tree is built by repeatedly splitting the
data, defined by a simple rule based on a single explanatory variable. At each split, the data are
partitioned into two exclusive groups, each of which is as homogeneous as possible. The algorithm
seeks to decrease the variance within the subset as much as possible. The heterogeneity of a node
can be interpreted as a deviance of a Gaussian model (regression tree) or of a multinomial model
(classification tree). The result is a graph representing the deviance function of the cost-complexity
parameter. The best tree is a trade-off between a high decrease of deviance and the smallest num-
ber of leaves. BIOMOD uses the rpart library to run the classification tree analysis. To control
the length of the tree, the program builds a nested sequence of sub-trees by recursively snipping
off the less important splits in terms of explained deviance. BIOMOD uses a procedure running
X-fold cross-validations to select the best trade-off between the number of leaves of the tree and the
explained deviance. The user can specify the number of cross-validation required.
If you want to use classification tree analysis model, just type Tree = TRUE. Then select the number
of cross-validation typing CV.tree = 10.
There is no optimal number of cross-validation. Note that high number increases the memory de-
mand.
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Key reference.
Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984) Classification and regression trees
Chapman and Hall, New York.

Key reference in ecology/biogeography.
De’Ath, G. and Fabricius, K.E. (2000) Classification and regression trees: a powerful yet simple
technique for ecological data analysis. Ecology, 81, 3178-3192.
Thuiller, W., Vaydera, J., Pino, J., Sabaté, S., Lavorel, S., and Gracia, C. (2003) Large-scale en-
vironmental correlates of forest tree distributions in Catalonia (NE Spain). Global Ecology and
Biogeography, 12, 313-325.
Vayssières, M.P., Plant, R.E., and Allen-Diaz, B.H. (2000) Classification trees: an alternative non-
parametric approach for predicting species distributions. Journal of Vegetation Science, 11, 679-694.

0.3.5 ANN - Artifical Neural Networks

- ANN = T, CV.ann = 2: Run an artificial neural network (ANN). As different runs can provide
different results, the best amount of weight decay and the number of units in the hidden layer is
selected by using N-fold cross-validation (3 by default). The user can also select the number of
cross-validations.

Feed forward neural networks provide a flexible way to generalize linear regression functions.
They are non-linear regression models but with so many parameters that they are extremely flexi-
ble; flexible enough to approximate any smooth function. The accuracy of ANN is mainly controlled
by two parameters: the amount of weight decay and the number of hidden unit. BIOMOD uses the
library nnet. As different runs can provide different results, the best amount of weight decay and
the number of units in the hidden layer [either equals to the number of variables (see Wierenga et
Kluytmans, 1994) or 75% of the number of variables (Venugopal et Baets, 1994)] is selected by using
N-fold cross-validation (3 by default). The user can also select the number of cross-validation. Note
than ANN is very time-consuming so avoid excessive number of cross-validations.

If you want to use ANN model, simply type ANN = T. Then select the number of cross-validation
typing CV.ann = 3.

Key reference.
Ripley, B.D. (1996) Pattern Recognition and Neural Networks Cambridge.

Key references in ecology/biogeography
Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J., and Aulagnier, S. (1996) Application
of neural networks to modelling nonlinear relationships in ecology. Ecological Modelling, 90, 39-52.
Luoto, M. and Hjort, J. (2005) Evaluation of current statistical approaches for predictive geomor-
phological mapping. Geomorphology, 67, 299-315.
Moisen, G.G. and Frescino, T.S. (2002) Comparing five modelling techniques for predicting forest
characteristics. Ecological Modelling, 157, 209-225.
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Pearson, R.G., Dawson, T.P., Berry, P.M., and Harrison, P.A. (2002) SPECIES: A Spatial Evalua-
tion of Climate Impact on the Envelope of Species. Ecological Modelling, 154, 289-300.
Segurado, P. and Araújo, M.B. (2004) Evaluation of methods for modelling species probabilities of
occurrence. Journal of Biogeography, 31, 1555-1568.

0.3.6 FDA - Flexible Discriminant Analysis

- FDA = T: Run a flexible discriminant analysis using the MARS function for the regression part
of the model.

FDA is a method for classification (supervised) based on mixture models. It is an extension of
the well-known linear discriminant analysis. The mixture of normals is used to obtain a density
of estimation for each class. FDA has an implementation in the library mda. Very often, a single
Gaussian to model a class, as in LDA, is too restricted. FDA extends to a mixture of Gaussians.
Different regression methods can be used in the optimal scaling process. R-BIOMOD used mars (see
below) to increase the predictive power of the models.

Key reference.
Hastie, T., Tibshirani, R and Buja, A. (1994) Flexible Disriminant Analysis by Optimal Scoring,
JASA, 1255-1270.
Hastie, T. J., Buja, A., and Tibshirani, R. (1995) Penalized Discriminant Analysis. Annals of Statis-
tics.
Hastie, T. and Tibshirani, R. (1996) Discriminant Analysis by Gaussian Mixtures. JRSSB.

Key references in ecology/biogeography
Manel, D., Dias, J. M., Buckton, S. T. and Ormerod, S. J. (1999) Alternative methods for predicting
species distribution: an illustration with Himalayan river birds. Journal of Applied Ecology. 36,
734-747.

0.3.7 MARS - Multivariate Adaptive Regression Splines

- MARS = T: Run a multivariate adaptive regression spline.

A major assumption of any linear process is that the coefficients are stable across all levels of
the explanatory variables and, in the case of a time series model, across all time periods. The
MARS model is a very useful method of analysis when it is suspected that the model’s coefficients
have different optimal values across different levels of the explanatory variables. There are many
theoretical reasons consistent with this possibility occurring in many different applications including
energy, finance, economics, social science, and manufacturing. The MARS approach introduced by
Friedman (1991) will systematically identify and estimate a model whose coefficients differ based
on the levels of the explanatory variables. The breakpoints or thresholds that define a change in a
model coefficient is termed a spline knot and can be thought of similar to a piecewise regression.
An advantage of the MARS approach is that the spline knots are determined automatically by the
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procedure. In addition, complex nonlinear interactions between variables can also be specified. The
MARS procedure is particularly powerful in situations where there are large numbers of right-hand
variables and low-order interaction effects. The equation switching model, in which the slope of the
model suddenly changes for a given value of the X variable, is a special case of the MARS model.
The MARS procedure can detect and fit models in situations where there are distinct breaks in the
model, such as are found if there is a change in the underlying probability density function of the
coefficients and where there are complex variable interactions.
R-BIOMOD uses the mars function from the mda library programmed by Trevor Hastie and Robert
Tibshirani. MARS automatically selects the amount of smoothing required for each predictor as
well as the interaction order of the predictors. It is considered a projection method where variable
selection is not a concern but the maximum level of interaction needs to be determined. Taking
a conservative approach, only two-level interactions are specified into R-BIOMOD (this could be
changed easily)
There is no specific parameterisation to modify here. More experience user could have a look at the
private functions.

Key reference.
J. Friedman, “Multivariate Additive Regression Splines”. Annals of Statistics, 1991

Key references in ecology/biogeography
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettman,
F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L., Loiselle, B.A., Manion, G., Moritz, C., Naka-
mura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S., Richardson, K., Schachetti
Pereira, R., Schapire, R.E., Soberón, J., Williams, S.E., Wisz, M., and Zimmermann, N.E. (2006)
Novel methods improve predictions of species’ distributions from occurrence data. Ecography, 29,
129-151.
Luoto, M. and Hjort, J. (2005) Evaluation of current statistical approaches for predictive geomor-
phological mapping. Geomorphology, 67, 299-315.
Moisen, G.G. and Frescino, T.S. (2002) Comparing five modelling techniques for predicting forest
characteristics. Ecological Modelling, 157, 209-225.

0.3.8 randomForest - Breiman and Cutler’s random forest for classifica-
tion and regression

- RF = T: Run a random forest model.

The model randomForest implements Breiman’s random forest algorithm (based on Breiman and
Cutler’s original Fortran code) for classification and regression. It is implemented into the ”random-
Forest” library programmed by Andy Liaw and Matthew Wiener.
Random Forests grows many classification trees. To classify a new object from an input vector, put
the input vector down each of the trees in the forest. Each tree gives a classification, and we say the
tree ”votes” for that class. The forest chooses the classification having the most votes (over all the
trees in the forest).
Each tree is grown as follows:
If the number of cases in the training set is N, sample N cases at random - but with replacement,
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from the original data. This sample will be the training set for growing the tree. If there are M
input variables, a number m << M is specified such that at each node, m variables are selected at
random out of the M and the best split on these m is used to split the node. The value of m is held
constant during the forest growing. Each tree is grown to the largest extent possible. There is no
pruning.
In the original paper on random forests, it was shown that the forest error rate depends on two
things:
- The correlation between any two trees in the forest. Increasing the correlation increases the forest
error rate.
- The strength of each individual tree in the forest. A tree with a low error rate is a strong classifier.
Increasing the strength of the individual trees decreases the forest error rate.
Reducing m reduces both the correlation and the strength. Increasing it increases both. Somewhere
in between is an ”optimal” range of m - usually quite wide. Using the oob error rate (see below)
a value of m in the range can quickly be found. This is the only adjustable parameter to which
random forests is somewhat sensitive.

Features of Random Forests.
It runs efficiently on large data bases.
It can handle thousands of input variables without variable deletion.
It gives estimates of what variables are important in the classification.
It generates an internal unbiased estimate of the generalization error as the forest building pro-
gresses.
It has methods for balancing error in class population unbalanced data sets.
It offers an experimental method for detecting variable interactions.

How random forests work. To understand and use the various options, further information about
how they are computed is useful. Most of the options depend on two data objects generated by
random forests. When the training set for the current tree is drawn by sampling with replacement,
about one-third of the cases are left out of the sample. This oob (out-of-bag) data is used to get a
running unbiased estimate of the classification error as trees are added to the forest. It is also used
to get estimates of variable importance.

The out-of-bag (oob) error estimate In random forests, there is no need for cross-validation or a
separate test set to get an unbiased estimate of the test set error. It is estimated internally, during
the run, as follows: Each tree is constructed using a different bootstrap sample from the original
data. About one-third of the cases are left out of the bootstrap sample and not used in the con-
struction of the kth tree. Put each case left out in the construction of the kth tree down the kth
tree to get a classification. In this way, a test set classification is obtained for each case in about
one-third of the trees. At the end of the run, take j to be the class that got most of the votes every
time case n was oob. The proportion of times that j is not equal to the true class of n averaged over
all cases is the oob error estimate.

Variable importance In every tree grown in the forest, put down the oob cases and count the
number of votes cast for the correct class. Now randomly permute the values of variable m in the
oob cases and put these cases down the tree. Subtract the number of votes for the correct class in
the variable-m-permuted oob data from the number of votes for the correct class in the untouched
oob data. The average of this number over all trees in the forest is the raw importance score for
variable m. If the values of this score from tree to tree are independent, then the standard error can
be computed by a standard computation. The correlations of these scores between trees have been
computed for a number of data sets and proved to be quite low, therefore we compute standard
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errors in the classical way, divide the raw score by its standard error to get a z-score, ands assign a
significance level to the z-score assuming normality. For each case, consider all the trees for which it
is oob. Subtract the percentage of votes for the correct class in the variable-m-permuted oob data
from the percentage of votes for the correct class in the untouched oob data.

R-BIOMOD uses 500 trees (this can be changed directly in the Biomod.Models function) and
extracts the importance of each selected variable.

Key References. Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32. Breiman,
L (2002), “Manual On Setting Up, Using, And Understanding Random Forests V3.1.

Key References in ecology/biogeography.
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettman,
F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L., Loiselle, B.A., Manion, G., Moritz, C., Naka-
mura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S., Richardson, K., Schachetti
Pereira, R., Schapire, R.E., Soberón, J., Williams, S.E., Wisz, M., and Zimmermann, N.E. (2006)
Novel methods improve predictions of species’ distributions from occurrence data. Ecography, 29,
129-151.
Prasad, A.M., Iverson, L.R., and Liaw, A. (2006) Newer classification and regression tree techniques:
bagging and random forests for ecological prediction. Ecosystems, 9, 181-199.

0.3.9 SRE - Surface Range Envelops

- SRE = T, quant=0.025: Run an rectilinear surface range envelop (=BIOCLIM) using the per-
centile 0.025 or 0.05 as recommended by Nix or Busby (but any value will do).

This is a simple surface range envelop, similar to BioClim. The envelop is defined by identifying
maximum and minimum values for each input variable from the set of sites containing an observed
species’ presence. Any site with all variables falling between these maximum and minimum limits
is included within the range. This is the simplest method to model the distribution of species or
biomes. The quant argument allows specifying a broad percentile range (2.5-97.5 % for the 0.025
default value) based on the chosen predictors. It allows removing the extreme presence (those who
are close to be outside the envelop) which might be considered as outliers.

In contrary with all other algorithm present in BIOMOD, there is no model produced. Note
also that there is no ROC evaluation available, since SRE does not provide probability values but
directly the presence-absence prediction of the species.

Key reference.
Busby JR (1991) BIOCLIM - a bioclimate analysis and prediction system. In: Margules CR, Austin
MP, editors. Nature Conservation: Cost Effective Biological Surveys and Data Analysis. Canberra,
Australia: CSIRO. pp. 64-68.

Key References in ecology/biogeography.
Beaumont LJ and Hughes L (2002) Potential changes in the distribution of latitudinally restricted

14



Australian butterfly species in response to climate change. Global Change Biology 8:954-971.
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0.4 The calibration procedure

The next key issue in modelling is the calibration procedure of the models with the constant effort
to obtain a reliable estimation of their performance.

Ideally, one should always evaluate the predictive performance of a model using independent
data, i.e. data from which the model didn’t obtain any information to build itself. this would enable
to reliably test its predictive accuracy on a new dataset and certify its efficiency. Unfortunately, this
kind of information is rarely accessible in species distribution modelling. An alternative to assess
the predictive performance of the models is to split the original data in calibration (training) and
evaluation (testing) datasets : one part is used to feed the model, the other, kept aside and therefore
new to the model, is used to check the models’ efficiency to predict the right value. As a conse-
quence, this method consists of a trade-off between the amount of data used for the construction of
the model and the accuracy of the evaluation measure.

0.4.1 Repetitions

This splitting procedure, widely used in the modelling world, nevertheless brings a major issue : the
subsequent randomness of the data selection used for calibration and its impact on the modelling
quality.

To obtain a reliable way of evaluating the models while not influencing the prediction making
by the random splitting of the data, BIOMOD proposes to built a series of models. The above cali-
bration/evaluation procedure is repeated a certain number of times to perform a reliable evaluation
as an attempt to free ourselves from the random effect (the mean result is extracted). Then a final
model is built without splitting the data, i.e. 100 % of the data available is used, thus using all the
information available and not having any random effect in the prediction making.

This method is also a good way of assessing for uncertainty. While many modellers are satisfied
with running only their models once, we propose to build a large number of models to measure the
sensitivity of the models to the initial conditions (the input data given). Each model built is kept
and can be used to later render projections.

pros : It gives a more robust estimate of the predictive performance of each selected model and
it also provides an assessment of the sensitivity of the model to the initial conditions, i.e. to the
species distribution data.

cons : it lengthens the modelling time needed to build the models (it can be an exceeding amount
of time if not done carefully).

main interest : adds variability in the predictions when several runs are made due to the ran-
dom effect of selecting the data, i.e. each model is not build using the same data, representing the
sensibility of the models on the input data.
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The combination of the two arguments below will determine in which way the models will be
built and tested.

- NbRunEval: number of random data splitting procedure for creating calibration and evaluation
datasets ; a model will be built from each one of them. If set to zero, only the final 100 % model is
built.

- DataSplit: the ratio used for splitting the original database in calibration and evaluation sub-
sets (value to give is the % awarded for calibration). A 70/30 % partitining is recommended as
commonly used (Araújo, et al. 2005b, Guisan and Thuiller 2005).

Example with the fda and species Sp281
Here is an example of the effect of randomness in the prediction making (note that here the

prevalence isn’t kept, the relative number of presences and absences will vary for each model)

> #to call our dataset
> library(BIOMOD)

Design library by Frank E Harrell Jr

Type library(help=’Design’), ?DesignOverview, or ?Design.Overview’)
to see overall documentation.

Loaded gbm 1.6-3

> data(Sp.Env)
> data(CoorXY)
> store <- matrix(nr=2264, nc=0)
> for(i in 1:10){
rand <- sample(2264, 100)
model <- fda("Sp281 ~Var1 + Var2 + Var3 + Var4 + Var5 + Var6 + Var7", data=Sp.Env[rand,], method=mars)
store <- cbind(store, predict(model, Sp.Env[,4:10], type="post")[,2])
}

> for(i in 1:10){
x11()
par(mar=c(1,1,1,1))
level.plot(store[,i], CoorXY)
}

> par(mfrow=c(2,5))
> par(mar=c(1,1,1,1))
> for(i in 1:10) level.plot(store[,i], CoorXY, show.scale=F, cex=0.85)
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level plot

This is the same model (FDA) and the same datasets used, only the initial calibration data is
changing. The impact on the geographical patterns can clearly be seen.

NOTE : Another issue that has shown an influence on the prediction is the prevalence of the
data, i.e. the ratio between the total number of presences and the number of absences. In all proce-
dures, BIOMOD ensures that the prevalence of the original data is conserved in the calibration and
evaluation datasets.

0.4.2 Pseudo-absences

All the models in BIOMOD need information about presences and absences for being able to deter-
mine the suitable conditions for a given species. Some datasets, however, do not contain absences
but only presences and the construction of virtual absences is therefore needed. This is, for example,
the case of bird datasets where determining an absence can be rather tricky. The assumed absences
are called pseudo-absences for there is no field verification of this generated information.

These pseudo-absences are created by considering any point where the species was not recorded
and where the environmental conditions are known to cause potential absence. Feeding the models
with exceeding numbers of absences can significantly disturb the ability of models to discriminate
meaningful relationships between climate and species distributions. Moreover, running models on
such heavy databases is incredibly time consuming.

In addition, some of the chosen absences might unfortunately represent true presences (this is
particularly likely in the case of incomplete samples) and therefore the pseudo-absence data gives
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false information for the estimation of the species-climate relationship. Hence, we propose various
strategies that seek to remove the spurious effects of using poorly selected pseudo-absences before
running the models.

You can use the function manually or choose to run it within the Models() function. the
pseudo.abs function as in the example below.

> #use it individually
> pseudo.abs(coor=data[,1:2], status=data[,3], strategy=’per’, env=data[,4:16], distance=10000, plot=F,

species.name= ’Sp1’, acol=’grey80’, pcol=’red’, add.pres=T)
> #or in Models()
> Models(...,

NbRepPA=2, strategy="circles", coor=CoorXY, distance=2, nb.absences=1000)

coor: a 2 columns matrix giving the coordinates of the points - presences and the whole set of
potential absences.
status: a vector containing the presence-absence (1-0) information for the coor data. Any point for
which a ”1” is not given will be taken as zero by default, thus considered as an absence.
strategy: (examples on the figure below)

The 4 available strategies in the region of the French Alps for Larix decidua miller. The pres-
ences are in red and the pseudo-absences selected by each strategy are in grey.

- random: the absences will be taken at random from the whole set of potential absences
- per: stands for the perimeter to be drawn around the presences as a whole.
- perind: same as per but the perimeter is drawn individually around each presence. For this strat-
egy, information is needed on the distance wanted (distance argument)
- sre: sites where the environment is considered to be possibly favourable to the species (according
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to the SRE model) are unselected as candidate sites for drawing pseudo-absences. For this strategy,
the env argument must be given.

distance: only used for the ”perind” strategy. The unit is the one of the coor data.

env: needed for the ”sre” strategy. A matrix giving information on the environment as a set of
variables (just like the one needed to run any model).

species.name: The output will be stored under the name given by this argument, plus the strat-
egy chosen separated by a dot. For example, if you give ”larix” in this argument and choose the sre
strategy, then the output is stored in a new object named: ”larix.sre”.

nb.points: an option for selecting only a limited number of absences at random. The default
(nb.points=NULL) keeps all the possible absences according to the strategy selected.

add.pres: if True, the output will be an object also containing the presence information (see section
below for further explanations).

plot: an option for plotting the outup set of presences and absences obtained.

acol and pcol: the colours wanted to plot the absences and presences respectively.

Usage inside the Models() function

There are less arguments to inform as some information is already known by BIOMOD (status,
env, species.name) and others useless (plotting arguments). There is nevertheless a new argument
NbRepPA.

This argument is to be correlated with the usage of repetitions for the calibration : once the
pool of potential pseudo-absences has benn definied by the strategy selected, a user-definied number
(Nb.absences argument) is randomly selected from this pool. We therefore have a random effect in
the calibration process coming from the creation of pseudo-absences for our data. The NbRepPA
argument will define a number of repetitions for randomly withdrawing absences to constitute the
calibration datasets. Do consider that the total number of repetitions will be a multiplication of the
two repetion arguments :
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Manual usage : How to correctly use the pseudo.abs function output

The output of this function is an object containing the rows of the absences selected by a strategy
(and presences if add.pres was set to True) from the original full presence-absence dataset. Mind
that it will only contain a limited number of absences if you have used the nb.points argument. The
way to use the output correctly is the following.

Let’s say your original full data is stored in an object called ”fulldata” and you want to use the
sre strategy for selecting pseudo-absences. Run the pseudo.abs function:

> pseudo.abs(coor=data[,1:2], status=data[,3], strategy=’sre’, env=data[,4:16],
species.name= ’first.species’, add.pres=T)

An object called ”first.species.sre” will be produced containing all the possible absences but also
the presences (because I asked for it in the function call). The new data set will be called by:

> new.data.set <- fulldata[first.species.sre, ]

The appropriate lines of the original dataset are called, building a new dataset that was here
store under a new name. If you want to pick only 5,000 points from the absences strategy-selected
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(supposedly that you have more available) or you don’t want the presences, the way to proceed is
exactly the same by setting the arguments with the appropriate values.

An example :

> pseudo.abs(coor=data[,1:2], status=data[,3], strategy=’perind’, distance=10000, plot=T,
species.name= ’Sp1’, nb.points=5000, add.pres=T)

And your dataset will look like this.

0.4.3 Weights

The Yweights arguments enables the user to set extra information for the response variables (a
matrix with N columns for the N species). This is similar to an index of detectability for each site,
which allows users to give stronger weights to more reliable presences or absences. It can be scaled
up and put as a weight in the modeling process. For more information, see how weights is working
in R.
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0.5 Evaluation of the predictive performance

BIOMOD proposes three different evaluation procedures, namely the ROC curve, the True Skill
Statistic (TSS) and the Kappa statistic. Any of them can be used independently but it is advisable
to run them all for cross-comparisons.

- ROC = T: Evaluate the models using the Area Under the ROC (receiver operating character-
istic curve) Curve (AUC)
- Optimized.Threshold.ROC = T: ROC is a threshold independent method. However, it is possible
to find the optimal threshold maximising the percentage of presence and absence correctly predicted.
this threshold can be used to transform the probabilities of occurrence from models into presence
and absence.
- Kappa = T: Evaluate the models using the Cohen’s Kappa statistic. The treshold optimising the
Kappa is kept.
- TSS = T: Evaluate the models using the True Skill Statistic (TSS). The treshold optimising the
TSS is kept.

The accuracy of statistical models is often assessed by studying the agreement between observa-
tion and prediction using a confusion matrix (see below). Four fractions can be deduced from this
matrix.
- sensitivity (true positive fraction).
- specificity (true negative fraction).
- false positive fraction.
- false negative fraction.

Sensitivity can be described as the ratio of positive sites (presence) correctly predicted over the
number of positive sites in the sample. Specificity is the ratio of negatives sites (absence) correctly
predicted over the number of negative sites in the sample. False positive and false negative fractions
equal 1-specificity and 1-sensitivity respectively. To generate such a matrix and because a very
large fraction of the existing models produce predictions as a probability of presence, a probability
threshold must be decided to differentiate between a site (or cell) predicted to be occupied and a
site (or cell) predicted to be unoccupied.
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0.5.1 Relative Operating Characteristic curve (ROC curve)

This is not dependent on the threshold. The ROC curve is a graphical method representing the
relationship between the False Positive fraction (1-specificity) and the sensitivity for a range of
thresholds. If all predictions were possibly expected by chance, the relation would be a 45ř line.
Good model performance is characterised by a curve that maximises sensitivity for low values of (1-
specificity), i.e. when the curve passes close to the upper left corner of the plot. The area between
the 45ř line and the curve measures discrimination, that is, the ability of the model to correctly
classify a species as present or absent in a given plot. This measure is therefore called the area under
the curve (AUC). In the example below, the GLM will show a better score than the MARS and is
expected to be more reliable.

0.5.2 Cohen’s Kappa statistic

This measure expresses the agreement not obtained randomly between two qualitative variables (of
which a binary variable is a particular case). Kappa is based on the misclassification matrix which
necessitates the calculation of a probability threshold. To do that, BIOMOD calculated Kappa for
all thresholds between zero to one. The greatest value was kept as the best Kappa value. This
measure expresses the best possible agreement.

0.5.3 The Hanssen-Kuiper Skill Score (KSS) or True Skill Statistic (TSS)

This statistic, traditionally used for assessing the accuracy of weather forecasts compares the number
of correct forecasts, minus those attributable to random guessing, to that of a hypothetical set of
perfect forecasts.
For a 2x2 confusion matrix TSS is defined as:
TSS = sensitivity + specificity - 1

Like kappa, TSS takes into account both omission and commission errors, and success as a result
of random guessing, and ranges from -1 to +1, where +1 indicates perfect agreement and values of
zero or less indicate a performance no better than random. However, in contrast to kappa, TSS is
not affected by prevalence. It can also be seen that TSS is not affected by the size of the validation
set, and that two methods of equal performance have equal TSS scores. TSS is a special case of
kappa, given that the proportions of presences and absences in the validation set are equal.
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Index for classifying model prediction accuracy.

0.5.4 Importance of each variable

It is always difficult to compare predictions from different models as they do not rely on the same
algorithms, techniques and assumptions about the expected relationship between the reponse and
the variables, i.e. the species distributions and the environment. With a permutation procedure,
BIOMOD proposes another way to examine the importance of the variables in the models. We
extract a measure of relative importance of each variable that is independent of the model. Note
that the importance of the variables is only calculated for the final model.

Procedure: once the models are trained (i.e. calibrated), a standard prediction is made. Then,
one of the variables is randomized and a new prediction is made. The correlation score between that
new prediction and the standard prediction is calculated and is considered to give an estimation of
the variable importance in the model :

> model <- glm(Sp281 ~ Var1 + Var2 + Var3 + Var4 + Var5 + Var6 + Var7, data=Sp.Env)
> Pred <- predict(model, Sp.Env[,4:10], type="response")

> Sp.Env2 <- Sp.Env
> Sp.Env2[,4] <- sample(Sp.Env[,4])
> Pred2 <- predict(model, Sp.Env2[,4:10], type="response")
> par(mfrow=c(1,2))
> level.plot(Pred, CoorXY, show.scale=F, cex=0.8)
> level.plot(Pred2, CoorXY, show.scale=F, cex=0.8)
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> cor(Pred, Pred2)

[1] 0.9124

> plot(Pred, Pred2)
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A good correlation score between the two predictions, i.e. they only slightly differ, shows that the
randomized variable has little influence on the prediction making and is considered not important
for the model in its prediction.
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> Sp.Env2 <- Sp.Env
> Sp.Env2[,6] <- sample(Sp.Env[,6])
> Pred3 <- predict(model, Sp.Env2[,4:10], type="response")
> plot(Pred, Pred3)
> cor(Pred, Pred3)

[1] 0.186
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In contrary, a low correlation means a significant difference in the prediction making, showing
an importance of that variable for the model.

NOTE : in the VarImportance output, the values given correspond to 1 minus the correlation score.
High values will therefore reveal a high importance of the variable whereas a value close to 0 will
reveal no importance.

Score of variable 1 (Pred2) : 1 - cor(Pred, Pred2) = 0,09 meaning low influence
Score of variable 2 (Pred3) : 1 - cor(Pred, Pred3) = 0,77 meaning high influence

This step is repeated n times for each variable independently and the means are kept for each
variable.

NOTE : The obtained correlation can be negative. We consider these cases to represent an even
bigger influence of the permutated variable on the prediction than with a correlation of 0. The
variable importance estimation will therefore still be given as 1 minus the correlation score and, as
a consequence, turn into values higher than 1. These cases are not so rare.
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0.6 Assessment of uncertainty and Models’ optimisation

BIOMOD has been programmed to allow direct comparisons between models during the process.
This provides a flexible way to derive optimised predictions.

The function PredictionBestModel will check, iteratively for each run, which model has the
highest predictive accuracy according to the selected method (Roc, Kappa or TSS). Type T (TRUE)
or F (FALSE) for each model you want for the optimisation. Note that if you have run the Models
function using all models, it is not necessary to run the optimisation on all the models, but only the
one which might be of interest.

The function will create new datasets prefixed PredBestModelByX (with X being replaced by the
evaluation method used, Kappa, Roc or TSS) where the predictions on the original dataset will be
stored according to the model selected. For instance, the first species could be predicted using GLM,
while the second one by GAM. The selected model, the predictive accuracy, the associated thresh-
old as well as the sensitivity and specificity of the selected models are stored in the new dataset:
BestModelByRoc. One could choose only the optimisation run on only one evaluation method (e.g.
method=’Kappa’ ), or all (e.g. method=’all’ ). Two additional options can also be selected : as
the previous option generates probability values, users who want binary transformation can type:
Bin.trans = T. In this case, new datasets will be created depending on the evalution method used,
e.g. PredBestModelByRoc.BinRoc.

If users want probability values above the threshold used to predict presences to be kept (i.e.,
only probabilities below the threshold are set to zero, the others are left as they were), then type:
Filt.trans = T.

28



0.7 Ensemble Forecasting

One difficulty with the use of species distribution models is that the number of techniques available is
large and is increasing steadily, making it difficult for ’non-aficionados’ to select the most appropriate
methodology for their needs ((Elith, J. et al. 2006, Heikkinen, R. et al. 2006)). Recent analyses
have also demonstrated that discrepancies between different techniques can be very large, making
the choice of the appropriate model even more difficult. This is particularly true when models are
used to project distributions of species into independent situations, which is the case of projections
of species distributions under future climate change scenarios ((Pearson, R. G. et al. 2006, Thuiller,
W. 2004)). A solution for this inter-model variability is to fit ensembles of forecasts by simulat-
ing across more than one set of initial conditions, model classes, model parameters, and boundary
conditions (for a review see Araújo & New 2007) and analyse the resulting range of uncertainties
with bounding box, consensus and probabilistic methodologies rather than lining up with a single
modelling outcome ((Araújo, M. B. and New, M. 2007, Thuiller, W. 2007)). BIOMOD offers such a
platform for ensemble forecasting.

Several approaches are available for combining ensembles of models in BIOMOD. Here is an
example of the use of the Ensemble.Forecasting function as well as some details of the different
strategies:

Four straightforward means of ’committee averaging’ (giving the same weight to all the elements)
are done across all the models for each run:

- on the probabilities
- on the binary projection according to the Roc method,
- on the binary projection according to the Kappa method,
- on the binary projection according to the TSS method.

A weighted approach is also available that ranks the models using their evaluation score.

Making a mean on the 0-1 projections gives some sort of probability of presence. For example,
for a given site and with the TSS method, 6 projections give a ”1” and 2 give a ”0”. The mean will
be 0.75. It is extracted from binary projection and it is therefore not possible to determine a prior
threshold. Conversion into binary is nevertheless possible (see binary below).

The median value is also calculated on the probabilities given by the models. It is considered to
be more reliable because it is less influenced by extreme values. A weighting is not possible, nor the
determination of a threshold from the already existing ones.

The function returns a list that is also stored in R’s memory. In our case, it will be called con-
sensus Future1 results. It contains all the computational information that has been used to render
the ensemble forecasts, for example predictive performance of each method when applied to current
predictions (if Test = True), the weights awarded to the models in the weighting process, the model
selected by the PCA.median method (if set to True). The forecasts themselves are stored on the
hard disk directly in the corresponding folder.
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Options:
repetition.models: You can choose to switch on or off the repetition models. If selected, the

function will calculate the ensemble forecasts for each run and generate a final one which produces
a general ensemble forecast across all the runs for each method.This total consensus is done incon-
sistently of this argument being set to TRUE or FALSE.

weight.method: the method for ranking the models according to their predictive performance.
The decay gives the relative importance of the weights. The default weight decay is 1.6; See the
example below.

models GAM GBM GLM ANN RF MARS CTA FDA
score with Roc 0.96 0.92 0.90 0.88 0.87 0.75 0.72 0.68

decay of 1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
decay of 1.2 0.217 0.181 0.151 0.126 0.105 0.087 0.073 0.061
decay of 1.6 0.384 0.240 0.150 0.094 0.059 0.037 0.023 0.014
decay of 2 0.502 0.251 0.125 0.063 0.031 0.016 0.008 0.004

You can type in any value (it has however to be higher than 1) depending on the strength of
discrimination that you want. A decay of 1 is equivalent to a committee averaging (i.e. same weights
given to all elements).

PCA.median: this is an alternative approach for obtaining a hierarchie of models in an ensemble
that does not depend on the performance of each modelling technique.
A PCA is run with projected probabilities of all of the models selected. In the current version of
BIOMOD, the consensus model is the model whose projection is the most correlated with the first
axis of the PCA. However, the PCA approach can be used in several ways. It can be used to select
one single consensus model (as currently implemented in BIOMOD), but it can also be used to allow
committee averaging across consensus models (models with high loads in the first axis of PCA),
or be used to allow committee averaging across models ranking high in different axes of the PCA.
Implementations of these methods can be found in Thuiller (2004), Araújo et al. (2005), and Araújo
et al. (2006).
In the current version of BIOMOD no dataset is produced for this option, the name of the such
selected model is kept in the function’s information output.

binary: by setting this argument to True, the ensemble forecasting function will also render the
consensus projections in a binary format. The thresholds used differ from one method to the other:

- mean on probabilities: converted in binary format by a mean threshold (thus giving 3 possibil-
ities - Roc, Kappa or TSS; you need to set it in the bin.method argument),

- weighted mean on probabilities: converted in binary by a weighted mean threshold (using the
same method than for ranking, i.e. the weight.method argument),

- Roc-Kappa-TSS means: an arbitrary value of 500 (corresponding to a probability of 0.5) is used,
meaning that a site is considered suitable if at least half of the projections have projected a presence.

Test: This option will test the efficiency of the consensus method on the data given for cali-
bration. A Roc evaluation is run and the score will be given in the output of the function as the
”test.results”.
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0.8 Probability Density Function

Using a variety of parameters in modelling will inevitably bring variability in predictions, especially
when it comes to making future predictions. This function enables an overall viewing of the future
predictions range per species and gives the likelihood of range shift estimations.

The future range changes are calculated as a percentage of the species’ present state. For example,
if a species currently occupies 100 cells and is estimated by a model to cover 120 cells in the future,
the range change will be + 20%.

> ProbDensFunc(initial=Sp.Env[,9], projections=Proj[,1:120], distrib=T, cvsn=T, groups=gp, resolution=5)

initial: a vector in a binary format (ones and zeros) representing the current distribution of a
species which will be used as a reference for the range change calculations.

projection: a matrix grouping all the predictions where each column is a single prediction. MAke
sure you keep projections in the same order as the initial vector (line1=site1, line2=site2, etc.).

distrib: if true, the optimal way for condensing 50, 75, 90 and 95% of the data will be calcu-
lated and shown on the graph.

Resolution: the step used for classes of prediction in graphics. The default value is 5.

NOTE: modifying the resolution will directly influence the probability scale. Bigger classes will
cumulate a greater number of predictions and therefore represent a greater fraction of the total
predictions. The probability is in fact that of the class and not of isolated events.
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cvsn: stands for current vs new. If true, the range change calculations will be of two types: the
percentage of cells currently occupied by the species to be lost, and the relative percentage of cells
currently unoccupied but projected to be, namely ’new’ cells, compared to current surface range.

With the example above where the species will have 120 suitable sites in the future whilst only
100 at present, this might be the result of different events. A case could be that the 100 present
cells are kept and an additional 20 new sites makes the 120 cells. Another possibility is that the 100
current cells are predicted to be lost with 120 new cells, also giving 120 total cells in future.

These two cases bring the same SRC calculations results, but whilst the first case does not im-
ply much as in survival strategies (the current populations will still be in good conditions in future,
plus even having new potential territories to explore and colonise), the second case, however, implies
a strong migrating effort for the populations to stay in suitable environments. Those two cases and
all in-between possibilities are distinguishable with this method.

Here, each dot is a projection. For example, the one furthest on the left gives the following in-
formation: approximately -60% of the current sites will be lost and 50% of new sites will be gained.
The SRC is very simply the addition of these two values : -10%. See how this single value does
not reflect every thing that is going on: it does not tell that more than half of current habitats are
projected to be lost, which would surely lead to different management decisions.

33



The two lines represent where the SRC value is 0 (no absolute change in the number of suitable
sites) and +100% (the species will double its current potential distribution size). Along those line,
you have all the possibilities for giving that one value (-10+10=0 ; -40+40=0 ; ...).

An extra feature on this graph is the colours. They enable to differenciate groups of projections
with the present example of the models. It enables to view where the variability in projection comes
from (see the description of groups below). You will have as many as these graphs as lines that you
have in the groups matrix.

groups: an option for ungrouping the projections enabling a separated visualisation of the pre-
diction range per given group. A matrix is expected where each column is a single prediction and
each line is giving details of one parameter. For example, if you have 9 different projections, with 3
models and 3 threshold possibilities, your matrix could look like this:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] "GAM" "GAM" "GAM" "CTA" "CTA" "CTA" "RF" "RF" "RF"
[2,] "Roc" "Kappa" "TSS" "Roc" "Kappa" "TSS" "Roc" "Kappa" "TSS"

or like this:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] "GAM" "CTA" "RF" "GAM" "CTA" "RF" "GAM" "CTA" "RF"
[2,] "Roc" "Roc" "Roc" "Kappa" "Kappa" "Kappa" "TSS" "TSS" "TSS"

Do keep in mind that this matrix represents the projections the way you have put them into the
projection argument. Sort your matrix the way you have sorted your projections!

An example with repetitions

The help file of the ProbDensFunc function provides a full example. It is done with 20 repetitions for
half of the models to assess the variability in prediction making when the calibration of the model
is done on partial data. Only Sp163 is done. Please look in details the help file for an example of
the data preparation you should go through to run the function properly.

> example(ProbDensFunc)

As you will see on your own R session, it produces a series of plots that represents the variability
in the projections obtained.
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0.9 Glossary

- AIC = Akaike Information Criterion
- ANN = Artificial Neural Network
- AUC = Area Under the Curve (or Area Under the ROC Curve)
- BIC = Bayesian Information Criterion
- CTA = Classification and regression Tree Analysis
- GAM = Generalized Additive Model
- GBM = Generalized Boosting Model
- GCM = Global Change Model
- GLM = Generalized Linear Model
- PDF = Probability Density Function
- ROC = Receiver Operater Characteristics
- RF = Random Forest
- SRC = Species Range Change
- SRE = Surface Range Enveloppe
- TSS = True Skill Statistics
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