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Abstract

The tram package allows a range of stratified linear transformation models to be fit-
ted using standard formula-based R interfaces. Functions for the estimation of potentially
stratified Cox models, several survival regression models including log-normal or log-
logistic models, models for ordered categorical responses (proportional odds, proportional
hazards, probit) are available. Likelihood-based inference, also in the presense of random
left-, right-, and interval-censoring and arbitrary forms of truncation, is performed using
infrastructure from package mlt. More complex models, allowing non-linear and interac-
tion functions of covariates, can be estimated using corresponding transformation trees
and forests in package trtf with the same simple user interface.

Keywords: Linear model, Cox model, survival regression, ordered regression, censoring, trun-
cation.

1. Introduction
The tram package offers standard formula-based R interfaces for stratified linear transfor-
mation models. The package uses general infrastructure for likelihood-based inference in
conditional transformation models provided by package mlt (Hothorn 2018, 2025a). The un-
derlying theory is presented by Hothorn et al. (2018) and an introduction to the mlt package
is given by Hothorn (2018). An interface to package trtf (Hothorn 2025b) also allows more
complex models to be fitted by recursive partitioning and random forest technology (Hothorn
and Zeileis 2017).
In a nutshell, the model class covered by package tram consists of transformation models of
the form

P(Y ≤ y | S = s, X = x) = FZ(hY (y | s) − x̃⊤β + offset) (1)

where Y is an at least ordered univariate response variable, S are stratum variables and
X covariates with observations y, s, and x, respectively. We use the term ‘stratum’ in a
little more general sense and allow factors and also numeric variables in S. The P -vector
x̃⊤ is a row of the design matrix corresponding to the observed covariate status x. The
package allows different choices of the ‘link’ function FZ and the monotone increasing (in its
y argument) ‘baseline transformation’ hY and, consequently, the estimation of a rather broad
class of models.
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A little more specifically, the monotone increasing baseline stratum-specific transformation
hY is of the form

hY (y | s) = s̃⊤α(y)

with J-vector s̃⊤ being the row of the design matrix corresponding to the observed strata s.
Each element of the parameter vector α(y) = (a(y)⊤ϑ1, . . . , a(y)⊤ϑJ) ∈ RJ is parameterised
as a(y)⊤ϑj , j = 1, . . . , J . Thus, the ‘response-varying’ coefficients of s̃⊤ depend on the
response y. The key part is a basis transformation a(y) of the response. Different choices of
this basis allow the model class to handle different types of response variables and models of
different complexity. In the absence of any stratum variables, we have

hY (y) = a(y)⊤ϑ1

and this function can be interpreted as an intercept function. With a single factor coding J
strata, we obtain

hY (y | s = j) = a(y)⊤ϑj .

In this case, one intercept function is fitted for level j. We treat numeric variables with
response-varying coefficients in a similar way. With s = s ∈ R, the baseline transformation

hY (y | s) = α1(y) + sα2(y) = a(y)⊤ϑ1 + sa(y)⊤ϑ2

consists of an intercept function α1(y) and a response-varying effect α2(y) of s. The latter
function is called ‘time-varying’ in survival analysis and some people use the more general term
‘distribution regression’ when refering to models with response-varying coefficients. Because
the intercept function is contained in hY , the linear predictor x̃⊤β must not contain an
intercept. The design row s̃⊤, however, is expected to include an intercept term, explicitly or
implicitly.
All model interfaces implemented in the tram package expect models to be specified by calls
of the form

R> tram(y | s ~ x, ...)

where y is a variable containing the observed response (possibly under all forms random cen-
soring and truncation), s specifies the design row s̃⊤ and x the row x̃⊤ in the design matrix
using standard R formula language. Specific modelling functions for normal linear regression
models (Lm()), non-normal linear regression models (BoxCox(), Colr()), ordinal linear re-
gression models (Polr()), and survival regression models (Survreg(), Coxph()) implement
transformation models tailored to these specific domains. The corresponding user interfaces
resemble the interfaces of existing modeling functions (such as lm(), polr(), survreg(), or
coxph()) are closely as possible.
This document describes the underlying models and illustrates the application of the tram
package for the estimation of specific stratified linear transformation models.

2. Normal Linear Regression Models
The normal linear regression model

Y = α̃ + x̃⊤β̃ + ε, ε ∼ N(0, σ2)
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is a transformation model of the general form (1) because we can rewrite it in the form

P(Y ≤ y | X = x) = Φ
(

y − α̃ − x̃⊤β̃

σ

)
(2)

= Φ(ϑ1 + ϑ2y − x̃⊤β).

With ϑ1 = −α̃/σ, ϑ2 = 1/σ and β = β̃/σ we see that the model is of the form

P(Y ≤ y | X = x) = FZ(hY (y) − x̃⊤β)

with distribution function FZ = Φ and linear transformation hY (y) = ϑ1 + ϑ2y such that

E(hY (Y ) | X = x) = E(ϑ1 + ϑ2Y | X = x) = x̃⊤β.

The Boston Housing data are a prominent test-bed for parametric and non-parametric al-
ternatives to a normal linear regression model. Assuming a conditional normal distribution
for the median value of owner-occupied homes (medv, in USD 1000’s, we use the corrected
version) in the normal linear model with constant variance

medv | X = x ∼ N(α̃ + x̃⊤β̃, σ2)

we can fit this model using the lm() function:

R> data("BostonHousing2", package = "mlbench")
R> lm_BH <- lm(cmedv ~ crim + zn + indus + chas + nox + rm + age + dis +
+ rad + tax + ptratio + b + lstat, data = BostonHousing2)

The tram package implements a function Lm() for fitting the normal linear regression model
in the parameterisation (2)

R> Lm_BH_1 <- Lm(cmedv ~ crim + zn + indus + chas + nox + rm + age + dis +
+ rad + tax + ptratio + b + lstat, data = BostonHousing2)

The model fit is the same

R> logLik(lm_BH)

'log Lik.' -1494.245 (df=15)

R> logLik(Lm_BH_1)

'log Lik.' -1494.245 (df=15)

so why would one want to set lm() aside in favour of Lm()? The parameterisation in (2)
seems a little odd, because the parameters are ϑ1 = −α̃/σ and β = β̃/σ instead of the mean
α̃ and the regression coefficients β̃. The parameters on the scale of β̃, including the intercept
α̃ can be obtained via



4 The tram Package

R> coef(lm_BH)

(Intercept) crim zn indus chas1
3.637189e+01 -1.062004e-01 4.772368e-02 2.325237e-02 2.691727e+00

nox rm age dis rad
-1.774262e+01 3.789395e+00 5.749168e-04 -1.501794e+00 3.037606e-01

tax ptratio b lstat
-1.270462e-02 -9.239118e-01 9.228445e-03 -5.306619e-01

R> coef(Lm_BH_1, as.lm = TRUE)

(Intercept) crim zn indus chas1
3.636982e+01 -1.062027e-01 4.772448e-02 2.324320e-02 2.691722e+00

nox rm age dis rad
-1.774153e+01 3.789503e+00 5.738338e-04 -1.501794e+00 3.037523e-01

tax ptratio b lstat
-1.270440e-02 -9.238719e-01 9.228803e-03 -5.306558e-01
attr(,"scale")

cmedv
4.637222

The standard deviation is the inverse interaction term with the response ϑ−1
2

R> summary(lm_BH)$sigma

[1] 4.702737

R> 1 / coef(Lm_BH_1, with_baseline = TRUE)["cmedv"]

cmedv
4.637222

The latter estimate is the maximum-likelihood estimator of σ̂ and not the usual REML
estimate reported by lm().
One subtle difficulty with the observed response is that median housing values larger than 50
are actually right-censored. This fact was ignored in both model fits. In contrast to lm(),
Lm() is able to deal with this situation

R> BostonHousing2$y <- with(BostonHousing2, Surv(cmedv, cmedv < 50))
R> Lm_BH_2 <- Lm(y ~ crim + zn + indus + chas + nox +
+ rm + age + dis + rad + tax + ptratio + b + lstat,
+ data = BostonHousing2)
R> logLik(Lm_BH_2)

'log Lik.' -1496.301 (df=15)
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Why is the extention to censored responses such a big deal? lm estimates the regression
coefficients β̃ by least-squares (y − x̃⊤β̃)2. In the presence of censoring (here at cmedv > 50),
the likelihood contribution is

P(medv > 50 | X = x) = 1 − FZ(ϑ1 + ϑ250 − x̃⊤β)

and one cannot treat the inverse standard deviation σ = ϑ−1
2 as a nuisance parameter. Thus,

the variance needs to be estimated simultaneously with the shift parameters. As we will see
later, this model can also be estimated by survreg(), for example.
One of the variables (chas) gives us information about proximity to the Charles River. The
model above only allows for mean changes in this variable, but how about models that allow
different variances? This is simple in Lm() because we can use chas as a stratum variable.
This means that we estimate ϑ1 and ϑ2 separately for each of the two groups in the model

R> Lm_BH_3 <- Lm(y | 0 + chas ~ crim + zn + indus + nox +
+ rm + age + dis + rad + tax + ptratio + b + lstat,
+ data = BostonHousing2)
R> logLik(Lm_BH_3)

'log Lik.' -1478.452 (df=16)

Here, it seems the standard deviation is almost twice as large in areas without access to the
Charles River. Because the stratum-specific inverse standard deviations are parameters in
our model,

R> 1 / coef(Lm_BH_3, with_baseline = TRUE)[c(2, 4)]

y:chas0 y:chas1
4.132790 7.156278

we can construct a test for the null of equal variances as a test for a linear hypothesis

R> summary(glht(as.mlt(Lm_BH_3), linfct = c("y:chas0 - y:chas1 = 0")))

Simultaneous Tests for General Linear Hypotheses

Fit: Lm(formula = y | 0 + chas ~ crim + zn + indus + nox + rm + age +
dis + rad + tax + ptratio + b + lstat, data = BostonHousing2)

Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)

y:chas0 - y:chas1 == 0 0.10223 0.01497 6.829 8.55e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
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We could go one step further and include an interaction term between each covariate and the
response by treating all covariates as strata

R> Lm_BH_4 <- Lm(y | 0 + chas + crim + zn + indus + nox +
+ rm + age + dis + rad + tax + ptratio + b + lstat ~ 0,
+ data = BostonHousing2)
R> logLik(Lm_BH_4)

'log Lik.' -1300.693 (df=28)

For each variable x (or factor level) in the model, we obtain two parameters, i.e. ϑ1x+ϑ2yx =
(ϑ1 + ϑ2y)x. Thus, each regression coefficient for x may vary with the response in a linear
way. Technically, this extention of the notion of a stratum to numeric covariates leads to
the simplest form of ‘distribution regression’, that is, a model with linear response-varying
regression coefficients. Because our transformation function is still linear in y, the class of
conditional distributions of our response Y | X = x is still normal. The next section discusses
how we can fit models without such an restrictive assumption.

3. Box-Cox Models
Maybe the question causing most headaches in normal linear regression is ‘Is my response
conditionally normal?’. In their seminal paper, Box and Cox (1964) suggested to transform
the response to normality. They used a rather simple function, today known as the Box-Cox
transformation, whereas the tram package uses rather flexible Bernstein polynomials for the
‘baseline transformation’ hY . Although the technical details are different, the spirit is the
same and we thus refer to the model

P(Y ≤ y | S = s, X = x) = Φ(hY (y | s) − x̃⊤β + offset)

with smooth (with respect to y) baseline transformation hY as a ‘Box-Cox’ model. For the
Boston Housing data, we first fit the model

P(medv ≤ y | X = x) = Φ(hY (y) − x̃⊤β)

R> BC_BH_1 <- BoxCox(y ~ chas + crim + zn + indus + nox +
+ rm + age + dis + rad + tax + ptratio + b + lstat,
+ data = BostonHousing2)
R> logLik(BC_BH_1)

'log Lik.' -1324.651 (df=20)

Inspection of the fitted baseline transformation ĥY (y) is a simple device for detecting de-
viations from normality. An approximately linear function ĥY (y) suggests that the normal
assumption is appropriate whereas deviations from linearity correspond to deviations from
this assumption. Figure 1 indicates that there is a deviation from normality in the upper tail.
When we add proximity to Charles River as stratum in the model
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R> nd <- model.frame(BC_BH_1)[1,-1,drop = FALSE]
R> plot(BC_BH_1, which = "baseline only", newdata = nd, col = col,
+ confidence = "interval", fill = fill, lwd = 2,
+ xlab = "Median Value", ylab = expression(h[Y]))
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Figure 1: Boston Housing: Baseline transformation hY in model BC_BH_1 with pointwise
confidence intervals.

R> BC_BH_2 <- BoxCox(y | 0 + chas ~ crim + zn + indus + nox +
+ rm + age + dis + rad + tax + ptratio + b + lstat,
+ data = BostonHousing2)
R> logLik(BC_BH_2)

'log Lik.' -1319.249 (df=26)

We see, in Figure 2, that the two baseline transformations differ only for median values smaller
than USD 15, 000 with a large variance in houses near Charles River (indicating that there
are hardly any cheap houses in this area).
The heterogeneous variances in our model Lm_BH_3 where caused by the same effect and
Figure 3 shows that allowing the model to deviate from normality leads to better model
interpretation.
We could now look at a model with smooth response-varying effects

R> BoxCox(y | 0 + chas + crim + zn + indus + nox +
+ rm + age + dis + rad + tax + ptratio + b + lstat ~ 0,
+ data = BostonHousing2)

but save this exercise for Section 5.
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R> nd <- model.frame(BC_BH_2)[1:2, -1]
R> nd$chas <- factor(c("0", "1"))
R> plot(BC_BH_2, which = "baseline only", newdata = nd, col = col,
+ confidence = "interval", fill = fill, lwd = 2,
+ xlab = "Median Value", ylab = expression(h[Y]))
R> legend("bottomright", lty = 1, col = col,
+ title = "Near Charles River", legend = c("no", "yes"), bty = "n")
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Figure 2: Boston Housing: Stratified baseline transformation hY in model BC_BH_2 with
pointwise confidence intervals.

4. Continuous Outcome Logistic Regression
One problem with the above discussed Box-Cox-type linear regression models is that we loose
the nice interpretation of the regression coefficients β̃ we all enjoy in normal linear regression
models. The only way of interpreting the linear predictor in the model

P(Y ≤ y | X = x) = Φ(hY (y) − x̃⊤β)

with smooth baseline transformation hY is based on the relationship E(hY (Y ) | X = x) =
x̃⊤β. That means that the conditional expectation of the transformed response Y is given
by the linear predictor. We can still judge whether a relationship is positive or negative by
the sign of the regression coefficients β but the nice way of saying ‘a one-unit increase in x
corresponds to an increase of β in the conditional mean of Y (all other covariables being fix)’
just goes away. Better interpretability guides the choice of models in this section.
Consider the linear transformation model (we skip strata and offset here, for simplicity)

P(Y ≤ y | X = x) = FSL(hY (y) + x̃⊤β)) = exp(hY (y) + x̃⊤β)
1 + exp(hY (y) + x̃⊤β)



Hothorn 9

R> plot(Lm_BH_3, which = "baseline only", newdata = nd, col = col,
+ confidence = "interval", fill = fill, lwd = 2)
R> legend("bottomright", lty = 1, col = col,
+ title = "Near Charles River", legend = c("no", "yes"), bty = "n")
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Figure 3: Boston Housing: Stratified linear baseline transformation hY in model Lm_BH_2
with pointwise confidence intervals.

where we replace the cumulative distribution function of the standard normal Φ with the
cumulative distribution function of the standard logistic. Note that we add the linear predictor
instead of substracting it (as in the Cox model, see Section 6). In this model, the conditional
odds is given by

P(Y ≤ y | X = x)
P(Y > y | X = x) = exp(hY (y)) exp(x̃⊤β).

The odds ratio between a subject with covariate status x and a subject with covariates such
that x̃⊤β = 0 is simply exp(x̃⊤β) (and not exp(−x̃⊤β), therefore a positive shift makes
sense in this model). The response-varying baseline transformations conveniently cancel out
in this odds ratio. We can interpret β as log-odds ratios, simultaneously for all possible
binary logistic regression models with cutpoint y. The baseline transformation hY (y) is the
intercept in the logistic regression model corresponding to cutpoint y. Lohse et al. (2017)
introduced the name ‘Continuous Outcome Logistic Regression’ (COLR) for this formulation
of the model.
Using proximity to Charles River as single stratum variable s, we can fit this model with
smooth baseline transformation hY (y | s)

R> Colr_BH_1 <- Colr(y | 0 + chas ~ crim + zn + indus + nox +
+ rm + age + dis + rad + tax + ptratio + b + lstat,
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+ data = BostonHousing2)
R> logLik(Colr_BH_1)

'log Lik.' -1292.479 (df=26)

In comparison to the BoxCox-type model BC_BH_2 with the exact same structure of the model
(except the link function) with likelihood -1319.25, the continuous outcome logistic regression
improved the model fit.
The estimated odds-ratios, along with likelihood-based confidence intervals, can be computed
as

R> round(cbind(exp(coef(Colr_BH_1)), exp(confint(Colr_BH_1))), 3)

2.5 % 97.5 %
crim 1.085 1.056 1.115
zn 0.990 0.980 0.999
indus 0.973 0.933 1.015
nox 1089.607 59.159 20068.832
rm 0.209 0.136 0.323
age 1.010 1.000 1.021
dis 1.659 1.424 1.934
rad 0.883 0.841 0.927
tax 1.007 1.004 1.009
ptratio 1.494 1.359 1.643
b 0.994 0.992 0.996
lstat 1.323 1.256 1.394

A display of the model and observed median housing values is given in Figure 4. For each
observation, the linear predictor is plotted against the observed value and this scatterplot is
overlayed with the conditional decile curves.

5. Connection to Quantile Regression
There is a strong relationship between quantile regression models and transformation models.
In essence, quantile regression (as the name suggests) models the conditional quantile function
whereas transformation models describe the conditional distribution function (that is, the
inverse conditional quantile function). Under which circumstances can we expect to obtain
similar results?
To answer this question, consider a linear quantile regression model for the pth conditional
quantile QY (p | X = x) of Y :

QY (p | X = x) = α̃(p) + x̃⊤β̃(p).

Typically (for example in package quantreg), separate models are fitted for varying probabil-
ities p ∈ (0, 1), potentially causing a ‘quantile crossing’ problem.
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Figure 4: Boston Housing: Scatterplot of linear predictors vs. observed median values ob-
tained from the Continuous Outcome Logistic Regression model Colr_BH_1. The observations
are overlayed with lines representing conditional quantiles of median value given the linear
predictor.

One nice feature of this model is its invariance wrt. monotone transformations, say hY , because
we have

hY (QY (p | X = x)) = QhY (Y )(p | X = x).

With y = QY (p | X = x) and a linear transformation model we obtain the relationship

p = P(Y ≤ y | X = x) = FZ(hY (y) − x̃⊤β)
⇐⇒ hY (QY (p | X = x)) = F −1

Z (p) + x̃⊤β.

This means that a linear transformation model is a model for a transformed quantile with
constant regression effects β (only the intercept depends on p). When we allow for response-
varying effects β(y) in our transformation model, the relationship

p = P(Y ≤ y | X = x) = FZ(hY (y) − x̃⊤β(y))
⇐⇒ hY (QY (p | X = x)) = F −1

Z (p) + x̃⊤β̃(p)

with β̃(p) = β(QY (p | X = x)) shows that a transformation model with response-varying
effects (aka ‘distribution regression’) is a linear quantile regression models for a transformed
quantile. In this sense, quantile regression and transformation models assume additivity of the
effects on a different scale, but are otherwise comparable (also in terms of model complexity).
A big advantage of transformation models is that we can estimate one model for all effects
simultaneously and tedious post-processing to re-order crossing quantiles is not necessary.
But how well do the two approaches coincide for the Boston Housing data? We first fit a
number of linear quantile regressions for a grid of probabilities p ∈ {.1, . . . , .9} and, second,



12 The tram Package

estimate a continuous outcome logistic regression with response-varying effects (restricting
ourselves to very smooth regression coefficient functions parameterised as Bernstein polyno-
mials with three parameters by the choice order = 2):

R> tau <- 2:18 / 20
R> fm <- cmedv ~ crim + zn + indus + chas + nox + rm + age + dis +
+ rad + tax + ptratio + b + lstat
R> rq_BH_1 <- lapply(tau, function(p) rq(fm, data = BostonHousing2, tau = p))
R> Colr_BH_2 <- Colr(cmedv | crim + zn + indus + chas + nox + rm + age + dis +
+ rad + tax + ptratio + b + lstat ~ 0,
+ data = BostonHousing2, order = 2)

For nine selected observations from the dataset, we then plot the estimated conditional dis-
tribution function obtained from both approaches. Figure 5 shows good agreement between
the two models. Overall, the transformation models gives smoother conditional distribution
functions and for some observations, for example for number 153, the estimated conditional
quantiles are very rough and, in fact, not monotone.

6. Survival Analysis
Yet another choice of FZ is motivated by the desire to obtain simple model interpretation. In
survival analysis, we are interested in the conditional survivor function (omitting s and offset
again)

S(y | X = x) = 1 − P(Y ≤ y | X = x) = exp(−Λ(y | X = x))

with conditional cumulative hazard function Λ(y | X = x). Because Λ is always positive, one
can parameterise Λ via the log-cumulative hazard function

Λ(y | X = x) = exp(hY (y) − x̃⊤β) = exp(hY (y)) exp(−x̃⊤β)

Here, exp(−x̃⊤β) is the hazard ratio of the cumulative hazard between a subject with covari-
ate status x and a subject with x̃⊤β = 0. The hazard function is

λ(y | X = x) = ∂Λ(y | X = x)
∂y

= exp(hY (y))∂hY (y)
∂y

exp(−x̃⊤β) = λ(y) exp(−x̃⊤β)

with ‘baseline hazard function’ λ. The ratio of two hazard functions is again exp(−x̃⊤β).
Putting everything together we see that we formulate the conditional distribution function as

P(Y ≤ y | X = x) = 1 − exp(− exp(hY (y) − x̃⊤β)

which corresponds to our linear transformation model (1) with FZ() = 1−exp(− exp()) being
the cumulative distribution function of the standard minimum extreme value distribution.
Like in the normal case, special choices of hY correspond to simple parametric models. The
Weibull linear regression model features a linear baseline transformation hY of log(y)

P(Y ≤ y | X = x) = 1 − exp(− exp(ϑ1 + ϑ2 log(y) − x̃⊤β)), ϑ2 > 0
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Figure 5: Boston Housing: Comparison of distribution regression via a transformation model
(model Colr_BH_2, solid lines) and quantile regression (model rq_BH_1, dots). The plot shows
the estimated conditional distribution functions along with the actually observed median value
(arrows).

which, with ϑ2 = 1, simplifies to an exponential distribution

P(Y ≤ y | X = x) = 1 − exp(−y exp(ϑ1 − x̃⊤β))

with parameter λ = exp(ϑ1 − x̃⊤β). With ϑ = 2, the distribution is known as Rayleigh
distribution.
survreg() (Therneau 2024) uses a different parameterisation of the same model with scale
parameter σ of the form

P(Y ≤ y | X = x) = 1 − exp
(

− exp
(

α̃ + log(y) − x̃⊤β̃

σ

))
.

As an example, consider time-to-death data from the German Breast Cancer Study Group 2
randomised clinical trial on hormonal treatment of breast cancer (horTh being the treatment
indicator). The Weibull model can be fitted by these two functions
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R> data("GBSG2", package = "TH.data")
R> Survreg_GBSG2_1 <- Survreg(Surv(time, cens) ~ horTh, data = GBSG2)
R> logLik(Survreg_GBSG2_1)

'log Lik.' -2632.096 (df=3)

R> survreg_GBSG2_1 <- survreg(Surv(time, cens) ~ horTh, data = GBSG2)
R> logLik(survreg_GBSG2_1)

'log Lik.' -2632.096 (df=3)

The results are equivalent, but the parameters differ. To obtain the log-hazard ratio, we need
to scale the estimate from survreg()

R> c(coef(Survreg_GBSG2_1),
+ coef(survreg_GBSG2_1)["horThyes"] / survreg_GBSG2_1$scale)

horThyes horThyes
0.3932393 0.3932403

We get the log-hazard ratio β = 0.39 as the log-hazard ratio between treated and untreated
patients. The hazard ratio exp(−β) = 0.67 means that the hazard of a treated patient is 67%
the hazard of an untreated patient. The corresponding confidence interval is

R> exp(-rev(confint(Survreg_GBSG2_1)))

[1] 0.5284035 0.8619280

The assumption of ‘proportional hazards’, i.e. the belief that the conditional hazard functions
given treatment differ by a time-constant parameter β, might be questionable. We might want
to ask ‘How well do the corresponding conditional survivor functions (Figure 6, obtained under
proportional hazards) reflect what is going on in the data?’.
The question is simple to answer when we use the treatment as a stratum and, in essence, fit
two unconditional models (for each treatment arm) at once

R> Survreg_GBSG2_2 <- Survreg(Surv(time, cens) | 0 + horTh ~ 1, data = GBSG2)
R> logLik(Survreg_GBSG2_2)

'log Lik.' -2632.086 (df=4)

R> survreg_GBSG2_2 <- survreg(Surv(time, cens) ~ strata(horTh) + horTh - 1,
+ data = GBSG2)
R> logLik(survreg_GBSG2_2)

'log Lik.' -2632.086 (df=4)
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R> nd <- data.frame(horTh = factor(c("no", "yes")))
R> plot(Survreg_GBSG2_1, newdata = nd, which = "distribution",
+ type = "survivor", confidence = "interval", fill = fill,
+ col = col, ylab = "Probability", xlab = "Survival Time")
R> legend("bottomleft", lty = 1, title = "Hormonal Therapy",
+ legend = levels(nd$horTh), bty = "n", col = col)
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Figure 6: German Breast Cancer Study Group 2: Conditional survivor curves of treated
and control patients obtained from the Weibull model Survreg_GBSG2_1 under proportional
hazards assumption.

R> coef(Survreg_GBSG2_2, with_baseline = TRUE)

(Intercept):horThno log(Surv(time, cens)):horThno
-9.736006 1.279324

(Intercept):horThyes log(Surv(time, cens)):horThyes
-10.273829 1.299109

R> c(1 / survreg_GBSG2_2$scale, -coef(survreg_GBSG2_2) /
+ survreg_GBSG2_2$scale)

no yes horThno horThyes
1.279328 1.299123 -9.736037 -10.273925

It should be noted that the strata command in survreg() only leads to stratum-specific scale
parameters, so we added a treatment specific intercept to make the two models comparable.
The log-likelihood is roughly identical to the log-likelihood of the proportional hazards model
and we can treat the assumption as reasonable.



16 The tram Package

As in the normal linear model, we might want to allow deviations from the strong distribu-
tional assumptions inherit in a Weibull model. In our framework, this simply means we allow
for more flexible baseline log-hazard functions hY . The model featuring a smooth function
hY

P(Y ≤ y | X = x) = 1 − exp(− exp(hY (y) − x̃⊤β))

with Λ(y | X = x) = exp(hY (y)) exp(−x̃⊤β) and thus baseline cumulative hazard ΛY (y) =
exp(hY (y)) is called ‘Cox proportional hazards model’. The term exp(−x̃⊤β) is the hazard
ratio. Typically (for example in coxph() and our Coxph()), the model is parameterised as

P(Y ≤ y | X = x) = 1 − exp(− exp(hY (y) + x̃⊤β))

with positive linear predictors being related to larger hazards (and smaller means). Thus, the
hazard ratio is exp(x̃⊤β). The classical (and not so classical) literature very often associates
the Cox model with an unspecified baseline hazard function and the corresponding partial
likelihood estimator for β. The tram package uses a parametric yet very flexible form for hY ,
leading to simpler inference and smooth estimated conditional survivor curves.
For the breast cancer data, we get with

R> Coxph_GBSG2_1 <- Coxph(Surv(time, cens) ~ horTh, data = GBSG2)
R> logLik(Coxph_GBSG2_1)

'log Lik.' -2623.16 (df=8)

R> coef(Coxph_GBSG2_1)

horThyes
-0.3713396

a model very similar to Survreg_GBSG2_1 and stratification with respect to treatment does
not improve the fit by much

R> Coxph_GBSG2_2 <- Coxph(Surv(time, cens) | 0 + horTh ~ 1 , data = GBSG2)
R> logLik(Coxph_GBSG2_2)

'log Lik.' -2622.05 (df=14)

When we compare the survivor curves from these two models with the Kaplan-Meier curves in
Figure 7 we essentially get a smooth interpolation of this nonparametric maximum likelihood
estimator by the two parametric Cox models.
Survival models with conditional log-logistic distribution are transformation models with
FZ = expit and linear baseline transformation of a log-transformed response:

P(Y ≤ y | X = x) = exp(ϑ1 + ϑ2 log(y) − x̃⊤β)
1 + exp(ϑ1 + ϑ2 log(y) − x̃⊤β) , ϑ2 > 0
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R> plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2), col = col,
+ ylab = "Probability", xlab = "Survival Time")
R> plot(Coxph_GBSG2_1, newdata = nd, which = "distribution",
+ type = "survivor", col = col, add = TRUE, lty = 1)
R> plot(Coxph_GBSG2_2, newdata = nd, which = "distribution",
+ type = "survivor", col = col, add = TRUE, lty = 2)
R> legend("bottomleft", lty = 1, title = "Hormonal Therapy",
+ legend = levels(nd$horTh), bty = "n", col = col)
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Figure 7: German Breast Cancer Study Group 2: Conditional survivor curves of treated and
control patients obtained from the Kaplan-Meier estimator, model Coxph_GBSG2_1 under
proportional hazards assumption, and Coxph_GBSG2_2 under non-proportional hazards.

Similar to continuous outcome logistic regression (Section 4), the parameters β can be inter-
preted as log-odds ratios because the conditional odds

P(Y ≤ y | X = x)
P(Y > y | X = x) =

exp(ϑ1+ϑ2 log(y)−x̃⊤β)
1+exp(ϑ1+ϑ2 log(y)−x̃⊤β)

1
1+exp(ϑ1+ϑ2 log(y)−x̃⊤β)

= exp(ϑ1 + ϑ2 log(y) − x̃⊤β)

consists of the baseline odds exp(ϑ1 + ϑ2 log(y)) and the odds ratio exp(−x̃⊤β). This model
can be fitted using Survreg() by the choice distribution = "loglogistic".
Switching to a conditional log-normal distribution (distribution = "lognormal") simply
means using FZ = Φ in the model

P(Y ≤ y | X = x) = Φ(ϑ1 + ϑ2 log(y) − x̃⊤β))

so that we get log(Y ) | X = x ∼ N((−ϑ1 + x̃⊤β)/ϑ2, 1/ϑ2).
It should be noted that both Survreg() and Coxph() are able to fit models in the presence
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of random censoring (left, right and interval) as well as truncation of any form (left, right,
interval, each of these possibly subject-specific).

7. Ordinal Regression
For ordinal responses Y ∈ {y1, . . . , yK} at K levels, the baseline transformation attaches one
parameter to each level (except the last one) in the parameterisation

hY (yk) = ϑk ∈ R, 1 ≤ k < K ϑ1 < . . . , ϑK−1.

With FZ = expit, our linear transformation model is known as proportional odds model and
can be fitted by the three implementations from packages ordinal (Christensen 2024), MASS
(Ripley and Venables 2025) and tram as follows (using the wine tasting data as example)

R> data("wine", package = "ordinal")
R> polr_wine <- polr(rating ~ temp + contact, data = wine)
R> logLik(polr_wine)

'log Lik.' -86.49192 (df=6)

R> coef(polr_wine)

tempwarm contactyes
2.503073 1.527786

R> clm_wine_1 <- clm(rating ~ temp + contact, data = wine)
R> logLik(clm_wine_1)

'log Lik.' -86.49192 (df=6)

R> coef(clm_wine_1)

1|2 2|3 3|4 4|5 tempwarm contactyes
-1.344383 1.250809 3.466887 5.006404 2.503102 1.527798

R> Polr_wine_1 <- Polr(rating ~ temp + contact, data = wine)
R> logLik(Polr_wine_1)

'log Lik.' -86.49192 (df=6)

R> coef(Polr_wine_1, with_baseline = TRUE)

rating1 rating2 rating3 rating4 tempwarm contactyes
-1.344380 1.250812 3.466896 5.006424 2.503109 1.527802

with identical results. Treating one of the variables as stratum is possible in clm() and
Polr() (we use treatment contrasts for s̃ here)
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R> clm_wine_2 <- clm(rating ~ temp, nominal = ~ contact, data = wine)
R> logLik(clm_wine_2)

'log Lik.' -86.20855 (df=9)

R> coef(clm_wine_2)

1|2.(Intercept) 2|3.(Intercept) 3|4.(Intercept) 4|5.(Intercept)
-1.323043 1.246444 3.550044 4.660247

1|2.contactyes 2|3.contactyes 3|4.contactyes 4|5.contactyes
-1.615059 -1.511567 -1.674756 -1.050623
tempwarm
2.519045

R> Polr_wine_2 <- Polr(rating | 1 + contact ~ temp, data = wine)
R> logLik(Polr_wine_2)

'log Lik.' -86.20855 (df=9)

R> coef(Polr_wine_2, with_baseline = TRUE)

rating1:(Intercept) rating2:(Intercept) rating3:(Intercept)
-1.323037 1.246441 3.550041

rating4:(Intercept) rating1:contactyes rating2:contactyes
4.660252 -1.615083 -1.511569

rating3:contactyes rating4:contactyes tempwarm
-1.674757 -1.050634 2.519041

and again the fit is equivalent. Changing the link function FZ from expit to Φ is also possible
in both functions

R> clm_wine_3 <- clm(rating ~ temp, nominal = ~ contact, data = wine,
+ link = "probit")
R> logLik(clm_wine_3)

'log Lik.' -85.32668 (df=9)

R> coef(clm_wine_3)

1|2.(Intercept) 2|3.(Intercept) 3|4.(Intercept) 4|5.(Intercept)
-0.7829404 0.7521184 2.1322657 2.7543749

1|2.contactyes 2|3.contactyes 3|4.contactyes 4|5.contactyes
-0.8229143 -0.8892051 -1.0093661 -0.5818493

tempwarm
1.5113822
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R> Polr_wine_3 <- Polr(rating | 1 + contact ~ temp, data = wine,
+ method = "probit")
R> logLik(Polr_wine_3)

'log Lik.' -85.32668 (df=9)

R> coef(clm_wine_3)

1|2.(Intercept) 2|3.(Intercept) 3|4.(Intercept) 4|5.(Intercept)
-0.7829404 0.7521184 2.1322657 2.7543749

1|2.contactyes 2|3.contactyes 3|4.contactyes 4|5.contactyes
-0.8229143 -0.8892051 -1.0093661 -0.5818493

tempwarm
1.5113822

The identical results obtain from ordinal and tram increase our empirical evidence that the
implementation of linear transformation models for ordinal responses in both packages are
correct. Let us look at one situation where tram can fit a model that would be hard to obtain
(for me!) in ordinal. Suppose on of the wine tasters (judge 9, say) had a bad day and didn’t
feel comfortable to deliver her ratings accurately. Instead, she choose to check-off a range of
three scores (maybe ‘2–4’ instead of just ‘3’). We can represent this discrete interval-censored
version of the response using the R() function as follows

R> erating <- wine$rating
R> lrating <- erating
R> rrating <- erating
R> l9 <- lrating[wine$judge == 9]
R> l9[l9 > 1] <- levels(l9)[unclass(l9[l9 > 1]) - 1]
R> r9 <- rrating[wine$judge == 9]
R> r9[r9 < 5] <- levels(r9)[unclass(r9[r9 < 5]) + 1]
R> lrating[wine$judge != 9] <- rrating[wine$judge != 9] <- NA
R> erating[wine$judge == 9] <- NA
R> lrating[wine$judge == 9] <- l9
R> rrating[wine$judge == 9] <- r9
R> which(wine$judge == 9)

[1] 65 66 67 68 69 70 71 72

R> (wine$crating <- R(erating, cleft = lrating, cright = rrating))

[1] (1, 2] (2, 3] (2, 3] (3, 4] (3, 4] (3, 4] (4, NA] (4, NA]
[9] (NA, 1] (1, 2] (NA, 1] (2, 3] (1, 2] (2, 3] (4, NA] (3, 4]

[17] (1, 2] (2, 3] (2, 3] (1, 2] (4, NA] (4, NA] (3, 4] (3, 4]
[25] (2, 3] (1, 2] (2, 3] (1, 2] (2, 3] (1, 2] (4, NA] (2, 3]
[33] (1, 2] (2, 3] (3, 4] (2, 3] (2, 3] (2, 3] (2, 3] (2, 3]
[41] (2, 3] (1, 2] (2, 3] (1, 2] (1, 2] (3, 4] (4, NA] (3, 4]
[49] (NA, 1] (NA, 1] (1, 2] (1, 2] (1, 2] (2, 3] (1, 2] (2, 3]
[57] (1, 2] (1, 2] (1, 2] (2, 3] (2, 3] (2, 3] (2, 3] (3, 4]
[65] (1, 2] (1, 3] (2, 4] (1, 3] (2, 4] (1, 3] (3, NA] (3, NA]
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Polr() is able to deal with such types of response variables and the model can be fitted in
the very same way as before

R> Polr_wine_4 <- Polr(crating | contact ~ temp, data = wine,
+ method = "probit")
R> logLik(Polr_wine_4)

'log Lik.' -80.25516 (df=9)

R> coef(Polr_wine_4)

tempwarm
1.514888

As expected, the difference is not very large, but more extreme forms of censoring (or trun-
cation) might very well lead to substantially different models.

8. Transformation Trees and Forests
Models involving a linear predictor x̃⊤β suggest a simple linear impact of the covariates on
the distribution of the response. This assumption might be questioned by allowing more
flexible regression relationships in the transformation model

P(Y ≤ y | X = x) = FZ(a(y)⊤ϑ(x))

where the parameters of the baseline transformation can be unspecified functions of x. When
we assume a simple tree structure, the model can be fitted using function trafotree() from
trtf.
A transformation tree for the Boston Housing data (taking censoring in the median housing
values into account) consists of two steps. First, we set-up an unconditional transformation
model. We choose a model with smooth and flexible transformation function

R> BC_BH_0 <- BoxCox(y ~ 1, data = BostonHousing2)
R> logLik(BC_BH_0)

'log Lik.' -1743.478 (df=7)

This model is then plugged into trafotree(), along with a formula describing the response
and partitioning (x) variables

R> library("trtf")
R> BC_BH_4 <- trafotree(BC_BH_0,
+ formula = y ~ chas + crim + zn + indus + nox +
+ rm + age + dis + rad + tax + ptratio + b + lstat, data =
+ BostonHousing2, control = ctree_control(minbucket = 30))
R> logLik(BC_BH_4)
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'log Lik.' -1287.817 (df=77)

In each terminal node of the corresponding tree (depicted in Figure 8), a density representing
the conditional distribution of median housing values given the splits in the partitioning
variables is given. Location, scale and shape of these distributions vary across the tree.
One could go one step further and estimate a whole forest of such transformation trees by
the traforest() function

R> BC_BH_5 <- traforest(BC_BH_0,
+ formula = y ~ chas + crim + zn + indus + nox +
+ rm + age + dis + rad + tax + ptratio + b + lstat, data =
+ BostonHousing2)

Another interesting option is to partition more complex models by trafotree(). Suppose
we are interested in the identification of potential treatment effect modifiers in a Cox model
of the form

P(Y ≤ y | X = x, horTh) = 1 − exp(− exp(a(y)⊤ϑ(x) + I(horTh)β(x)))

(details on tree-based subgroup analyses are given in Seibold et al. 2016). Here we are
interested in an x-varying log-hazard ratio β(x), i.e. , the dependency of the success (or
failure) of hormonal therapy on baseline variables x. We start with the model

R> Coxph_GBSG2_1 <- Coxph(Surv(time, cens) ~ horTh, data = GBSG2)
R> logLik(Coxph_GBSG2_1)

'log Lik.' -2623.16 (df=8)

R> coef(Coxph_GBSG2_1)

horThyes
-0.3713396

This model estimates a global treatment effect, i.e. , a treatment effect which applies uniformly
to all patients. We now try to find out if this model can be improved by a transformation
tree (where splits are looked for with respect to the parameters defining the log-cumulative
baseline hazard function, i.e. the intercept, and the treatment effect parameter):

R> Coxph_GBSG2_3 <- trafotree(Coxph_GBSG2_1,
+ formula = Surv(time, cens) ~ horTh | age + menostat + tsize +
+ tgrade + pnodes + progrec + estrec,
+ data = GBSG2)
R> logLik(Coxph_GBSG2_3)

'log Lik.' -2578.824 (df=24)

R> coef(Coxph_GBSG2_3)[, "horThyes"]
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R> nd <- data.frame(horTh = sort(unique(GBSG2$horTh)))
R> plot(Coxph_GBSG2_3, newdata = nd,
+ tp_args = list(type = "survivor", col = col))
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Figure 9: German Breast Cancer Study Group 2: Transformation tree with conditional sur-
vivor functions given treatment (blue is hormonal treatment, yellow refers to the control
group) in each terminal node.

2 4 5
-0.49230886 -0.46964355 0.08513886

These log-hazard ratios and the tree in Figure 9 show that the global treatment effect vanishes
in patients with many positive lymph nodes and a larger tumor grading.
If one is only interested in proportional hazards alternatives, one can add an explicit intercept
parameter (constrained to zero) to the model such that the log-rank scores and the scores for
the treatment effect parameters define the splits:

R> GBSG2$int <- 1
R> Coxph_GBSG2_3 <- Coxph(Surv(time, cens) ~ int + horTh, data = GBSG2,
+ fixed = c("int" = 0))
R> (Coxph_GBSG2_4 <- trafotree(Coxph_GBSG2_3,
+ formula = Surv(time, cens) ~ int + horTh | age + menostat + tsize +
+ tgrade + pnodes + progrec + estrec,
+ data = GBSG2, parm = c("int", "horThyes"),
+ mltargs = list(fixed = c("int" = 0))))

Model formula:
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Surv(time, cens) ~ int + horTh + (age + menostat + tsize + tgrade +
pnodes + progrec + estrec)

Fitted party:
[1] root
| [2] pnodes <= 3: Inf (n = 376)
| [3] pnodes > 3
| | [4] progrec <= 20: 624.000 (n = 144)
| | [5] progrec > 20: 1701.000 (n = 166)

Number of inner nodes: 2
Number of terminal nodes: 3

R> logLik(Coxph_GBSG2_4)

'log Lik.' -2564.799 (df=24)

R> coef(Coxph_GBSG2_4)[, "horThyes"]

2 4 5
-0.5629356 -0.1296880 -0.5547282

9. Summary
The tram package simplifies model estimation, interpretation and inference for some members
of the broad family of conditional transformation models. Where implementations for special
cases already exist, practically equivalent results are obtained. In some aspects, such as dif-
ferent ways of handling stratum variables, response-varying coefficients, likelihood estimation
for interval-censored or truncated data, etc., the tram package offers additional functionality.
Users requiring more control over model specification are welcome to study facilities for model
specification, estimation and inference provided by package mlt.
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