
Regression Functions Supported by the effects Package
And How to Support Other Classes of Regression Models

John Fox and Sanford Weisberg

2022-07-07

1 Introduction

Effect plots, as implemented in the effects package, represent the “effects” (in the not necessarily
causal sense of “partial relationship”) of one or more predictors on a response variable, in regression
models in which the response depends on a linear predictor—a linear combination of main effects
and interactions among the predictors (Fox and Weisberg, 2019, Sec. 4.6.3). Effect() is the basic
generic function in the effects package; Effect() is called directly or indirectly by several other
functions in the package, such as predictorEffects() and allEffects().

Table 1 provides a list of regression modeling functions in R that can be used with the effects
package. This list, which is almost surely incomplete, includes functions that are directly supported
by Effect() methods supplied by the effects package, by Effect() methods supplied by other
CRAN packages, or by the default Effect() method, which works with many classes of regression
models.

The most basic type of model for which Effect() is appropriate is a standard linear model fit
by the lm() function; for example:

library("effects")
Prestige$type <- factor(Prestige$type, c("bc", "wc", "prof")) # reorder levels
g1 <- lm(prestige ~ education + type + education:type, data = Prestige)

equivalent to lm(prestige ~ education*type, data = Prestige)
plot(predictorEffects(g1), lines=list(multiline=TRUE))

education predictor effect plot

education

pr
es

tig
e

20

30

40

50

60

70

 8 10 12 14 16

type
bc
wc
prof

type predictor effect plot

type

pr
es

tig
e

20

30

40

50

60

70

bc wc prof

education
6.4
8.8
11

14
16

1

Table 1: R regression functions known to be compatible with the Effect() function. The name
before the double-colon is the package that includes the function; for example stats::lm() means
that lm() is in the stats package. In some cases, Effect() may support only a subset of regression
models fit by a particular function. Effects for mixed-effects models represent the fixed-effects part
of the model.

Function Comments
glm-type models
stats::lm() Standard linear regression models fit by least-squares or

weighted least-squares. A multivariate response, generating
a multivariate linear model, is permitted, and in this case ef-
fects are computed for each response separately.

stats::glm() Generalized linear models.
nlme::lme() Linear mixed-effects models.
nlme::gls() Linear models fit by generalized least squares.
lmer::lmer() Linear mixed-effects models.
lmer::glmer() Generalized linear mixed-effects models.
survey::svyglm() Generalized linear models for complex survey designs.
MASS::rlm() Linear regression models estimated by robust M or MM re-

gression.
MASS::glmmPQL() Generalized linear mixed-effects models via partial quadratic

likelihood.
robustlmm::rlmer() Robust linear mixed-effects models.
betareg::betareg() Beta regression models for rates and proportions.
ivreg::ivreg() Linear regression models estimated by instrumental variables

(2SLS regression).
glmmTMB::glmmTMB() Generalized linear mixed-effects regression models (similar to

lmer::glmer() but accommodating a broader selection of
models).

multinom-type models
nnet::multinom() Multinomial logistic-regression models. If the response has

K categories, the response for nnet::multinom() can be a
factor with K levels or a matrix with K columns, which will
be interpreted as counts for each of K categories. Effects
plots require the response to be a factor, not a matrix.

poLCA::poLCA() Latent class analysis regression models for polytomous out-
comes. Latent class analysis has a similar structure to multi-
nomial regression, except that class membership of observa-
tions is unobserved but estimated in the analysis.

polr-type models
MASS:polr() Ordinal logistic (proportional-odds) and probit regression

models.
ordinal::clm() Cumulative-link regression models (similar to, but more ex-

tensive than, polr()).
ordinal::clm2() Updated version of ordinal::clm().
ordinal::clmm() Cumulative-link regression models with random effects.

2

In this example the response prestige is modeled as a linear function of years of education, the
factor type, with levels blue collar ("bc"), white collar ("wc"), and professional ("prof"), and their
interaction. Because of the interaction, the estimated partial relationship of prestige to education
(depicted in the predictor effect plot for education, at the left) is different for each level of type,
and the partial relationship of prestige to type (depicted in the predictor effect plot for type, at
the right) varies with the value education.

A linear mixed-effects model is a more complicated regression model, fit, for example, by the
lmer() function in the lme4 package (Bates et al., 2015):

data(Orthodont, package="nlme")
g2 <- lme4::lmer(distance ~ age + Sex + (1 | Subject), data = Orthodont)
summary(g2)

Linear mixed model fit by REML ['lmerMod']
Formula: distance ~ age + Sex + (1 | Subject)

Data: Orthodont

REML criterion at convergence: 437.5

Scaled residuals:
Min 1Q Median 3Q Max

-3.7489 -0.5503 -0.0252 0.4534 3.6575

Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 3.267 1.807
Residual 2.049 1.432

Number of obs: 108, groups: Subject, 27

Fixed effects:
Estimate Std. Error t value

(Intercept) 17.70671 0.83392 21.233
age 0.66019 0.06161 10.716
SexFemale -2.32102 0.76142 -3.048

Correlation of Fixed Effects:
(Intr) age

age -0.813
SexFemale -0.372 0.000

This model has a fixed effect part, with response distance and predictors age and Sex. The random
intercept (represented by 1) varies by Subject. Effect plots for mixed-effects models are based only
on the estimated fixed-effects in the model:

plot(predictorEffects(g2))

3

age predictor effect plot

age

di
st

an
ce

22

23

24

25

26

 8 9 10 11 12 13 14

Sex predictor effect plot

Sex

di
st

an
ce

22

23

24

25

26

Male Female

2 Basic Types of Regression Models in the effects Package

The Effects() function supports three basic types of regression models:

• The preceding examples that use the lm() and lmer() functions are examples of glm-type
models, which express, via a link function, the dependence of a discrete or continuous numeric
response or of a binary response on a set of main effects and interactions among fixed-effect
predictors comprising a linear predictor. The glm() function is the prototype for this kind
of model. As shown in Table 1, most of the regression functions currently supported by the
effects package are of this type.

• multinom-type models are multinomial regression models that arise when the response is an
unordered multi-category variable, also modeled, via a suitable multivariate link function, as a
linear function of fixed-effect main effects and interactions. The prototype for multinom-type
models is the multinom() function in the nnet package (Venables and Ripley, 2002).

• polr-type models (i.e., ordinal regression models) are used for an ordered polytomous response
variable. The prototype for polr-type models is the polr() function in the MASS package
(Venables and Ripley, 2002).

3 Supporting Specific Regression Functions

To support a specific class of regression models, say of class "foo" produced by the function foo(),
one could write a method Effect.foo() for the S3 generic Effect() function. That approach is
generally undesirable, for two reasons: (1) writing an Effect() method from scratch is a complicated
endeavor; (2) the resulting object may not work properly with other functions in the effects package,
such as plot() methods.

The effects package defines and exports several methods for the Effect() function, including
a default method, and three specific methods corresponding to the three types of regression models
introduced in the preceding section: Effect.lm() (which is also inherited by models of class "glm"),
Effect.multinom(), and Effect.polr(). Moreover, Effect.default() works by setting up a call

4

to one of the three specific Effect() methods.1

The three basic Effect() methods collect information from the regression model of interest via
a suitable method for the generic effects::effSources() function, and then use that information
to compute effects and their standard errors. The required information is summarized in Table 2.

The default effSources() method simply returns NULL, which corresponds to selecting all of
the defaults in Table 2. If that doesn’t work, it usually suffices to provide a suitable effSources()
method. We illustrate by a few examples.

3.1 Examples

The following examples, with the exception of the last, are drawn directly from the effects package.

3.1.1 glmmPQL()

Objects of class "glmmPQL", produced by MASS::glmmPQL() do not respond to the generic family()
function, but the name of the family can be obtained from the call; thus:

effSources.glmmPQL <- function(mod) {
list(family = mod$family)

}

3.1.2 gls()

The weights argument has different meaning for gls() in the nlme package (Pinheiro et al., 2018)
and for the standard R glm() function, and consequently the call must be modified to set weights
to NULL:

effSources.gls <- function(mod){
cl <- mod$call
cl$weights <- NULL
list(call = cl)

}

3.1.3 betareg()

The betareg function in the betareg package (Grün et al., 2012) fits response data similar to a bi-
nomial regression but with beta errors. Adapting these models for use with Effect() is considerably
more complex than the two previous examples:

effSources.gls <- function(mod){
coef <- mod$coefficients$mean
vco <- vcov(mod)[1:length(coef), 1:length(coef)]

betareg uses beta errors with mean link given in mod$link$mean.
Construct a family based on the binomial() family

fam <- binomial(link=mod$link$mean)
1There are, as well, two additional specific Effect() methods provided by the effects package: Effect.merMod()

for models produced by the lmer() and glmer() functions in the lme4 package; and Effect.svyglm() for models
produced by the svyglm() function in the survey package (Lumley, 2004). To see the code for these methods,
enter the commands getAnywhere("Effect.merMod") and getAnywhere("Effect.svyglm"), after loading the effects
package.

5

Table 2: Values supplied by effSources() methods. In the table, the regression model object is
called m. For functions cited in the insight package see Lüdecke et al. (2019).

Argument Description
type The type of the regression model: one of "glm" (the default if type

isn’t supplied), "multinom", or "polr".
call The call that created the regression model, which is generally re-

turned by either m$call or m@call or insight::get_call(m). The
call is used to find the usual data and subset arguments that Ef-
fect() needs to perform the computation. See the discussion of
nlme:::gls() below for an example where the call must be modi-
fied.

formula The formula for the fixed-effects linear predictor,
which is often returned by stats::formula(m) or in-
sight::find_formula(m)$conditional.

family Many glm-type models include a family, with an error distribu-
tion and a link function. These are often returned by the default
stats::family(m) or insight::get_family(m).

coefficients The vector of fixed-effect parameter estimates, often returned by
coef(m). Alternatively b <- insight::get_parameters(m) returns
the coefficient estimates as a two-column matrix with parameter
names in the first column, so stats:setNames(b[,2], b[,1]) re-
turns the estimates as a vector. For a polr-type model, coefficients
should return the regression coefficients excluding the thresholds.

vcov The estimated covariance matrix of the fixed-effect estimates, often
given by stats::vcov(m) or insight::get_varcov(m). For a polr-
type model, the covariance matrix should include both the regression
coefficients and the thresholds, with the regression coefficients pre-
ceding the thresholds.

zeta The vector of estimated thresholds for a polr-type model, one fewer
than the number of levels of the response. The default for a polr-
type model is zeta = m$zeta.

method For a polr-type model, the name of a link supported by the
MASS::polr() function: one of "logistic", "probit", "loglog",
"cloglog", or "cauchit". The default for a polr-type model is
method = "logistic".

6

adjust the variance function to account for beta variance
fam$variance <- function(mu)

f0 <- function(mu, eta) (1-mu)*mu/(1+eta)
do.call("f0", list(mu, mod$coefficient$precision))

adjust initialize
fam$initialize <- expression(mustart <- y)

collect arguments
args <- list(

call = mod$call,
formula = formula(mod),
family=fam,
coefficients = coef,
vcov = vco)

args
}

3.1.4 clm2()

The clm2() function in the ordinal package (Christensen, 2015) fits ordinal regression models, and
so the aim is to create polr-type effects:

effSources.clm2 <- function(mod){
if (!requireNamespace("MASS", quietly=TRUE))

stop("MASS package is required")
polr.methods <- c("logistic", "probit", "loglog",

"cloglog", "cauchit")
method <- mod$link
if(!(method %in% polr.methods))

stop("'link' must be a 'method' supported by polr; see help(polr)")
if(is.null(mod$Hessian)){

message("Re-fitting to get Hessian")
mod <- update(mod, Hess=TRUE)

}
if(mod$threshold != "flexible")

stop("Effects only supports the flexible threshold")
numTheta <- length(mod$Theta)
numBeta <- length(mod$beta)
or <- c((numTheta+1):(numTheta + numBeta), 1:(numTheta))
list(

type = "polr",
formula = mod$call$location,
coefficients = mod$beta,
zeta = mod$Theta,
method=method,
vcov = as.matrix(vcov(mod)[or, or]))

}

7

3.1.5 ivreg::ivreg()

Sometimes it doesn’t suffice to define an appropriate effSources() method, but it is still possible to
avoid writing a detailed Effect() method. We use the ivreg() function (for instrumental-variables
regression) in the ivreg package (Fox et al., 2021) as an example; that package defines the following
Effect.ivreg() method:

Effect.ivreg <- function (focal.predictors, mod, ...) {
mod$contrasts <- mod$contrasts$regressors
NextMethod()

}

Here it is sufficient to set the contrasts element of the model object to conform to the way it
is defined in "lm" objects. That works because "ivreg" objects inherit from class lm, and thus
Effect.lm() is called by NextMethod().

References

Bates, D., M. Mächler, B. Bolker, and S. Walker (2015). Fitting linear mixed-effects models using
lme4. Journal of Statistical Software 67 (1), 1–48.

Christensen, R. H. B. (2015). ordinal—Regression Models for Ordinal Data. R package version
2015.6-28.

Fox, J., C. Kleiber, and A. Zeileis (2021). ivreg: Instrumental-Variables Regression by ’2SLS’,
’2SM’, or ’2SMM’, with Diagnostics. R package version 0.6-1.

Fox, J. and S. Weisberg (2019). An R Companion to Applied Regression (3nd ed.). Thousand Oaks
CA: Sage.

Grün, B., I. Kosmidis, and A. Zeileis (2012). Extended beta regression in R: Shaken, stirred, mixed,
and partitioned. Journal of Statistical Software 48 (11), 1–25.

Lumley, T. (2004). Analysis of complex survey samples. Journal of Statistical Software 9 (1), 1–19.
R package version 2.2.

Lüdecke, D., P. Waggoner, and D. Makowski (2019). insight: A unified interface to access informa-
tion from model objects in R. Journal of Open Source Software 4 (38), 1412.

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team (2018). nlme: Linear and Nonlinear
Mixed Effects Models. R package version 3.1-137.

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S (4th ed.). New York:
Springer-Verlag.

8

	Introduction
	Basic Types of Regression Models in the effects Package
	Supporting Specific Regression Functions
	Examples
	glmmPQL()
	gls()
	betareg()
	clm2()
	ivreg::ivreg()

