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The examples developed in this vignette are meant to supplement Fox and Weisberg [2018].

1 Basic Setup

We will analyze contrived data generated according to the following setup:

• We sample n = 5000 observations from a trivariate distribution for predictors x1, x2, and x3, with
uniform margins on the interval [−2, 2], and with a prespecified bivariate correlation ρ between each pair
of predictors. The method employed, described by Schumann [2009] and traceable to results reported
by Pearson [1907], produces predictors that are nearly linearly related. Using 5000 observations allows
us to focus on essentially asymptotic behavior of partial residuals in effect plots while still being able
to discern individual points in the resulting graphs.

• We then generate the response y according to the model

y = β0 + h (β, {x1, x2, x3}) + ε (1)

where ε ~N(0, 1.52). The regression function h(·) varies from example to example.

The following functions make it convenient to generate data according to this setup. These functions are
more general than is strictly necessary so as to encourage further experimentation.

mvrunif <- function(n, R, min = 0, max = 1){
# method (but not code) from E. Schumann,

# "Generating Correlated Uniform Variates"

# URL:

# <http://comisef.wikidot.com/tutorial:correlateduniformvariates>

# downloaded 2015-05-21

if (!is.matrix(R) || nrow(R) != ncol(R) ||

max(abs(R - t(R))) > sqrt(.Machine$double.eps))

stop("R must be a square symmetric matrix")

if (any(eigen(R, only.values = TRUE)$values <= 0))

stop("R must be positive-definite")

if (any(abs(R) - 1 > sqrt(.Machine$double.eps)))

stop("R must be a correlation matrix")

m <- nrow(R)

R <- 2 * sin(pi * R / 6)

X <- matrix(rnorm(n * m), n, m)

X <- X %*% chol(R)

X <- pnorm(X)

min + X * (max - min)

}
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gendata <- function(n = 5000, R, min = -2, max = 2, s = 1.5,

model = expression(x1 + x2 + x3)){
data <- mvrunif(n = n, min = min, max = max, R = R)

colnames(data) <- c("x1", "x2", "x3")

data <- as.data.frame(data)

data$error <- s * rnorm(n)

data$y <- with(data, eval(model) + error)

data

}

R <- function(offdiag = 0, m = 3){
R <- diag(1, m)

R[lower.tri(R)] <- R[upper.tri(R)] <- offdiag

R

}

2 Unmodelled Interaction

We begin with uncorrelated predictors and the true regression mean function E(y|x) = x1 + x2x3, but fit
the incorrect additive working model y ~x1 + x2 + x3 to the data.

set.seed(682626)

Data.1 <- gendata(R = R(0), model = expression(x1 + x2 * x3))

round(cor(Data.1), 2)

## x1 x2 x3 error y

## x1 1.00 -0.03 0.03 0.01 0.49

## x2 -0.03 1.00 -0.01 0.00 -0.01

## x3 0.03 -0.01 1.00 0.02 0.03

## error 0.01 0.00 0.02 1.00 0.66

## y 0.49 -0.01 0.03 0.66 1.00

summary(mod.1 <- lm(y ~ x1 + x2 + x3, data = Data.1))

##

## Call:

## lm(formula = y ~ x1 + x2 + x3, data = Data.1)

##

## Residuals:

## Min 1Q Median 3Q Max

## -7.7493 -1.3702 0.0438 1.3873 8.3059

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.005536 0.028923 0.191 0.848

## x1 1.010175 0.025299 39.929 <2e-16

## x2 0.001697 0.024929 0.068 0.946

## x3 0.031178 0.024717 1.261 0.207

##

## Residual standard error: 2.045 on 4996 degrees of freedom

## Multiple R-squared: 0.2426,Adjusted R-squared: 0.2422

## F-statistic: 533.5 on 3 and 4996 DF, p-value: < 2.2e-16
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Figure 1: Effect displays with partial residuals for the individual predictors x1, x2, and x3 in the incorrect
model y ~x1 + x2 + x3 fit to data generated with the mean function E(y|x) = x1 + x2x3, with uncorrelated
predictors.

x1 predictor effect plot

x1

y

−5

 0

 5

−2 −1  0  1  2

x2 predictor effect plot

x2

y

−5

 0

 5

−2 −1  0  1  2

x3 predictor effect plot

x3

y

−5

 0

 5

−2 −1  0  1  2

For reproducibility, we set a known seed for the pseudo-random number generator; this seed was itself
generated pseudo-randomly, and we reuse it in the examples reported below. As well, in this first example,
but not for those below, we show the correlation matrix of the randomly generated data along with the fit
of the working model to the data.

Effect plots with partial residuals corresponding to the terms in the working model are shown in Figure 1:

library(effects)

plot(predictorEffects(mod.1, partial.residuals=TRUE),

partial.residual=list(pch=".", col="#FF00FF80"),

axes=list(x=list(rotate=45)),

rows=1, cols=3)

In these graphs and, unless noted to the contrary, elsewhere in this vignette, the loess smooths are drawn
with span 2/3. Because of the large number of points in the graphs, optional arguments to plot are specified
to de-emphasize the partial residuals. To this end, the residuals are plotted as small points (pch=".") and
in a translucent magenta color (col="#FF00FF80").

The failure of the model is not apparent in these traditional partial residual plots, but it is clear in the
term effect plot for {x2, x3}, corresponding to the unmodelled interaction x2:x3, and shown in the top panel
of Figure 2, generated using

plot(Effect(c("x2", "x3"), mod.1, partial.residuals = TRUE),

partial.residual=list(pch=".", col="#FF00FF80"),

axes=list(x=list(rotate=45)),

lattice=list(layout=c(4, 1)))

Moreover, the effect plot in the bottom panel of the figure for {x1, x2}, corresponding to a term not in
the true mean function, correctly indicates lack of interaction between these two predictors:

plot(Effect(c("x1", "x2"), mod.1, partial.residuals = TRUE),

partial.residual=list(pch=".", col="#FF00FF80"),

axes=list(x=list(rotate=45)),

lattice=list(layout=c(4, 1)))

As a partly contrasting example, we turn to a similar data set, generated with the same regression mean
function but with moderately correlated predictors, where the pairwise predictor correlations are ρ = 0.5:
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Figure 2: Term effect displays with partial residuals for {x2, x3}, corresponding to the missing interaction
x2:x3, and for {x1, x2}, corresponding to an interaction not present in the model that generated the data.
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Figure 3: Predictor effect displays with partial residuals for the individual predictors x1, x2, and x3 in the
incorrect model y ~x1 + x2 + x3 fit to data generated with the mean function E(y|x) = x1 + x2x3, with
moderately correlated predictors.
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set.seed(682626)

Data.2 <- gendata(R = R(0.5), model = expression(x1 + x2 * x3))

mod.2 <- lm(y ~ x1 + x2 + x3, data = Data.2)

Graphs analogous to those from the preceding example appear in Figures 3 and 4:

plot(predictorEffects(mod.2, partial.residuals=TRUE),

partial.residual=list(pch=".", col="#FF00FF80",fig.show='hide'),

axes=list(x=list(rotate=45)),

rows=1, cols=3)

plot(Effect(c("x2", "x3"), mod.2, partial.residuals = TRUE),

partial.residual=list(pch=".", col="#FF00FF80"),

axes=list(x=list(rotate=45)),

lattice=list(layout=c(4, 1)))

plot(Effect(c("x1", "x2"), mod.2, partial.residuals = TRUE),

partial.residual=list(pch=".", col="#FF00FF80",fig.show='hide'),

axes=list(x=list(rotate=45)),

lattice=list(layout=c(4, 1)))

The predictor effect plots for x2 and x3, and to a much lesser extent, for x1, in the incorrect model in
Figure 3 show apparent nonlinearity as a consequence of the unmodelled interaction and the correlations
among the predictors. A similar phenomenon was noted in our analysis of the Canadian occupational prestige
data in Fox and Weisberg [2018, Section 4.2], where the unmodelled interaction between type and income

induced nonlinearity in the partial relationship of prestige to income. The omitted interaction is clear
in the effect plot for {x2, x3}, but also, to a lesser extent, contaminates the effect plot for {x1, x2}, which
corresponds to an interaction that does not enter the model generating the data. These artifacts become
more prominent if we increase the predictor correlations, say to ρ = 0.9 (as we invite the reader to do).

3 Unmodelled Nonlinearity

We generate data as before, but from the true model E(y|x) = x2
1 + x2 + x3, where the predictors are

moderately correlated, with pairwise correlations ρ = 0.5, but fit the incorrect additive working model
y ~x1 + x2 + x3 to the data:
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Figure 4: Term effect displays with partial residuals for {x2, x3}, corresponding to the missing interaction
x2:x3, and for {x1, x2}, corresponding to an interaction not present in the model that generated the data.
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Figure 5: Predictor effect displays with partial residuals for the individual predictors x1, x2, and x3 in the
incorrect model y ~x1 + x2 + x3 fit to data generated with the mean function E(y|x) = x2

1 + x2 + x3, with
moderately correlated predictors.
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set.seed(682626)

Data.3 <- gendata(R = R(0.5), model = expression(x1^2 + x2 + x3))

mod.3 <- lm(y ~ x1 + x2 + x3, data = Data.3)

Effect plots with residuals for the predictors in the working model appear in Figure 5. The unmodelled
nonlinearity in the partial relationship of y to x1 is clear, but there is some contamination of the plots for
x2 and x3. The contamination is much more dramatic if the correlations among the predictors are increased
to, say, ρ = 0.9 (as the reader may verify).

plot(predictorEffects(mod.3, partial.residuals=TRUE),

partial.residual=list(pch=".", col="#FF00FF80"),

axes=list(x=list(rotate=45)),

rows=1, cols=3)

Effect plots for {x1, x2} and {x2, x3} are shown in Figure 6:

plot(Effect(c("x2", "x3"), mod.3, partial.residuals = TRUE),

partial.residual=list(pch=".", col="#FF00FF80"),

axes=list(x=list(rotate=45)),

lattice=list(layout=c(4, 1)))

plot(Effect(c("x1", "x2"), mod.3, partial.residuals = TRUE),

partial.residual=list(pch=".", col="#FF00FF80"),

axes=list(x=list(rotate=45)),

lattice=list(layout=c(4, 1)))

Neither of these graphs corresponds to a term in the model generating the data nor in the working model,
and the effect plots largely confirm the absence of x1:x2 and x2:x3 interactions, along with the nonlinearity
of the partial effect of x1, apparent in the top panel.

4 Simultaneous Unmodelled Nonlinearity and Interaction

This last example also appears in Fox and Weisberg [2018, Section 4.3]. We consider a true model that
combines nonlinearity and interaction, E(y|x) = x2

1 + x2x3; the predictors are moderately correlated, with
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Figure 6: Term effect displays with partial residuals for {x1, x2} and for {x2, x3}, neither of which corresponds
to an interaction in the model generating the data.
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Figure 7: Effect displays with partial residuals for the predictors x1, x2, and x3 in the incorrect model
y ~x1+x2+x3 fit to data generated with the mean function E(y|x) = x2

1+x2x3, with moderately correlated
predictors.
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ρ = 0.5. We then fit the incorrect working model y ~x1 + x2 + x3 to the data, producing the predictor effect
displays with partial residuals in Figure 7, for the predictors x1, x2, and x3, which appear additively in the
working model, and the term effect displays in Figure 8 for {x2, x3} and {x1, x2}, corresponding respectively
to the incorrectly excluded x2:x3 term and the correctly excluded x1:x2 interaction.

set.seed(682626)

Data.4 <- gendata(R = R(0.5), model = expression(x1^2 + x2 * x3))

mod.4 <- lm(y ~ x1 + x2 + x3, data = Data.4)

plot(predictorEffects(mod.4, partial.residuals=TRUE),

partial.residual=list(pch=".", col="#FF00FF80"),

axes=list(x=list(rotate=45)),

rows=1, cols=3)

plot(Effect(c("x2", "x3"), mod.4, partial.residuals = TRUE),

partial.residual=list(pch=".", col="#FF00FF80"),

axes=list(x=list(rotate=45)),

lattice=list(layout=c(4, 1)))

plot(Effect(c("x1", "x2"), mod.4, partial.residuals = TRUE),

partial.residual=list(pch=".", col="#FF00FF80"),

axes=list(x=list(rotate=45)),

lattice=list(layout=c(4, 1)))

The nonlinearity in the partial relationship of y to x1 shows up clearly. The nonlinearity apparent in
the plots for x2 and x3 is partly due to contamination with x1, but largely to the unmodelled interaction
between x2 and x3, coupled with the correlation between these predictors. The plot corresponding to the
missing x2:x3 term (in the top panel of Figure 8) does a good job of detecting the unmodelled interaction,
and curvature in this plot is slight. The plot for the x1:x2 term (in the bottom panel of Figure 8), a term
neither in the true model nor in the working model, primarily reveals the unmodelled nonlinearity in the
partial relationship of y to x1.

If we fit the correct model, y ~x
2
1+x2 ∗x3, to the data, we obtain the plots shown in Figure 9. As theory

suggests, the partial residuals in these effect displays validate the model, supporting the exclusion of the
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Figure 8: Term effect displays with partial residuals for {x2, x3} (top) and for {x1, x2} (bottom), the first
of which corresponds to the missing x2:x3 interaction in the model generating the data.
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x1:x2 interaction, the linear-by-linear interaction between x1 and x2, and the quadratic partial relationship
of y to x1.

mod.5 <- lm(y ~ poly(x1, 2) + x2*x3, data=Data.4)

plot(Effect("x1", mod.5, partial.residuals=TRUE),

partial.residual=list(pch=".", col="#FF00FF80", span=0.2))

plot(Effect(c("x2", "x3"), mod.5, partial.residuals = TRUE),

partial.residual=list(pch=".", col="#FF00FF80"),

axes=list(x=list(rotate=45)),

lattice=list(layout=c(4, 1)), span=0.5)

plot(Effect(c("x1", "x2"), mod.5, partial.residuals = TRUE),

partial.residual=list(pch=".", col="#FF00FF80", span=0.35),

axes=list(x=list(rotate=45)),

lattice=list(layout=c(4, 1)))

In these graphs, we adjust the span of the loess smoother to the approximately smallest value that produces
a smooth fit to the partial residuals in each case.
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Figure 9: Effect displays with partial residuals for x1 and {x2, x3}, which correspond to terms in the model
generating and fitted to the data, y ~x

2
1+x2 ∗x3, and for {x1, x2}, which corresponds to an interaction that

is not in the model.
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