
Class Discovery with OOMPA

Kevin R. Coombes

September 3, 2025

Contents
1 Introduction 1

2 Getting Started 1

3 Distances and Clustering 2
3.1 Colored Clusters . 2

4 Checking the Robustness of Clusters 8

5 Principal Components Analysis 11

6 Mosaics: red-green heatmaps 17

7 Class discovery with ExpressionSets 17

1 Introduction
OOMPA is a suite of object-oriented tools for processing and analyzing large
biological data sets, such as those arising from mRNA expression microarrays
or mass spectrometry proteomics. The ClassDiscovery package in OOMPA
provides tools to work on the “class discovery” problem. Class discovery is one
of the three primary types of applications of microarrays described by Richard
Simon and colleagues. These are unsupervised methods that are intended to
uncover the underlying structure in a data set.

2 Getting Started
No one will be surprised to learn that we start by loading the package into the
current R session:

> library(ClassDiscovery)

1

The main functions and classes in the ClassDiscovery package work either
with data matrices or with ExpressionSet objects from the BioConductor
Biobase package. For the first set of examples in this vignette, we will use
simulated data that represents three different groups of samples:

> d1 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
> d2 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
> d3 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
> dd <- cbind(d1, d2, d3)
> rm(d1,d2,d3)

Because the “raw data” is small by microarray standards, we can use the image
command to take a look at it. The ClassDiscovery package includes several color
maps that are more common in the microarray literature than the color maps
that ship with R. These include a green-black-red colormap (obtained via the
redgreen function), a blue-gray-yellow colormap (from blueyellow), shades of
red, green, or blue (from redscale, greenscale, or bluescale, respectively)
and a “jet” color map (from jetColors) that recapitulates the standard MAT-
LAB color map. Two examples are shown in Figure 1.

3 Distances and Clustering
The dist function includes a variety of distance metrics commonly used by
statisticians. However, it does not include the most commonly used metric in
the microarray literature, which is based on the Pearson correlation coefficient.
In addition, dist wants to compute distances between rows, not columns. In
most microarray applications, the convention is to store the samples as columns
and the genes as rows, and we are typically more interested in clustering the
samples. So, we have written a function called distanceMatrix that solves both
these problems. All the existing distance metrics in dist are available through
distanceMatrix, but some new ones are added. The first example clusters
the samples using Pearson correlation (Figure 2). As you can see, the imposed
three-group structure is visible in the dendrogram. Similar results are obtained
using Spearman rank correlation (Figure 3) or the “uncentered correlation” that
is the default in Mike Eisen’s TreeView clustering software (Figure 4) instead of
the Pearson correlation.

3.1 Colored Clusters
Sometimes we want the known group structure to stand out clearly in a den-
drogram, indicated perhaps by color. In our example, we have ten samples from
each of three groups, in order. Using plotColoredClusters, we can plot the
dendrogram with each group indicated using a different color (Figure 5).

2

> par(mfrow=c(2,1))
> image(1:nrow(dd), 1:ncol(dd), dd, xlab="genes", ylab="samples", col=redgreen(64))
> image(1:nrow(dd), 1:ncol(dd), dd, xlab="genes", ylab="samples", col=jetColors(64))
> par(mfrow=c(1,1))

20 40 60 80 100

5
10

15
20

25
30

genes

sa
m

pl
es

20 40 60 80 100

5
10

15
20

25
30

genes

sa
m

pl
es

Figure 1: Images of the simulated data using two different color maps.

3

> pearson <- hclust(distanceMatrix(dd, "pearson"), "average")
> plot(pearson)

10 8 9
3 6 4 7

1
2 5

28
22 29

25
27

26 30
21

23 24
11

18 19
16 15

17 20
12

13 14

0.
1

0.
2

0.
3

0.
4

0.
5

Cluster Dendrogram

hclust (*, "average")
distanceMatrix(dd, "pearson")

H
ei

gh
t

Figure 2: Hierarchical clustering using Pearson correlation to define distances.

4

> spear <- hclust(distanceMatrix(dd, "spearman"), "average")
> plot(spear)

10
9

5 1
4

2 7
8

3 6
21 23 28

25 30
22 27

29
24 26

11
18 19

16
17 20

15 12
13 140.

1
0.

2
0.

3
0.

4
0.

5

Cluster Dendrogram

hclust (*, "average")
distanceMatrix(dd, "spearman")

H
ei

gh
t

Figure 3: Hierarchical clustering using Spearman rank correlation to define
distances.

5

> unc <- hclust(distanceMatrix(dd, "uncent"), "average")
> plot(unc)

10 8 9
3 6 4 7

1
2 5

18 19 16
17 20

15
11

12
13 14

28
21

25
27

26 30
22 29

23 24

0.
2

0.
4

0.
6

0.
8

Cluster Dendrogram

hclust (*, "average")
distanceMatrix(dd, "uncent")

H
ei

gh
t

Figure 4: Hierarchical clustering using Eisen’s uncentered correlation to define
distances.

6

> myColors <- rep(c("red", "blue", "purple"), each=10)
> myLabels <- paste("Sample", 1:30)
> plotColoredClusters(pearson, myLabels, myColors)

0.
1

0.
2

0.
3

0.
4

0.
5

hclust (*, "average")
distanceMatrix(dd, "pearson")

H
ei

gh
t

S
am

pl
e

1
S

am
pl

e
2

S
am

pl
e

3

S
am

pl
e

4

S
am

pl
e

5

S
am

pl
e

6

S
am

pl
e

7

S
am

pl
e

8
S

am
pl

e
9

S
am

pl
e

10

S
am

pl
e

11

S
am

pl
e

12
S

am
pl

e
13

S
am

pl
e

14

S
am

pl
e

15
S

am
pl

e
16

S
am

pl
e

17

S
am

pl
e

18
S

am
pl

e
19

S
am

pl
e

20

S
am

pl
e

21

S
am

pl
e

22

S
am

pl
e

23
S

am
pl

e
24

S
am

pl
e

25

S
am

pl
e

26
S

am
pl

e
27

S
am

pl
e

28

S
am

pl
e

29

S
am

pl
e

30

Figure 5: Clustering by Pearson correlation, with the true group structure coded
by color.

7

4 Checking the Robustness of Clusters
One important factor about clustering routines is that they always produce clus-
ters, whether or not clusters are truly present in the data. Thus, it is important
to have some tools available to try to determine if the clusters are believable.
One way to approach this problem, as described by Kerr and Churchill, is to
repeat the clustering using a bootstrap. If we are trying to cluster samples, for
example, we can use a bootstrap to repeatedly resample the genes used for the
clustering, and count how many times each pair of samples ends up in the same
branch of the dendrogram. Here is an example, using hierarchical clustering
with Pearson correlation and average linkage. Figure 6 displays the results, us-
ing a color map that ranges from pure blue (the samples are in the same branch
0% of the time) to pure yellow (the samples are in the same branch 100% of the
time).

> boot <- BootstrapClusterTest(dd, cutHclust, nTimes=200, k=4,
+ metric="pearson", method="average",
+ verbose=FALSE)
> summary(boot)

Number of bootstrap samples: 200.
Number of rows sampled: 100.
A BootstrapClusterTest object.

Call:
BootstrapClusterTest(data = dd, FUN = cutHclust, nTimes = 200, verbose = FALSE, k = 4, metric = "pearson", method = "average")

Agreement levels:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.2814 0.8550 1.0000

The default image display calls the heatmap function, which reclusters the
samples based on the bootstrap distance results. You can override this by
supplying a starting dendrogram, as in Figure 7.

Because the cluster test requires you to cut the dendrogram at a prespecified
level to produce k clusters, the results may be different for different values of
k. They can also be different if you change the metric or linkage method. You
can also use other clustering methods; the functions cutPam, cutKmeans, and
cutRepeatedKmeans can be used instead of cutHclust. If you want to write
your own version of these functions, they should take an argument data to
specify the data matrix and an argument k to specify the number of desired
clusters, and should return a numeric vector containing the class labels (in the
range 1 to k) for the samples. Additional optional arguments to control the
clustering algorithm can be added as desired, as long as they are given sensible
default values.

In some cases, there are not enough rows for a bootstrap resample to ad-
equately reflect the distribution. To deal with this case, we can perform a

8

> image(boot, col=blueyellow(64))

10 8 9 7 6 5 4 3 1 2 11 19 12 16 18 15 17 20 13 14 28 23 21 25 30 22 29 24 27 26

10
8
9
7
6
5
4
3
1
2
11
19
12
16
18
15
17
20
13
14
28
23
21
25
30
22
29
24
27
26

Figure 6: Heatmap of the results of a bootstrap cluster test.

9

> image(boot, dendrogram=pearson,col=blueyellow(64))

10 8 9 3 6 4 7 1 2 5 28 22 29 25 27 26 30 21 23 24 11 18 19 16 15 17 20 12 13 14

10
8
9
3
6
4
7
1
2
5
28
22
29
25
27
26
30
21
23
24
11
18
19
16
15
17
20
12
13
14

Figure 7: Heatmap of the results of a bootstrap cluster test of the significance
of hierarchical clustering using Pearson correlation and average linkage.

10

similar reclustering process, where we add Gaussian white noise to the data
matrix instead of using a bootstrap. Here is an example, using k-means to do
the clustering (Figure 8).

> kper <- PerturbationClusterTest(dd, cutKmeans, k=4, nTimes=100, noise=1, verbose=FALSE)
> summary(kper)

Number of perturbation samples: 100.
Noise level: 1.
A PerturbationClusterTest object.

Call:
PerturbationClusterTest(data = dd, FUN = cutKmeans, nTimes = 100, noise = 1, verbose = FALSE, k = 4)

Agreement levels:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.2597 0.7900 0.9400

5 Principal Components Analysis
Principal components analysis (PCA) provides an alternative way to see which
samples are close to one another. One has to be careful when performing PCA
on large data sets, since the default behavior of the princomp function is to start
by constructing a possibly gigantic covariance matrix. We have implemented
the algorithm using a singular value decomposition (SVD) on the original data
matrix, which is computationally much more efficient. When there are known
classes (as in our example) we can easily display them in color (Figure 9).

We can also select the pairs of principal components (PCs) that we want to
display (Figure 10), although the default display of the first two is the one you
usually want. In order to figure out how many PCs are important, we can use
a “screeplot” (Figure 11). In our example, the first two components appear to
carry almost all of the information in the data set.

PCA is fundamentally a geometric procedure based on linear algebra, since
it works by choosing a convenient set of directions to serve as axes in a high di-
mensional space. In some applications, the PCs are used as features (sometimes
called “metagenes”) to build a classification model. In order to apply these kinds
of classifiers to new data sets, you have to be able to project new samples into
the same principal component space. To illustrate how this works, we simulate
some new data that does not really belong to any of the three classes, and we use
the predict method to project it into the principal component space. We can
then plot the results of the PCA and overlay the projected points (Figure 12).

> newdata <- matrix(rnorm(10*100), ncol=10)
> projected <- predict(spca, newdata)

11

> image(kper, col=redgreen(128))

16 18 17 20 11 19 13 14 12 15 8 5 2 1 9 10 7 4 3 6 29 22 28 30 24 23 26 27 21 25

16
18
17
20
11
19
13
14
12
15
8
5
2
1
9
10
7
4
3
6
29
22
28
30
24
23
26
27
21
25

Figure 8: Heatmap of the reproducibility of clustering using k-means under
repeated perturbations of the data.

12

> trueClasses <- factor(rep(c("A", "B", "C"), each=10))
> spca <- SamplePCA(dd, trueClasses)
> plot(spca, col=c("red", "blue", "purple"))

−10 −5 0 5

−
10

−
5

0
5

10

Component 1

C
om

po
ne

nt
 2

Figure 9: PCA plot of the first two principal components.

13

> plot(spca, col=c("red", "blue", "purple"), which=c(1,3))

−10 −5 0 5

−
4

−
2

0
2

4

Component 1

C
om

po
ne

nt
 3

Figure 10: PCA plot of the first and third principal components.

14

> screeplot(spca)

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 11: A “screeplot” of the PCA, which shows the percentage of variance
explained by each component.

15

> plot(spca, col=c("red", "blue", "purple"))
> points(projected[,1], projected[,2], pch=16)

−10 −5 0 5

−
10

−
5

0
5

10

Component 1

C
om

po
ne

nt
 2

Figure 12: PCA plot, along with projections of a new data set.

16

6 Mosaics: red-green heatmaps
<Sarcasm> When Mike Eisen and colleagues invented clustering, they also
introduced the now-ubiquitous red-green heatmaps beloved by color-blind re-
searchers around the world. As a result, everyone working with microarrays has
to be able to produce the same kinds of pictures in order to be taken seriously.
</Sarcasm>

Our answer to this challenge is the Mosaic class. We can use our simulated
data as an example, following the usual R convention in which we first construct
an object and then print it or display it (Figure 14). The summary tells us which
distance metrics and linkage methods were used to construct the object. The
plot command then gives a simple interface to get the desired figure.

> mose <- Mosaic(dd, sampleMetric="spearman", geneMetric="pearson")
> summary(mose)

My mosaic, an object of the Mosaic class.

Call:
Mosaic(data = dd, sampleMetric = "spearman", geneMetric = "pearson")

Sample dendrogram constructed with "average" linkage and "spearman" distance metric.

Gene dendrogram constructed with "average" linkage and "pearson" distance metric.

Implementation Note: The hardest part of this whole thing was being
able to control the aspect ratio of the heatmap. This feature is not part of the
heatmap function in the stats package. Our solution was to modify the code
from that function to produce a new function that we call aspectHeatmap. This
modification added even more parameters to a function that was already almost
unusable in the hands of novice R users. (This claim is based on three years
experience teaching a course on the analysis of microarray data to a mixture of
statisticians and biologists.) The Mosaic class hides most of this complexity;
the only things you really need to know about are the hExp and wExp parameters
that act as expansion factors for the height and width of the figure, respectively.

7 Class discovery with ExpressionSets
As we mentioned earlier, the main functions in the ClassDiscovery work with
ExpressionSets as well as with plain old data matrices. For example, we can
load a sample data set from the Biobase package.

> library(Biobase)
> data(sample.ExpressionSet)
> s <- sample.ExpressionSet
> s

17

> plot(mose, hExp=3, col=redgreen(64))

V
10 V

1
V

7
V

6
V

28
V

22
V

24
V

18
V

17
V

12

86
67
34
93
62
17
3
88
89
8
16
22
1
71
79
30
10
33
32
25
29
38
28
45
94
74
42
23
31
5
57
76
7
41
20
15
100
56
72
81
84
47
35
18
14
12
53
58
77
61

Figure 13: Red-green heatmap based on two-way clustering of the data.

18

> plot(mose, hExp=3, col=redgreen(64), scale='row', limits=2)

V
10 V

1
V

7
V

6
V

28
V

22
V

24
V

18
V

17
V

12

86
67
34
93
62
17
3
88
89
8
16
22
1
71
79
30
10
33
32
25
29
38
28
45
94
74
42
23
31
5
57
76
7
41
20
15
100
56
72
81
84
47
35
18
14
12
53
58
77
61

Figure 14: Red-green heatmap based on two-way clustering of the data, with
standardized rows (genes) and a symmetrically bounded colormap.

19

> plot(hclust(distanceMatrix(s, "pearson"), "average"))

R
Z

C
M

D S
T

Q X
N

H F
E

B Y L
I K

P W
J

O
A V G U

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Cluster Dendrogram

hclust (*, "average")
distanceMatrix(s, "pearson")

H
ei

gh
t

Figure 15: Hierarchical clustering of a sample ExpressionSet.

ExpressionSet (storageMode: lockedEnvironment)
assayData: 500 features, 26 samples

element names: exprs, se.exprs
protocolData: none
phenoData

sampleNames: A B ... Z (26 total)
varLabels: sex type score
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'
Annotation: hgu95av2

20

> plot(SamplePCA(s))

−6000 −4000 −2000 0 2000 4000 6000

−
40

00
−

20
00

0
20

00
40

00

Component 1

C
om

po
ne

nt
 2

Figure 16: Plot of the first two principal components of a sample ExpressionSet.

21

> plot(Mosaic(s), hExp=3, col=blueyellow(64))

R M T N E L P O G

AFFX−hum_alu_at
31622_f_at
31432_g_at
31597_r_at
AFFX−HUMISGF3A/M97935_MA_at
31709_at
31391_at
31640_r_at
31440_at
31621_s_at
31659_at
31510_s_at
31371_at
31317_r_at
31695_g_at
31731_at
31332_at
31462_f_at
31539_r_at
31390_at
31651_at
31494_at
31338_at
AFFX−TrpnX−3_at
AFFX−BioB−M_st
31732_at
31677_at
31628_at
AFFX−ThrX−3_at
31340_at
31650_g_at
31442_at
31717_at
31582_at
31348_at
31591_s_at
AFFX−HUMGAPDH/M33197_M_st
31644_at
31725_s_at
AFFX−BioB−5_at
31453_s_at
31358_at
AFFX−TrpnX−M_at
31452_at
31618_at
31430_at
31589_at
31363_at
AFFX−DapX−M_at
31449_at
31572_at
31519_f_at
31458_at
AFFX−CreX−5_st
31380_at
31552_at
31605_at
31524_f_at
31738_at
31634_at
31705_at
31579_at
31699_at
31426_at
31669_s_at
31502_at
31610_at
31550_at
AFFX−HUMGAPDH/M33197_M_at
31511_at
31568_at
AFFX−HUMGAPDH/M33197_3_at

Figure 17: Plot of the first two principal components of a sample ExpressionSet.

22

	Introduction
	Getting Started
	Distances and Clustering
	Colored Clusters

	Checking the Robustness of Clusters
	Principal Components Analysis
	Mosaics: red-green heatmaps
	Class discovery with ExpressionSets

