
Semiparametric Thresholding Least Squares Inference for Causal
Effects with R

Pierre Chausse∗, Mihai Giurcanu†, Marinela Capanu‡, George Luta§

Abstract
This vignette explains how to use the causalTLSE package to estimate causal effects using the

semiparametric thresholding least squares methods developed by Giurcanu et al. (2023). We describe the
classes and methods implemented in the package as well as how they can be used to analyze synthetic
and real data.

1 Introduction
This document presents the causalTLSE package describing the functions implemented in the package. It is
intended for users interested in the details about the methods presented in Giurcanu et al. (2023) and how
they are implemented.

The general semiparametric additive regression model is

Y = β0(1 − Z) + β1Z +
q∑

l=1
fl,0(Xl)(1 − Z) +

q∑
l=1

fl,1(Xl)Z + ξ

≡ β0(1 − Z) + β1Z + f0(X)(1 − Z) + f1(X)Z + ξ ,

where Y ∈ R is the response variable, Z is the treatment indicator defined as Z = 1 for the treated and Z = 0
for the nontreated, and X ∈ Rq is a q-vector of confounders. We approximate this model by the following
regression model:

Y = β0(1 − Z) + β1Z +
q∑

l=1
ψT

l,0Ul,0(1 − Z) +
q∑

l=1
ψT

l,1Ul,1Z + ζ

≡ β0(1 − Z) + β1Z + ψT
0 U0(1 − Z) + ψT

1 U1Z + ζ ,

where Ul,k = ul,k(Xl) = (uj,l,k(Xl) : 1 ≤ j ≤ pl,k) ∈ Rpl,k is a vector of basis functions corresponding to
the lth nonparametric component of the kth group fl,k(Xl), ψl,k ∈ Rpl,k is an unknown vector of regression
coefficients, Uk = uk(X) = (ul,k(Xl) : 1 ≤ l ≤ q) ∈ Rpk and ψk = (ψl,k : 1 ≤ l ≤ q) ∈ Rpk , with
pk =

∑q
l=1 pl,k. In this paper, we propose a data-driven method for selecting the vectors of basis functions

u0(X) and u1(X). Note that we allow the number of basis functions (pl,k) to differ across confounders and
groups.

To understand the package, it is important to know how the ul,k(Xl)’s are defined. For clarity, let’s write
Ul,k = ul,k(Xl) as U = u(X) = (uj(X) : 1 ≤ j ≤ p) ∈ Rp. We just need to keep in mind that it is different

∗University of Waterloo, pchausse@uwaterloo.ca
†University of Chicago, giurcanu@uchicago.edu
‡Memorial Sloan Kettering Cancer Center, capanum@mskcc.org
§Georgetown University, George.Luta@georgetown.edu

1

mailto:pchausse@uwaterloo.ca
mailto:giurcanu@uchicago.edu
mailto:capanum@mskcc.org
mailto:George.Luta@georgetown.edu

for the treated and nontreated groups and also for different confounders. We describe here how to construct
the local linear splines for a given confounder X. To this end, let {κ1, . . . , κp−1} be a set of p − 1 knots
strictly inside the support of X satisfying κ1 < κ2 < . . . < κp−1. In the case of local linear splines described
in the paper, we have:

u1(x) = xI(x ≤ κ1) + κ1I(x > κ1)
uj(x) = (x− κj−1)I(κj−1 ≤ x ≤ κj) + (κj − κj−1)I(x > κj) , 2 ≤ j ≤ p− 1
up(x) = (x− κp−1)I(x > κp−1)

Therefore, if the number of knots is equal to 1, we only have two local linear splines. Since the knots must be
strictly inside the support of X, for any categorical variable with two levels, the number of knots must be
equal to zero. In this case, u(x) = x. For general ordinal variables, the number of knots cannot exceed the
number of levels minus two. The following illustrates the local splines when the number of knots is equal to 3:

x

u(
x)

min(X) k1 k2 k3 max(X)

u1(x)
u2(x)
u3(x)
u4(x)

Note that for the sample regression, the knots of Xl for group k, l = 1, ..., q, must be strictly inside the
sample range of (Xi,l : 1 ≤ i ≤ n, Zi = k) ∈ Rnk , where nk is the sample size in group k, instead of inside
the support of Xl.

2 The causalTLSE package
2.1 Setting up the Model
The first step in using the package is to define the causal model. The model contains the information about
the outcome (Y), the treatment indicator (Z), the confounders (X) and their knots (κl,k). This is the starting
point before applying any basis selection method. To illustrate how to use the package, we are using the
dataset from Lalonde (1986). The dataset, called nsw, contains some continuous and categorical variables, so
we can illustrate how knots are selected initially. The dataset is included in the causalTLSE package.
library(causalTLSE)
data(nsw)

The outcome is the real income in 1978 (re78) and the purpose is to estimate the causal effect of a training
program (treat) on re78. The dataset includes the continuous covariates age (age), education (ed), the
1975 real income (re75), and binary variables (black, hisp, married and nodeg). We start by considering
the variables age, re75, ed, and married. To setup the model, we simply run the following command:
model1 <- setModel(re78 ~ treat | ~ age + re75 + ed + married, data = nsw)

The left of | is designated for the formula linking the outcome (re78) and the treatment indicator (treat).
The confounders are entered after | as a formula without a dependent variable. This formula works similarly
to formulas in the lm function. For example, we can add interactions, transformations of the variables, etc.
The following is an example:

2

model0 <- setModel(re78 ~ treat | ~ age + I(ageˆ2) + re75 + ed * married,
data = nsw)

This will create the vector of covariates {age, age2, re75, ed, married, ed×married}. Note that adding age2

is not recommended since we already model nonlinearities via basis functions. This is presented to give an
example of what can be added to the formula. The function setModel creates an object of class tlseModel
with its own print method, which will be presented later.

The following subsections explain the arguments of setModel.

2.1.1 The starting knots

By default, the function automatically generates knots for each variable based on the following procedure
applied separately for the treated and nontreated. The term sample size refers either to the number of
observations in the treated or nontreated group.

1. The starting number of knots is a function of the sample size and is determined by the argument
nbasis, a function of one argument, the sample size. The floor value of what the function returns is
the number of basis functions. The starting number of knots is therefore equal to the floor of what
the function returns minus 1 (or 0 if the function returns a value strictly less than 1). The default
function is function(n) nˆ0.3. For example, if the total sample size is 500, with 200 treated and 300
nontreated, the starting number of knots in the treated and nontreated groups are respectively equal
to 3=floor(200ˆ0.3)-1 and 4=floor(300ˆ0.3)-1, respectively. It is possible to have a number of
knots that does not depend on the sample size. All we need is to set the argument nbasis to a function
that returns an integer, e.g., nbasis=function(n) 4 for 4 basis functions or 3 knots.

2. Let (p− 1) be the number of knots determined in the previous step. The default knots are obtained
by computing p+ 1 quantiles of X for equally spaced probabilities from 0 to 1, and by dropping the
first and last quantiles. For example, if the number of knots is 3, then the initial knots are given by
quantiles for the probabilities 0.25, 0.5 and 0.75.

3. We drop any duplicated knots and any knots equal to either the max or the min of X. If the resulting
number of knots is equal to 0, the vector of knots is set to NULL. When the knots is equal to NULL for a
variable X, it means that u(x) = x.

The last step implies that the number of knots for all categorical variables with two levels is equal to 0. For
nominal variables with a small number of levels, the number of knots, a subset of the levels, may be smaller
than the ones defined by nbasis. For example, when the number of levels for a nominal variable is 3, the
number of knots cannot exceed 1.

We can inspect the knots of the current model as follows. Note that each object in the package is S3-class, so
the elements can be accessed using the operator $. The elements knots0 and knots1 are the list of knots for
the nontreated and treated groups, respectively. For example, in our case the initial knots for the treated are:
model1$knots1

$age
20% 40% 60% 80%
19 22 25 28
##
$re75
40% 60% 80%
357.9499 1961.8640 5588.6640
##
$ed
20% 40% 60% 80%
9 10 11 12
##

3

$married
NULL

We see that it is set to NULL for married, because it is a binary variable. The sample size for the treated is
297. Given the default nbasis, it implies a number of starting knots equal to 4=floor(2970.3)-1. This is
the number of knots we have for ed and age. However, the number of knots for re75 is 3. The reason is that
re75 contains a large fraction of zeros. Since the 20th percentile is equal to 0 and 0 is also the minimum
value of ed75, it is dropped (the type argument of the quantile function is the same as it is implemented in
the package). This can be seen as follows:
quantile(nsw[nsw$treat==1,'re75'], c(.2,.4,.6,.8), type=1)

20% 40% 60% 80%
0.0000 357.9499 1961.8640 5588.6640

By printing the object, we see a description of the model. It includes the list of variables with a positive
number of knots and with no knots.
model1

Semiparametric LSE Model

##
Number of treated: 297
Number of nontreated: 425
Number of missing values: 0
Selection method: Default
Covariates approximated by SLSE:
age, re75, ed
Covariates not approximated by SLSE:
married

Note that the selection method is set to Default. We refer to this method when the knots are automatically
selected by the method described above. Later in the document, we will present methods for selecting a
subset of Default using TLSE, which stands for Thresholding Least Squares Estimator (Giurcanu (2016)).

We have also included, in the package, the simulated dataset simDat4, which contains special types of
covariates. It helps to further illustrate how the knots are determined. The dataset contains a continuous
variable X1 with a large proportion of zeros, the categorical variable X2 with 3 levels, an ordinal variable X3
with 3 levels, and a binary variable X4. The levels for X2 are {“first”,“second”,“third”} and for X3 the levels
are {1,2,3}.
data(simDat4)
model2 <- setModel(Y ~ Z | ~ X1 + X2 + X3 + X4, data = simDat4)
model2$knots0

$X1
40% 60% 80%
0.2531388 2.9118507 12.1110772
##
$X2second
NULL
##
$X2third
NULL
##
$X3
40%

4

2
##
$X4
NULL

Character-type variables are automatically converted into factors. It is also possible to define a numerical
variable like X3 as a factor by using the function as.factor in the formula. We see that the 2 binary variables
X2second and X2third are created and X2first is omitted to avoid multicollinearity. For the binary variable
X4, the number of knots is set to 0. For the ordinal variable X3, the number of knots is set to 1 because the
min and max values 1 and 3 cannot be selected.

2.1.2 Setting the knots manually

The user has control over the selection of knots through the arguments knots0 and knots1. When the
arguments are missing (the default), all knots are set automatically as described above. One way to set the
number of knots to 0 for all variables in a given group is to set the argument to NULL. For example, the
number of knots is equal to 0 for all variables of the treated group using the following command:
setModel(re78 ~ treat | ~ age + re75 + ed + married, data = nsw,

knots1 = NULL)

Semiparametric LSE Model

##
Number of treated: 297
Number of nontreated: 425
Number of missing values: 0
Selection method: User Based
Covariates approximated by SLSE:
Treated: None
Nontreated: age, re75, ed
Covariates not approximated by SLSE:
Treated: age, re75, ed, married
Nontreated: married

Notice that the selection method is defined as “User Based” whenever the knots are provided manually by
the user. Also, the print method shows the lists of covariates by group only when they differ, which is the
case here. The other option is to provide a list of knots. For each element, we have three options:

• NA: The knots are set automatically for this variable only.

• NULL: The number of knots is set to 0 for this variable only.

• A numeric vector: The vector cannot contain missing or duplicated values and must be strictly inside
the range of the variable for the group.

In the following, we describe all possible formats for the list of knots.

1. An unnamed list of length equal to the number of covariates. In that case, the knots must be defined in
the same order of covariates implied by the formula.

Suppose we want to set for the nontreated group an automatic selection for age, no knots for ed, the
knots {1000, 5000, 10000} for re75, and the knots to be automatically selected for the treated group.
We proceed as follows. Note that setting the value to NA or NULL has the same effect for the binary
variable married. In the following, the argument knots=TRUE is added to the print method to only
print the knots.

model <- setModel(re78 ~ treat | ~ age + re75 + ed + married, data = nsw,
knots0 = list(NA, c(1000,5000,10000), NULL, NA))

5

print(model, knots = TRUE)

Semiparametric LSE Model

##
Selection method: User Based
Lists of knots for the treated

age:
20% 40% 60% 80%
19 22 25 28
re75:
40% 60% 80%
357.9499 1961.8640 5588.6640
ed:
20% 40% 60% 80%
9 10 11 12
married:
None
##
Lists of knots for the nontreated

age:
16.66667% 33.33333% 50% 66.66667% 83.33333%
18 20 23 26 30
re75:
k1 k2 k3
1000 5000 10000
ed:
None
married:
None

2. A named list of length equal to the number of covariates. In that case, the order of the list of variables
does not matter. The setModel function will automatically reorder the variables to match the order
implied by the formula. The names must match perfectly the covariate names generated by R.

In the following example, we want to add the interaction between ed and age. We want the same set of
knots as in the previous example and no knots for the interaction term. The name of the interaction
depends on how we enter it in the formula. For example, it is “age:ed” if we enter age*ed in the
formula and “ed:age” if we enter ed*age. For factors, the names depend on which binary variable is
omitted. Using the above example with the simDat4 model, if we interact X2 and X4 by adding X2*X4
to the formula, the names of the interaction terms are “X2second:X4” and “X2third:X4”. When we are
uncertain about the names, we can print the knots of a model with the default sets of knots. In the
following, we change the order of variables to show that the order does not matter.

knots <- list(married = NA, ed = NULL, 'age:ed' = NULL,
re75 = c(1000,5000,10000), age = NA)

model <- setModel(re78 ~ treat | ~ age * ed + re75 + married, data = nsw,
knots0 = knots)

model$knots0

$age
16.66667% 33.33333% 50% 66.66667% 83.33333%
18 20 23 26 30

6

##
$ed
NULL
##
$re75
k1 k2 k3
1000 5000 10000
##
$married
NULL
##
$`age:ed`
NULL

3. A named list of length strictly less than the number of covariates. The names of the selected covariates
must match perfectly the names generated by R and the order does not matter. This is particularly
useful when the number of covariates is large.

If we consider the previous example, the knots are set manually only for ed, ed:age and re75. By
default, all names not included in the list of knots are set to NA. Therefore, we can create the same
model from the previous example as follows:

knots <- list(ed = NULL, 'age:ed' = NULL, re75 = c(1000,5000,10000))
model <- setModel(re78 ~ treat | ~ age * ed + re75 + married, data = nsw,

knots0 = knots)
model$knots0

$age
16.66667% 33.33333% 50% 66.66667% 83.33333%
18 20 23 26 30
##
$ed
NULL
##
$re75
k1 k2 k3
1000 5000 10000
##
$married
NULL
##
$`age:ed`
NULL

Note that the previous case offers an easy way of setting the number of knots to 0 for a subset of covariates.
For example, suppose we want to add more interaction terms and set the knots to 0 for all of them. We can
proceed as follows.
knots <- list('age:ed' = NULL, 'ed:re75' = NULL, 'ed:married' = NULL)
model <- setModel(re78 ~ treat | ~ age * ed + re75 * ed + married * ed, data = nsw,

knots0 = knots, knots1 = knots)
model

Semiparametric LSE Model

##
Number of treated: 297

7

Number of nontreated: 425
Number of missing values: 0
Selection method: User Based
Covariates approximated by SLSE:
age, ed, re75
Covariates not approximated by SLSE:
married, age:ed, ed:re75, ed:married

Note also that setModel deals with interaction terms as any other variable. For example, ed:black is like
a continuous variable with a large proportion of zeros. The following shows the default selected knots for
ed:black.
model <- setModel(re78 ~ treat | ~ age + ed * black, data = nsw)
model$knots0[["ed:black"]]

33.33333% 50% 66.66667%
9 10 11

2.2 Estimating the model
Given the set of knots from the model object, the estimation is just a least squares method applied to the
extended set of covariates defined as the local linear splines corresponding to the set of knots. The regression
model is given by:

Y = β0(1 − Z) + β1Z + ψT
0 U0(1 − Z) + ψT

1 U1Z + ζ ,

where U0 = u0(X) and U1 = u1(X) are defined above (which depend on the knots of the model). The
function that estimates the model is estModel which has three arguments, but two of them are mainly used
internally by other functions. We present them in case they are needed. The arguments are:

• model: A model created by the function setModel.

• w0 and w1: lists of integers to select knots for the nontreated and treated respectively. For example,
suppose we have 2 covariates with 5 knots each. If we want to estimate the model with only the first
knot for the first covariate and knots 3 and 5 for the second, we set w0 to list(1L,c(3L, 5L)). By
default they are set to NULL and all the knots from the model are used.

We illustrate the use of estModel with a simple model containing 2 covariates and one knot per variable.
model <- setModel(re78 ~ treat | ~ age + married, data = nsw,

nbasis = function(n) 2)
print(model, knots = TRUE)

Semiparametric LSE Model

##
Selection method: Default
Lists of knots for the treated

age:
50%
23
married:
None
##
Lists of knots for the nontreated

8

age:
50%
23
married:
None
fit <- estModel(model)
fit

Semiparametric LSE

Selection method: Default
##
factor(treat)0 factor(treat)1 Xf0age_1 Xf0age_2 Xf0married
4558.28061 3754.98326 27.79868 -12.51415 -115.81593
Xf1age_1 Xf1age_2 Xf1married
89.25358 22.22331 1435.28205

The object of class tlseFit returned by estModel has its own print method that returns the coefficient
estimates. A more detailed presentation of the results can be obtained using the summary method. The
following is an example with one knot per eligible variable.
summary(fit)

Semiparametric LSE

Selection method: Default
##
Estimate Std. Error t value Pr(>|t|)
factor(treat)0 4558.28 2739.40 1.664 0.0961 .
factor(treat)1 3754.98 3704.37 1.014 0.3107
Xf0age_1 27.80 136.61 0.203 0.8387
Xf0age_2 -12.51 56.06 -0.223 0.8234
Xf0married -115.82 795.35 -0.146 0.8842
Xf1age_1 89.25 185.53 0.481 0.6305
Xf1age_2 22.22 82.52 0.269 0.7877
Xf1married 1435.28 1226.68 1.170 0.2420

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Multiple R-squared: 0.009618, Adjusted R-squared: -9.119e-05

For example, the coefficient of Xf0age_1 is the effect of age for the control on re78 when age≤ 23 and
Xf0age_2 is the effect when age> 23. Note that the R2 and adjusted R2 are different from what we obtain
using the summary of the lm object:
summary(fit$lm.out)[c("r.squared","adj.r.squared")]

$r.squared
[1] 0.4379272
##
$adj.r.squared
[1] 0.4316295

This is because our model does not contain an intercept and the R2 is computed differently for models without
an intercept. The definition of the R2 used by R is the following (RSS means residual sum of squares):

9

R2 = 1 − RSS for the model with the regressors
RSS for the model without the regressors .

In a model with an intercept, the residual of the model without the regressors is Yi − Ȳ , but it is equal to Yi

when the model does not have an intercept. As a result, the R2 with and without an intercept are respectively

R2
with = 1 −

∑n
i=1 ê

2
i∑n

i=1(Yi − Ȳ)2

and
R2

without = 1 −
∑n

i=1 ê
2
i∑n

i=1 Y
2

i

.

2.3 The predict and plot methods
The predict method is very similar to the predict.lm method. We use the same arguments: object,
interval, se.fit, newdata and level. The difference is that it returns the predicted outcome for the
treated and nontreated separately, and the argument vcov. provides a way of changing how the least squares
covariance matrix is computed. By default, it is computed using vcovHC from the sandwich package (Zeileis
(2006)). The function returns a list of 2 elements, treated and nontreated. By default (se.fit=FALSE and
interval="none"), each element contains a vector of predictions. Here is an example with the previously
fitted model fit:
predict(fit,

newdata = data.frame(treat = c(1,1,0,0),age = 20:23, married = 1))

$treated
[1] 6975.337 7064.591
##
$nontreated
[1] 5054.036 5081.834

If interval is set to “confidence”, but $se.fit remains equal to FALSE, each element contains a matrix
containing the prediction, and the lower and upper confidence limits, with the confidence level determined by
the argument level (set to 0.95 by default). Here is an example with the same fitted model:
predict(fit,

newdata = data.frame(treat = c(1,1,0,0),age = 20:23, married = 1),
interval = "confidence")

$treated
fit lower upper
1 6975.337 4646.673 9304.001
2 7064.591 4741.653 9387.528
##
$nontreated
fit lower upper
3 5054.036 3574.096 6533.975
4 5081.834 3544.849 6618.820

If se.fit is set to TRUE, each element, treated or nontreated, is a list with the elements pr, containing the
predictions, and se.fit, containing the standard errors. In the following, we only show the result for the
treated:
predict(fit,

newdata = data.frame(treat = c(1,1,0,0),age = 20:23, married = 1),
se.fit = TRUE)$treated

10

$fit
[1] 6975.337 7064.591
##
$se.fit
1 2
1188.116 1185.194

The predict method is called by the plot method to visually assess the predicted outcome for the treated
and nontreated with respect to a given covariate, controlling for the other variables in the model. The
arguments of the plot method are:

• x: An object of class tlseFit.

• y: An alias for which for compatibility with the generic plot function.

• which: covariate to plot against the outcome variable. It could be an integer (the position of the
covariate) or a character (the name of the covariate)

• interval: The type of confidence interval to display. The default is “none”. The alternative is
“confidence”.

• level: The confidence level when interval="confidence". The default is 0.95.

• fixedCov0 and fixedCov1: Optional named lists of fixed values for some or all other covariates in
each group. The values of the covariates not specified are determined by the argument FUN. By default,
fixedCov1 is equal to fixedCov0, so it is not necessary to set a value for fixedCov1 if we want the
same covariates to be fixed to the same values in both groups.

• legendPos: The position of the legend. The default is “topright”.

• vcov.: An optional function to compute the estimated matrix of covariance of the least squares estimators.
This argument only affects the confidence intervals. The default is vcovHC with type="HC3".

• col0, col1, lty0, lty1: The line colors and shapes for the nontreated and treated. The defaults are
col0=1 (black), col1=2 (red), lty0=1 (solid) and lty1=2 (dashed).

• add.: Should the curves be added to an existing plot? The default is FALSE.

• addToLegend: An optional character string to add to the legend next to “treated” and “nontreated”.

• cex: The font size for the legend. The default is 1.

• ylim, xlim: optional ranges for the y-axis and x-axis.

• addPoints: Should we include the scatterplot of the outcome and covariate to the graph? The default
is FALSE.

• FUN: A function to determine how the other covariates are fixed. The default is mean. Note that the
function is applied to each group separately.

• main: An optional title to replace the default one.

• plot: By default, the method produces a graph. Alternatively, we can set this argument to FALSE and
it returns one data.frame per group with the variable selected by which and the prediction.

• . . . : Other arguments are passed to the vcov. function. For example, it is possible to change the type
of vcovHC from the default HC3 to any available methods included in the sandwich package.

In the following, we illustrate some examples.

2.3.0.1 Example 1: Consider the model:
model1 <- setModel(re78 ~ treat | ~ age + re75 + ed + married, data = nsw)
fit1 <- estModel(model1)

11

Suppose we want to compare the predicted income between the two treatment groups with respect to age
or education, holding the other variables fixed to their group means (the default). The following are two
examples with some of the default arguments modified. Note that vcov.lm is used in the first plot function
and vcovHC (the default) of type HC1 in the second plot.
library(sandwich)
plot(fit1, "ed", col0 = "darkgreen", col1 = "darkred", lty0 = 2, lty1 = 4,

legendPos = "topleft", vcov. = vcov)
plot(fit1, "age", interval = 'confidence', level = 0.9, type = "HC1")

4 6 8 10 12 14 16

40
00

80
00

12
00

0

re78 vs ed using SLSE

ed

re
78

Treated
Nontreated

20 30 40 50

0
20

00
60

00
10

00
0

re78 vs age using SLSE

age

re
78

Treated
Nontreated

2.3.0.2 Example 2: If we want to fix the other covariates using another function, we can change the
argument FUN. The new function must be a function of one argument. For example, if we want to fix the
other covariates to their group medians, we set FUN to median (no quotes). We proceed the same way for
any function that requires only one argument. If the function requires more than one argument, we have to
create a new function. For example, if we want to fix them to their 20% group empirical quantiles, we can set
the argument to function(x) quantile(x, .20). The following illustrates the two cases:
plot(fit1, "age", FUN = median)
plot(fit1, "age", FUN = function(x) quantile(x, 0.20))

20 30 40 50

40
00

50
00

60
00

70
00

80
00

re78 vs age using SLSE

age

re
78

Treated
Nontreated

20 30 40 50

40
00

50
00

60
00

70
00

re78 vs age using SLSE

age

re
78

Treated
Nontreated

2.3.0.3 Example 3: It is also possible to set some of the other covariates to a specific value by changing
the argument fixedCov0 and fixedCov1. By default, fixedCov1 is equal to fixedCov0, so if we want to
fixed the same covariates to the same values in both groups, we only need to set fixedCov0. The argument
must be a named list with the names corresponding to the variables you want to fix. You can also add a
description to the legend with the argument addToLegend.
plot(fit1, "age", fixedCov0 = list(married = 1, re75 = 10000),

addToLegend = "married", cex = 0.8)

12

plot(fit1, "age", fixedCov0 = list(married = 0, re75 = 10000),
addToLegend = "non-married", cex = 0.8)

20 30 40 50

50
00

60
00

70
00

80
00

re78 vs age using SLSE

age

re
78

Treated (married)
Nontreated (married)

20 30 40 50

40
00

60
00

80
00

re78 vs age using SLSE

age

re
78

Treated (non−married)
Nontreated (non−married)

2.3.0.4 Example 4: To better compare the two groups, it is also possible to have them plotted on the
same graph by setting the argument add. to TRUE. We just need to adjust some of the arguments to better
distinguish the different curves. In the following example, we set the colors and line shapes to different values
and change the position of the legend in the second plot function.
plot(fit1, "age", fixedCov0 = list(married = 1, re75 = 10000),

addToLegend = "married", cex = 0.8, ylim. = c(3000,10000))
plot(fit1, "age", fixedCov0 = list(married = 0, re75 = 10000),

addToLegend = "non-married", cex = 0.8, legendPos = 'topleft',
col0 = "darkgreen", col1 = "darkred", lty0 = 4, lty1 = 5,
add. = TRUE)

20 30 40 50

30
00

50
00

70
00

90
00

re78 vs age using SLSE

age

re
78

Treated (married)
Nontreated (married)

Treated (non−married)
Nontreated (non−married)

2.3.0.5 Example 5: Finally, it is also possible to add the observed points to the graph.
plot(fit1, "ed", col0 = "darkgreen", col1 = "darkred", lty0 = 2, lty1 = 4,

legendPos = "topleft", addPoints = TRUE)
plot(fit1, "re75", addPoints = TRUE)

13

4 6 8 10 12 14 16

0
20

00
0

40
00

0
60

00
0

re78 vs ed using SLSE

ed

re
78

Treated
Nontreated

0 10000 20000 30000

0
20

00
0

40
00

0
60

00
0

re78 vs re75 using SLSE

re75

re
78

Treated
Nontreated

2.3.1 Factors, interactions and functions of covariates

The package allows some of the covariates to be factors, functions of other covariates or interactions. For
example, the dataset simDat4 includes one factor, X2, with levels equal to “first”, “second” and “third”. We
can include this covariate directly to the list of covariates. For example,
data(simDat4)
mod <- setModel(Y ~ Z | ~ X1 + X2 + X4, data = simDat4)
mod

Semiparametric LSE Model

##
Number of treated: 246
Number of nontreated: 254
Number of missing values: 0
Selection method: Default
Covariates approximated by SLSE:
X1
Covariates not approximated by SLSE:
X2second, X2third, X4

We see that R has created 2 binary variables, one for X2="second" and one for X2="third". These two
variables are automatically included in the group of covariates not approximated by SLSE because they are
binary variables like X4. If we want to plot Y against X1, the binary variables X2second, X2third and X4 are
fixed to their group averages which, in case of binary variables, represent the proportions of ones in each
group.

For interaction terms or functions of covariates, FUN is applied to the functions of covariates. This is how we
have to proceed to obtain the average prediction in regression models. For example, if we interact X2 and X4,
we obtain:
data(simDat4)
mod <- setModel(Y ~ Z | ~ X1 + X2 * X4, data = simDat4)
mod

Semiparametric LSE Model

##
Number of treated: 246
Number of nontreated: 254
Number of missing values: 0
Selection method: Default

14

Covariates approximated by SLSE:
X1
Covariates not approximated by SLSE:
X2second, X2third, X4, X2second:X4, X2third:X4

In this case, when FUN=mean, X2second:X4 is replaced by the proportion of ones in X2second×X4 for each
group. It is not replaced by the proportion of ones in X2second times the proportion of ones in X4. The
same applies to functions of covariates. For functions of covariates, which can be defined in the formula
using a built-in function like log or using the identity function I() (e.g. we can interact X1 and X4 by using
I(X1*X4)), FUN is applied to the function (e.g. the average log(X) or the average I(X1*X4)).

To fix a factor to a specific level, we just set its value to the fixedCov0 and fixedCov1 arguments. In the
following example, we fix X2 to “first”, so X2second and X2third are set to 0.
fit <- estModel(mod)
plot(fit, "X1", fixedCov0 = list(X2 = "first"))

Note that if a function of covariates (or an interaction) involves the covariate we want to plot the outcome
against, we factorize the covariate out, apply FUN to the remaining of the function and add the covariate
back. For example, if we interact X1 with X4 and FUN=mean, X1:X4 is replaced by X1 times the proportion of
ones in X4 for each group.

2.4 Optimal selection of the knots
We have implemented two methods for selecting the knots: the backward TLSE (BTLSE) and the forward
TLSE (FTLSE) methods. For each method, we have 3 criteria: the p-value threshold (PVT), the Akaike
Information criterion (AIC), and the Bayesian Information criterion (BIC). The two selection methods can
be summarized as follows:

BTLSE:

1. We estimate the model with all knots included in the model.

2. For each knot, we test if the slopes of the basis functions adjacent to the knot are the same,
and return the p-value.

3. The knots are selected using one of the following criteria

• PVT: We remove all knots with a p-value greater than a specified threshold.

• AIC or BIC: We order the p-values in descending order. Then, going from the largest
to the smallest, we remove the knot associated with the p-value one by one, estimate
the model and return the information criterion. We keep the model with the smallest
information citerion.

FTLSE:

1. We estimate the model by including a subset of the knots, one variable at the time. When
we test a knot for one covariate, the number of knots is set to 0 for all other variables.

2. For each knot, we test if the adjacent slopes to the knot is the same, and return the p-value.
The set of knots used for each test depends on the following:

• Variables with 1 knot: we return the p-value of the test of equality of the slopes adjacent
to the knot.

• Variables with 2 knots: we include the two knots and return the p-values of the test of
equality of the slopes adjacent to each knot.

• Variables with p knots (p > 2): We test the equality of the slopes adjacent to knot i,
for i = 1, ..., p, using the sets of knots {1, 2}, {1, 2, 3}, {2, 3, 4}, . . . , {p− 2, p− 1, p} and
{p− 1, p} respectively.

15

3. The knots are selected using one of the following criteria

• PVT: We remove all knots with a p-value greater than a specified threshold.

• AIC or BIC: We order the p-values in ascending order. Then, starting with a model
with no knots and going from the smallest to the highest highest p-value, we add the
knot associated with the smallest remaining p-value one by one, estimate the model
and return the information criterion. We keep the model with the smallest information
citerion.

The knot selection is done using the function selTLSE. The arguments are:

• model: An object of class tlseModel.

• selType: This is the selection method. We have the choice between “FTLSE” and “BTLSE” (the
default).

• selCrit: This is the criterion used by the selection method. We have the choice between “AIC” (the
default), “BIC” or “PVT”.

• pvalT: This is a function that returns the p-value threshold. It is a function of one argument, the
average number of basis functions per covariate. The default is function(p) 1/log(p) and it is applied
to each group separately. Therefore, the threshold may be different for the treated and non-treated. It
is also possible to set it to a fix threshold. For example, function(p) 0.20 sets the threshold to 0.2.
This argument affects the result only when method is set to “PVT”.

• vcov.: An optional function to compute the least squares standard errors. By default, the p-values are
computed using the vcovHC method from the sandwich package with type="HC3".

• . . . : This is used to pass arguments to the vcov. function.

The function returns a model of class tlseModel with the optimal selection of knots. For example, we can
compare the starting knots of model1, with the model selected by the default arguments.
print(model1, knots = TRUE)

Semiparametric LSE Model

##
Selection method: Default
Lists of knots for the treated

age:
20% 40% 60% 80%
19 22 25 28
re75:
40% 60% 80%
357.9499 1961.8640 5588.6640
ed:
20% 40% 60% 80%
9 10 11 12
married:
None
##
Lists of knots for the nontreated

age:
16.66667% 33.33333% 50% 66.66667% 83.33333%
18 20 23 26 30
re75:
50% 66.66667% 83.33333%
823.2544 2292.1710 6567.3290
ed:
16.66667% 33.33333% 66.66667% 83.33333%
9 10 11 12
married:

16

None
model2 <- selTLSE(model1)
print(model2, knots = TRUE)

Semiparametric LSE Model

##
Selection method: BTLSE
Criterion: AIC
##
Lists of knots for the treated

age:
20% 60% 80%
19 25 28
re75:
None
ed:
80%
12
married:
None
##
Lists of knots for the nontreated

age:
33.33333% 50% 66.66667% 83.33333%
20 23 26 30
re75:
50% 83.33333%
823.2544 6567.3290
ed:
16.66667% 66.66667%
9 11
married:
None

For example, the BTLSE-AIC method has removed all knots from re75 for the treated and kept two knots
for the nontreated. The print method indicates which method was used to select the knots. In the following
example, we see BTLSE as selection method and BIC as criterion. Note that the BIC selects 0 knots for all
covariates.
model3 <- selTLSE(model1, selType = "BTLSE", selCrit = "BIC")
model3

Semiparametric LSE Model

##
Number of treated: 297
Number of nontreated: 425
Number of missing values: 0
Selection method: BTLSE
Criterion: BIC
##
Covariates approximated by SLSE:
None
Covariates not approximated by SLSE:
age, re75, ed, married

Since the function selTLSE function returns a new model, we can apply the estModel to it:
estModel(selTLSE(model1, selType = "FTLSE", selCrit = "BIC"))

Semiparametric LSE

17

Selection method: FTLSE
Criterion: BIC
##
factor(treat)0 factor(treat)1 Xf0age Xf0re75 Xf0ed
4.825878e+03 -3.889679e+02 -2.010566e+01 2.982477e-01 2.500219e+00
Xf0married Xf1age Xf1re75 Xf1ed Xf1married
-1.094084e+03 4.105403e+01 2.676162e-02 4.849161e+02 1.417291e+03

2.5 The causalTLSE method for tlseFit objects
The regression model estimated by estModel, as described in the introduction, can be written as

Yi = β0(1 − Zi) + β1Zi + ψ′
0Ui,0(1 − Zi) + ψ′

1Ui,1Zi + ζi for i = 1, ..., n .

Let β̂0, β̂1, ψ̂0 and ψ̂1 be the least squares estimates of the regression parameters. Then, the TLSE average
causal effect (ACE), causal effect on the treated (ACT) and causal effect on the non-treated (ACN) are
defined respectively as follows:

ACE = β̂1 − β̂0 + ψ̂′
1U1 − ϕ̂′

0U0

ACT = β̂1 − β̂0 + ψ̂′
1U1Z − ϕ̂′

0U0Z

ACN = β̂1 − β̂0 + ψ̂′
1U1(1 − Z) − ϕ̂′

0U0(1 − Z) ,

where

Uj = 1
n

n∑
i=1

uj(Xi), for j=0,1

UjZ = 1
n1

n∑
i=1

uj(Xi)Zi, for j=0,1

Uj(1 − Z) = 1
n0

n∑
i=1

uj(Xi)(1 − Zi), for j=0,1

and n0 and n1 are the sample size in the nontreated and treated groups. The method causalTLSE estimates
the causal effects from tlseFit objects using the knots included in the estimated model. The arguments of
the method are:

• object: An object of class tlseFit.

• seType: The method to compute the standard errors of the causality measures. By default, they are
computed using an analytic expression derived in the paper. Alternatively, we can set the argument to
“lm” and use the least squares standard errors based on the asymptotic properties.

• causal: What causality measure should the function compute? We have the choice between “All” (the
default), “ACT”, “ACE” or “ACT”.

• vcov.: An alternative function used to compute the covariance matrix of the least squares estimates.
By default, vcovHC is used with type="HC3".

• . . . : This is used to pass arguments to the vcov. function.

18

In the following example, we estimate the causal effect with the initial knots (without selection).
model1 <- setModel(re78 ~ treat | ~ age + re75 + ed + married, data=nsw)
fit1 <- estModel(model1)
causalTLSE(fit1)

Causal Effect using Semiparametric LSE

Selection method: Default
##
ACE = 814.3083
ACT = 831.8856
ACN = 802.0249

We see that the selection method used to select the knots are set to SLSE. This is explained in the section
“Setting up the Model”. The method returns an object of class causaltlse. We see above what its print
method returns. The following shows its summary method:
ce <- causalTLSE(fit1)
summary(ce)

Causal Effect using Semiparametric LSE

Selection method: Default
Estimate Std. Error t value Pr(>|t|)
ACE 814.3 482.1 1.689 0.0912 .
ACT 831.9 499.5 1.665 0.0958 .
ACN 802.0 498.9 1.608 0.1079

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

By default, the standard errors are computed using an analytic expression derived in the paper. In the
following, we estimate the standard errors using the HC3 type of heteroskedasticity robust standard errors,
which is the default when seType="lm".
ce2 <- causalTLSE(fit1, seType="lm")
summary(ce2)

Causal Effect using Semiparametric LSE

Selection method: Default
Estimate Std. Error t value Pr(>|t|)
ACE 814.3 506.1 1.609 0.108
ACT 831.9 527.4 1.577 0.115
ACN 802.0 514.2 1.560 0.119

The object causaltlse inherits from the class tlseFit, so we can apply the plot (or the predict) method
directly on this object.
plot(ce2, "re75")

19

0 10000 20000 30000

40
00

80
00

12
00

0
16

00
0

re78 vs re75 using SLSE

re75

re
78

Treated
Nontreated

2.5.1 The extract method

The package comes with an extract method for objects of class causaltlse, which is a required method
for creating Latex tables using the texreg package (Leifeld (2013)). For example, we can compare different
methods in a single table.
library(texreg)
c1 <- causalTLSE(fit1)
fit2 <- estModel(selTLSE(model1, selType="BTLSE"))
fit3 <- estModel(selTLSE(model1, selType="FTLSE"))
c2 <- causalTLSE(fit2)
c3 <- causalTLSE(fit3)
texreg(list(SLSE=c1, BTLSE=c2, FTLSE=c3), table=FALSE, digits=4)

SLSE BTLSE FTLSE
ACE 814.3083 818.1598 824.4901

(482.1393) (482.8785) (481.8267)
ACT 831.8856 837.0768 852.4659

(499.4948) (501.3497) (496.6795)
ACN 802.0249 804.9401 804.9401

(498.8671) (491.0229) (490.4101)
Num. knots (Nontreated) 12 8 6
Num. knots (Treated) 11 4 4
Num. covariates 4 4 4
Num. obs. (Nontreated) 425 425 425
Num. obs. (Treated) 297 297 297
R2 0.0869 0.0852 0.0840
R2

adj 0.0445 0.0577 0.0592
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

The option table=FALSE, from the texreg package, is used to remove the Latex floating table environment.
With this option, the table appears right after the code instead of being placed somewhere else by Latex. The
arguments of the extract methods, which control what is printed and can be modified through the texreg
function, are:

• include.nobs: Include the number of observations. The default is TRUE.

• include.nknots: Include the number of knots. The default is TRUE.

• include.rsquared: Include the R2. The default is TRUE.

• include.adjrsquared: Include the adjusted R2. The default is TRUE.

20

• which: Which causal effects should be printed? The options are “ALL” (the default), “ACE”, “ACT”,
“ACN”, “ACE-ACT”, “ACE-ACN” or “ACT-ACN”.

Here is one example on how to change some arguments:
texreg(list(SLSE=c1, BTLSE=c2, FTLSE=c3), table=FALSE,

which="ACE-ACT", include.adjrsquared=FALSE)

SLSE BTLSE FTLSE
ACE 814.31 818.16 824.49

(482.14) (482.88) (481.83)
ACT 831.89 837.08 852.47

(499.49) (501.35) (496.68)
Num. knots (Nontreated) 12 8 6
Num. knots (Treated) 11 4 4
Num. covariates 4 4 4
Num. obs. (Nontreated) 425 425 425
Num. obs. (Treated) 297 297 297
R2 0.09 0.09 0.08
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

2.6 The causalTLSE method for tlseModel objects
When applied directly to tlseModel objects, the causalTLSE method offers the possibility to select the knots
and estimate the causal effects all at once. The method also returns an object of class causaltlse. The
arguments are the same as the method for tlseFit objects, plus the necessary arguments for the knots
selection. The following are the arguments not already defined for objects of class tlseFit. The details of
these arguments are presented in the section Optimal selection of knots.

• object: An object of class tlseModel.

• selType: This is the selection method. We have the choice between “SLSE” (the default), “FTLSE”
and “BTLSE”. The SLSE method performs no selection, so all knots from the model are kept.

• selCrit: This is the criterion used by the selection method when selType is set to “FTLSE” or
“BTLSE”. The default is “AIC”.

• pvalT: This is a function that returns the p-value threshold. We explained this argument when we
presented the selTLSE function.

For example, we can generate the previous table as follows.
c1 <- causalTLSE(model1, selType="SLSE")
c2 <- causalTLSE(model1, selType="BTLSE")
c3 <- causalTLSE(model1, selType="FTLSE")
texreg(list(SLSE=c1, BTLSE=c2, FTLSE=c3), table=FALSE, digits=4)

SLSE BTLSE FTLSE
ACE 814.3083 818.1598 824.4901

(482.1393) (482.8785) (481.8267)
ACT 831.8856 837.0768 852.4659

(499.4948) (501.3497) (496.6795)
ACN 802.0249 804.9401 804.9401

(498.8671) (491.0229) (490.4101)
Num. knots (Nontreated) 12 8 6
Num. knots (Treated) 11 4 4
Num. covariates 4 4 4
Num. obs. (Nontreated) 425 425 425
Num. obs. (Treated) 297 297 297
R2 0.0869 0.0852 0.0840
R2

adj 0.0445 0.0577 0.0592
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

21

2.7 The causalTLSE method for formula objects
This last method, offers an alternative way of estimating the causal effects. It allows the estimation in one
step without having to first create a model. The arguments are the same as of the setModel function and
the causalTLSE method for tlseModel objects. It creates the model, selects the knots and estimates the
causal effects in one step. For example, we can create the previous table as follows:
c1 <- causalTLSE(re78 ~ treat | ~ age + re75 + ed + married, data=nsw,

selType="SLSE")
c2 <- causalTLSE(re78 ~ treat | ~ age + re75 + ed + married, data=nsw,

selType="BTLSE")
c3 <- causalTLSE(re78 ~ treat | ~ age + re75 + ed + married, data=nsw,

selType="FTLSE")
texreg(list(SLSE=c1, BTLSE=c2, FTLSE=c3), table=FALSE, digits=4)

SLSE BTLSE FTLSE
ACE 814.3083 818.1598 824.4901

(482.1393) (482.8785) (481.8267)
ACT 831.8856 837.0768 852.4659

(499.4948) (501.3497) (496.6795)
ACN 802.0249 804.9401 804.9401

(498.8671) (491.0229) (490.4101)
Num. knots (Nontreated) 12 8 6
Num. knots (Treated) 11 4 4
Num. covariates 4 4 4
Num. obs. (Nontreated) 425 425 425
Num. obs. (Treated) 297 297 297
R2 0.0869 0.0852 0.0840
R2

adj 0.0445 0.0577 0.0592
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Note that this method calls setModel, selTLSE, estModel and the method causalTLSE for tlseFit objects
sequentially. It is easier to simply work with this method, but manually going through all steps may be
beneficial to better understand the procedure. Also, it is more convenient to work with a model when we
want to compare the different selection methods, or if we want to compare estimations with different standard
errors.

2.8 A simulated data set from Model 1
In the package, the data set datSim1 is generated using the following data generating process with a sample
size of 300.

Y (0) = 1 +X +X2 + ϵ(0)
Y (1) = 1 − 2X + ϵ(1)

Z = Bernoulli[Λ(1 +X)]
Y = Y (1)Z + Y (0)(1 − Z)

where X, ϵ(0) and ϵ(1) are independent standard normal and Λ(x) is the CDF of the standard logistic
distribution. The causal effects ACE, ACT and ACN are approximately equal to -1, -1.6903 and 0.5867
(estimated using a sample size of 107). We can start by building starting model:
data(simDat1)
mod <- setModel(Y ~ Z | ~ X, data = simDat1)

Then we can compare three different methods:
c1 <- causalTLSE(mod, selType = "SLSE")
c2 <- causalTLSE(mod, selType = "BTLSE", selCrit = "BIC")

22

c3 <- causalTLSE(mod, selType = "FTLSE", selCrit = "BIC")
texreg(list(SLSE = c1, BTLSE = c2, FTLSE = c3), table = FALSE, digits = 4)

SLSE BTLSE FTLSE
ACE −1.4396∗∗∗ −1.4530∗∗∗ −1.4533∗∗∗

(0.2614) (0.2605) (0.2599)
ACT −1.9316∗∗∗ −1.9316∗∗∗ −1.9320∗∗∗

(0.3030) (0.3024) (0.3030)
ACN −0.0865 −0.1369 −0.1369

(0.3263) (0.3224) (0.3224)
Num. knots (Nontreated) 2 2 1
Num. knots (Treated) 4 0 0
Num. covariates 1 1 1
Num. obs. (Nontreated) 80 80 80
Num. obs. (Treated) 220 220 220
R2 0.7434 0.7386 0.7303
R2

adj 0.7354 0.7342 0.7266
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

We see that both selection methods choose to assign 0 knots for the treated group, which is not surprising
since the true f1(x) is linear. We can compare the different fits (we ignore the FTLSE because the selected
knots are the same).
plot(c1, "X")
curve(1 - 2 * x, -3, 3, col = "darkgreen", lty = 4, lwd = 3, add = TRUE)
curve(1 + x + xˆ2, -3, 3, col = "darkorange", lty = 4, lwd = 3, add = TRUE)
legend("bottomleft", c("True-treated", "True-nontreated"),

col=c("darkgreen", "darkorange"), lty = 4, lwd = 3, bty = 'n')
plot(c2, "X")
curve(1 - 2 * x, -3, 3, col="darkgreen", lty = 4, lwd = 3, add = TRUE)
curve(1 + x + xˆ2, -3, 3, col = "darkorange", lty = 4, lwd = 3, add = TRUE)
legend("bottomleft", c("True-treated", "True-nontreated"),

col = c("darkgreen", "darkorange"), lty = 4, lwd = 3, bty = 'n')

−3 −2 −1 0 1 2 3

−
6

−
4

−
2

0
2

4
6

Y vs X using SLSE

X

Y

Treated
Nontreated

True−treated
True−nontreated

−3 −2 −1 0 1 2 3

−
6

−
4

−
2

0
2

4
6

Y vs X using SLSE

X

Y

Treated
Nontreated

True−treated
True−nontreated

We see that the piecewise polynomials are very close to the true f1(x) and f2(x). We can see from the
folllowing graph how the lines are fit through the observations by group.
plot(c1, "X", addPoints=TRUE)

23

−3 −2 −1 0 1 2 3

−
5

0
5

Y vs X using SLSE

X

Y

Treated
Nontreated

2.9 A simulated data set from Model 2
The dataset datSim2 is a change point regression model (with unknown location of change points) defined as
follows:

Y (0) = (1 +X)I(X ≤ −1) + (−1 −X)I(X > −1) + ϵ(0)
Y (1) = (1 − 2X)I(X ≤ 0) + (1 + 2X)I(X > 0) + ϵ(1)

Z = Bernoulli[Λ(1 +X)]
Y = Y (1)Z + Y (0)(1 − Z)

where I(A) is the indicator function equal to 1 if A is true, and X, ϵ(0) and ϵ(1) are independent standard
normal. The causal effects ACE, ACT and ACN are approximately equal to 3.763, 3.858 and 3.545 (estimated
with a sample size of 107). We can compare the SLSE, BTLSE-AIC and BTLSE-BIC.
data(simDat2)
mod <- setModel(Y~Z | ~X, data=simDat2)

c1 <- causalTLSE(mod, selType = "SLSE")
c2 <- causalTLSE(mod, selType = "BTLSE", selCrit = "BIC")
c3 <- causalTLSE(mod, selType = "BTLSE", selCrit = "AIC")
texreg(list(SLSE = c1, BTLSE.BIC = c2, BTLSE.AIC = c3), table = FALSE, digits = 4)

SLSE BTLSE.BIC BTLSE.AIC
ACE 3.9290∗∗∗ 3.9201∗∗∗ 3.9201∗∗∗

(0.1703) (0.1717) (0.1717)
ACT 3.9552∗∗∗ 3.9404∗∗∗ 3.9404∗∗∗

(0.1891) (0.1904) (0.1904)
ACN 3.8670∗∗∗ 3.8721∗∗∗ 3.8721∗∗∗

(0.2371) (0.2362) (0.2362)
Num. knots (Nontreated) 2 1 1
Num. knots (Treated) 3 2 2
Num. covariates 1 1 1
Num. obs. (Nontreated) 89 89 89
Num. obs. (Treated) 211 211 211
R2 0.7833 0.7829 0.7829
R2

adj 0.7774 0.7784 0.7784
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

The following shows the fit of BTLSE-AIC with the true f1(x) and f0(x), and the observations.

24

plot(c2, "X", legendPos = "right", cex = .8)
curve((1 -2 * x) * (x <= 0) + (1 + 2 * x) * (x > 0), -3, 3,

col = "darkgreen", lty = 3, lwd = 3, add = TRUE)
curve((1 + x) * (x <= -1) + (-1 - x) * (x > -1),

-3, 3, col = "darkorange", lty = 3, lwd = 3, add = TRUE)
legend("left", c("True-treated", "True-nontreated"),

col = c("darkgreen", "darkorange"), lty = 3, lwd = 3, bty = 'n', cex = .8)
plot(c2, "X", addPoints = TRUE, legendPos = "topleft", cex = .8)

−3 −2 −1 0 1 2

−
2

0
2

4
6

Y vs X using SLSE

X

Y Treated
Nontreated

True−treated
True−nontreated

−3 −2 −1 0 1 2

−
2

0
2

4
6

Y vs X using SLSE

X

Y

Treated
Nontreated

2.10 A simulated data set from Model 3
The data set datSim3 is generated from model with multiple confounders defined as follows:

Y (0) = [1 +X1 +X2
1] + [(1 +X2)I(X2 ≤ −1) + (−1 −X2)I(X2 > −1)] + ϵ(0)

Y (1) = [1 − 2X1] + [(1 − 2X2)I(X2 ≤ 0) + (1 + 2X2)I(X2 > 0)] + ϵ(1)
Z = Bernoulli[Λ(1 +X1 +X2)]
Y = Y (1)Z + Y (0)(1 − Z) ,

where X1, X2, ϵ(0) and ϵ(1) are independent standard normal. The causal effects ACE, ACT and ACN are
approximately equal to 2.762, 2.204 and 3.922 (estimated with a sample size of 107). We can compare the
SLSE, FTLSE with AIC and FTLSE with BIC.
data(simDat3)
mod <- setModel(Y ~ Z | ~ X1 + X2, data = simDat3)

c1 <- causalTLSE(mod, selType = "SLSE")
c2 <- causalTLSE(mod, selType = "FTLSE", selCrit = "BIC")
c3 <- causalTLSE(mod, selType = "FTLSE", selCrit = "AIC")
texreg(list(SLSE = c1, FTLSE.BIC = c2, FTLSE.AIC = c3), table = FALSE, digits = 4)

25

SLSE FTLSE.BIC FTLSE.AIC
ACE 2.4699∗∗∗ 2.4866∗∗∗ 2.4725∗∗∗

(0.2684) (0.2675) (0.2684)
ACT 2.0653∗∗∗ 2.0688∗∗∗ 2.0688∗∗∗

(0.3397) (0.3380) (0.3402)
ACN 3.2323∗∗∗ 3.2739∗∗∗ 3.2334∗∗∗

(0.3445) (0.3425) (0.3436)
Num. knots (Nontreated) 6 5 5
Num. knots (Treated) 6 3 4
Num. covariates 2 2 2
Num. obs. (Nontreated) 104 104 104
Num. obs. (Treated) 196 196 196
R2 0.8630 0.8614 0.8625
R2

adj 0.8547 0.8551 0.8558
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

To illustrate the method, since we have two covariates, we need to plot the outcome against one covariate
holding the other fixed. The default is to fix it to its sample mean. For the true curve, we fix it to its
population mean, which is 0. We first look at the outcome against X1. By fixing X2 to 0, the true curve is
X1 +X2

1 for the untreated and 2 − 2X1 for the treated. The following graphs show how the FTLSE-BIC
method fits the curves.
plot(c2, "X1", legendPos = "right", cex = .8)
curve(x + xˆ2, -3, 3, col = "darkgreen", lty = 3, lwd = 3, add = TRUE)
curve(2 - 2 * x, -3, 3, col = "darkorange", lty = 3, lwd = 3, add = TRUE)
legend("topleft", c("True-treated", "True-nontreated"),

col = c("darkgreen", "darkorange"), lty = 3, lwd = 3, bty = 'n', cex = .8)
plot(c2, "X1", addPoints = TRUE, legendPos = "topleft", cex = .8)

−3 −2 −1 0 1 2 3

0
5

10

Y vs X1 using SLSE

X1

Y Treated
Nontreated

True−treated
True−nontreated

−3 −2 −1 0 1 2 3

−
5

0
5

10

Y vs X1 using SLSE

X1

Y

Treated
Nontreated

If we fix X1 to 0, the true curve is 1 + [(1 +X2)I(X2 ≤ −1) + (−1 −X2)I(X2 > −1)] for the nontreated and
1 + [(1 − 2X2)I(X2 ≤ 0) + (1 + 2X2)I(X2 > 0)] for the treated. The following graphs illustrates how these
curves are approximated by FTLSE-AIC.
plot(c2, "X2", legendPos = "right", cex = .8)
curve(1 + (1 - 2 * x) * (x <= 0) + (1 + 2 * x) * (x > 0), -3, 3,

col = "darkgreen", lty = 3, lwd = 3, add = TRUE)
curve(1 + (1 + x) * (x <= -1) + (-1 - x) * (x > -1),

-3, 3, col = "darkorange", lty = 3, lwd = 3, add = TRUE)
legend("left", c("True-treated", "True-nontreated"),

col = c("darkgreen", "darkorange"), lty = 3, lwd = 3, bty = 'n', cex = .8)
plot(c2, "X2", addPoints = TRUE, legendPos = "topleft", cex = .8)

26

−3 −2 −1 0 1 2

0
2

4
6

Y vs X2 using SLSE

X2

Y Treated
Nontreated

True−treated
True−nontreated

−3 −2 −1 0 1 2

−
5

0
5

10

Y vs X2 using SLSE

X2

Y

Treated
Nontreated

2.11 A simulated data set with interactions
The data set datSim5 is generated using the following data generating process with a sample size of 300.

Y (0) = [1 +X1 +X2
1] + [(1 +X2)I(X2 ≤ −1) + (−1 −X2)I(X2 > −1)]

+[1 +X1X2 + (X1X2)2] + ϵ(0)
Y (1) = [1 − 2X1] + [(1 − 2X2)I(X2 ≤ 0) + (1 + 2X2)I(X2 > 0)]

+[1 − 2X1X2] + ϵ(1)
Z = Bernoulli[Λ(1 +X1 +X2 +X1X2)]
Y = Y (1)Z + Y (0)(1 − Z) ,

whereX1, X2, e and u are independent standard normal. The causal effects ACE, ACT and ACN are
approximately equal to 1.763, 0.998 and 3.194 (estimated with a sample size of 107). We can compare the
SLSE, FTLSE-AIC and FTLSE-BIC.
data(simDat5)
mod <- setModel(Y ~ Z | ~ X1 * X2, data = simDat5)

c1 <- causalTLSE(mod, selType = "SLSE")
c2 <- causalTLSE(mod, selType = "FTLSE", selCrit = "BIC")
c3 <- causalTLSE(mod, selType = "FTLSE", selCrit = "AIC")
texreg(list(SLSE = c1, FTLSE.BIC = c2, FTLSE.AIC = c3), table = FALSE, digits = 4)

SLSE FTLSE.BIC FTLSE.AIC
ACE 1.7990∗∗∗ 1.7797∗∗∗ 1.7744∗∗∗

(0.3566) (0.3615) (0.3613)
ACT 1.2582∗∗ 1.2091∗ 1.2091∗

(0.4722) (0.4796) (0.4803)
ACN 2.8183∗∗∗ 2.8550∗∗∗ 2.8399∗∗∗

(0.4402) (0.4400) (0.4378)
Num. knots (Nontreated) 9 8 8
Num. knots (Treated) 9 5 6
Num. covariates 3 3 3
Num. obs. (Nontreated) 104 104 104
Num. obs. (Treated) 196 196 196
R2 0.8909 0.8879 0.8894
R2

adj 0.8809 0.8799 0.8811
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

In the case of multiple covariates with interactions, the shape of the fitted outcome with respect to one
covariate depends on the value of the other covariates. Without interaction, changing the value of the other
covariates only shifts the fitted line without changing its shape. The following graphs compare the estimated

27

relationship between Y and X1 for X2 equal to the group means (left graph) and 1 (right graph). Using
a sample of 107, we obtain that E(X2|Z = 1) and E(X2|Z = 0) are approximately equal to 0.1982 and
-0,3698, respectively. Therefore, the true curves are (1.3698 + 0.6302x+ 1.1368x2) for the nontreated and
(3.3964 − 2.3964x) for the treated. If X2 = 1, the true curves become 2x+ 2x2 for the treated and (5 − 4x)
for the nontreated.
x20 <- mean(subset(simDat5, Z == 0)$X2)
x21 <- mean(subset(simDat5, Z == 1)$X2)
plot(c2, "X1", fixedCov0 = list(X2 = x20), fixedCov1 = list(X2 = x21),

legendPos = "right", cex = .8,
main="Y vs X1 (X2 = sample mean for each group)")

curve(1.3698 + 0.6302 * x + 1.1368 * xˆ2, -3, 3,
col = "darkgreen", lty = 3, lwd = 3, add = TRUE)

curve(3.3964 - 2.3964 * x, -3, 3, col = "darkorange", lty = 3, lwd = 3, add = TRUE)
legend("top", c("True-treated", "True-nontreated"),

col=c("darkorange", "darkgreen"), lty = 3, lwd = 3, bty = 'n', cex = .8)
plot(c2, "X1", fixedVoc0 = list(X2 = 1), legendPos = "right", cex = .8,

main="Y vS X1 (X2 = 1 for each group)")
curve(2 * x + 2 * xˆ2, -3, 3, col = "darkgreen", lty = 3, lwd = 3, add = TRUE)
curve(5 - 4 * x, -3, 3, col = "darkorange", lty = 3, lwd = 3, add = TRUE)
legend("top", c("True-treated", "True-nontreated"),

col = c("darkgreen", "darkorange"), lty = 3, lwd = 3, bty = 'n', cex = .8)

−2 −1 0 1 2 3

−
4

−
2

0
2

4
6

8

Y vs X1 (X2 = sample mean for each group)

X1

Y Treated
Nontreated

True−treated
True−nontreated

−2 −1 0 1 2 3

−
4

−
2

0
2

4
6

8

Y vS X1 (X2 = 1 for each group)

X1

Y Treated
Nontreated

True−treated
True−nontreated

The following graphs illustrate the relationship between Y and X2 for a given X1. When X1 is equal its
population group means (they are equal to the population means of X2), the true curves are [1.6036 −
0.3964x)(x ≤ 0)+(1+2x)(x > 0)] for the treated and [(1.767−0.3698x+0.1368x2)+(1+x)(x ≤ −1)+(−1−
x)(x > −1)] for the nontreated. If X1 = 1, the true curves become [−2x+ (1 − 2x)(x ≤ 0) + (1 + 2x)(x > 0)]
for the treated and [(4 + x+ x2) + (1 + x)(x ≤ −1) + (−1 − x)(x > −1)] for the nontreated.
x10 <- mean(subset(simDat5, Z == 0)$X1)
x11 <- mean(subset(simDat5, Z == 1)$X1)
plot(c2, "X2", fixedCov0 = list(X1 = x10), fixedCov1 = list(X1 = x11),

legendPos = "right", cex = .8,
main = "Y vs X2 (X1 = sample mean for each group)")

curve(1.603900 - .3964 * x + (1 - 2 * x) * (x <= 0) + (1 + 2 * x) * (x > 0), -3, 3,
col = "darkgreen", lty = 3, lwd = 3, add = TRUE)

curve(1.767 - 0.3698 * x + 0.1368 * xˆ2 + (1 + x) * (x <= -1) + (-1 - x) * (x > -1),
-3, 3, col = "darkorange", lty = 3, lwd = 3, add = TRUE)

legend("top", c("True-treated", "True-nontreated"),
col = c("darkorange", "darkgreen"), lty = 3, lwd = 3, bty = 'n', cex = .8)

plot(c2, "X2", fixedCov0 = list(X1 = 1), legendPos = "right", cex = .8,
main="Y vS X2 (X1 = 1 for each group)")

28

curve(-2 * x + (1 - 2 * x) * (x <= 0) + (1 + 2 * x) * (x > 0), -3, 3,
col = "darkgreen", lty = 3, lwd = 3, add = TRUE)

curve(4 + (1 + x) * (x <= -1) + (-1 - x) * (x > -1) + x + xˆ2,
-3, 3, col = "darkorange", lty = 3, lwd = 3, add = TRUE)

legend("top", c("True-treated", "True-nontreated"),
col = c("darkgreen", "darkorange"), lty = 3, lwd = 3, bty = 'n', cex = .8)

−3 −2 −1 0 1 2 3

−
2

0
2

4
6

8

Y vs X2 (X1 = sample mean for each group)

X2

Y Treated
Nontreated

True−treated
True−nontreated

−3 −2 −1 0 1 2 3

2
4

6
8

Y vS X2 (X1 = 1 for each group)

X2
Y Treated

Nontreated

True−treated
True−nontreated

29

References
Giurcanu, M. 2016. “Thresholding Least-Squares Inference in High-Dimensional Regression Models.” Elec-

tronic Journal of Statistics. https://doi.org/10:2124âĂŞ2156.
Giurcanu, M., M. Capanu, P. Chaussé, and G. Luta. 2023. “Semiparametric Thresholding Least Squares

Inference for Causal Effects.” Working Paper.
Leifeld, Philip. 2013. “texreg: Conversion of Statistical Model Output in R to LaTeX and HTML Tables.”

Journal of Statistical Software 55 (8): 1–24. http://dx.doi.org/10.18637/jss.v055.i08.
Zeileis, Achim. 2006. “Object-Oriented Computation of Sandwich Estimators.” Journal of Statistical Software

16 (9): 1–16. https://doi.org/10.18637/jss.v016.i09.

30

https://doi.org/10:2124–2156
http://dx.doi.org/10.18637/jss.v055.i08
https://doi.org/10.18637/jss.v016.i09

	Introduction
	The causalTLSE package
	Setting up the Model
	The starting knots
	Setting the knots manually

	Estimating the model
	The predict and plot methods
	Factors, interactions and functions of covariates

	Optimal selection of the knots
	The causalTLSE method for tlseFit objects
	The extract method

	The causalTLSE method for tlseModel objects
	The causalTLSE method for formula objects
	A simulated data set from Model 1
	A simulated data set from Model 2
	A simulated data set from Model 3
	A simulated data set with interactions

	References

