Semiparametric Thresholding Least Squares Inference for Causal
Effects with R

Pierre Chausse! Mihai Giurcanu!l George Lutat

Abstract

The vignette explains how to use the causal TLSE package to estimate different causal effects using a
semiparametric thresholding least squares method.

Introduction

This document presents the causalTLSE package explaining in details all functions. It is intended for users
interested in all the details about the procedure presented in the paper and how it is implemented.

The main model is

Y =po(1=2)+ B2+ fo(X)+ fr(X) +¢€,

and it is approximated by the regression

Y =6o(1—2)+ 1Z + ¢oUop(X) + UL (X) + u,

where Uy(X) and U;(X) are spline matrices satisfying Up(X;) = 0 if Z; = 1 and Uy(X;) = 0 if Z; =
0. If X is a k x 1 matrix of covariates. We can separate U;(X), for j = 0,1, into a block matrix
{U1;(X),Us(X), ..., Upj(X)}, where U;;(X) is matrix of basis functions to approximate the function f;(X;).
The paper proposes a data-driven method for selecting the matrices Up(X) and U (X).

To understand the package, it is important to know how the U;;(X)’s are defined. To simplify the notation, we
remove the subscripts ¢ from X and ¢ and j from U;;(X). We just need to keep in mind that U(X) is different
for the treated and control groups. We want to approximate f(X) by a linear spline basis function. Let
{K1, ..., Kp—1} be a set of p—1 knots strictly inside the sample range of the X satisfying k1 < ko <, ..., < Kp_1.
For a realization = and p > 3, we have the following bases.

Ui1(z) = axl(x < k1) +ril(z > K1)
Us(z) = (z—Kp_1)l(x>Kp_1)
U(x) = (v—fkp—1)I(kp—1 < < ki) + (ki — kk—1)I(x > Kg),

where the last Uy(z) is defined for 2 < k < p. Therefore, if the number of knots is equal to 1, we only have
the first two bases. Since knots must be strictly inside the sample range of X, any categorical variable with
two levels, which includes as a special case binary variables, the number of knots must be equal to zero.
When this is the case, U(X) = X. For general categorical variables, the number fo knots cannot exceed the
number of levels minus two.

*University of Waterloo, pchausse@uwaterloo.ca
TUniversity of Chicago, giurcanu@uchicago.edu
*Georgetown University, George.Luta@georgetown.edu

mailto:pchausse@uwaterloo.ca
mailto:giurcanu@uchicago.edu
mailto:George.Luta@georgetown.edu

The causalTLSE package

Setting up the Model

The first step to estimate the causal effect is to define a model. A model contains the information about the
outcome, the treatment indicator, the covariates and their knots. This is the starting point before applying
any basis selection method. To illustrate how to use the package, we are using the dataset from Lalonde
(1986). It contains some continuous and categorical variables, so we can illustrate how knots are selected
initially. The dataset is available from the package.

library(causalTLSE)
data(nsw)

The outcome is the real income in 1978 (re78) and the purpose is to measure the impact of a training program
(treat) on the outcome. The dataset includes also covariates such as age (age), education (ed) past real
income (re75) and some categorical variables (black, hisp, married and nodeg). We start by considering
the covariates age, re75, ed and ‘married. We can create a model simply by running the following command.

modell <- setModel(re78~treat | ~age+re75+ed+married, data=nsw)

The left of | is for the formula linking the outcome and the treatment indicator only. The covariates are
entered after | as a formula without a dependent variable. It works like for formulas in 1m. For example, we
can add interactions, functions of the variables, etc. The following is an example:

modEx <- setModel(re78~treat | ~aget+I(age”2)+re75+ed*married, data=nsw)

This will create the vector of covariates {age, age?, re75, ed, married, ed x married}. The function returns
an object of class tlseModel with its own print method. We will present it later. The following sub-sections
explain all arguments of the function.

The starting knots

By default, the function automatically generates knots for each variable based on the following procedure.
This procedure is applied separately for the treated and control groups. Therefore, the term sample size
means the number of observations in the treated or control group.

1. The starting number of knots is a function of the sample size and is determined by the argument
nknots, a function of one argument, the sample size. The starting number of knots is equal to the
floor of what the function returns minus 1 (or O if this operation results in a negative number). The
default function is function(n) n~0.3. For example, if the total sample size is 500, with 200 treated
and 300 control, the starting number of knots in the treated and control groups are respectively equal
to 3 (floor(20070.3)-1) and 4 (floor(30070.3)-1). It is possible to have a number of knots that
does not depend on the sample size. All we need is to set the argument nknots to a function that
returns an integer.

2. Let (p — 1) be the number of knots determined by the previous step. The knots are obtained by
computing p + 1 quantiles of X for equally spaced probabilities from 0 to 1, and by dropping the first
and last ones. For example, if the number of knots is equal to 3, we compute the quantiles for the
probabilities {0.25,0.5,0.75}.

3. We drop any duplicated knots and any knots equal to either the max or the min of X. If the resulting
number of knots is equal to 0, the vector of knots is set to NULL. When the knots is NULL for a variable
X, it means that U(X) = X.

The last step implies that the number of knots for all categorical variables with two levels, which includes as
a special case binary variables, is equal to 0. For other categorical variables with a small number of levels,
the number of knots may be smaller than the ones defined by nknots. For example, when the number of
levels is three, the number of knots cannot exceed 1.

The starting knots can be extracted from the object. The elements knots0O and knots1 are the list of knots
for the control and treated groups. For example, the knots for the treated are:

modell$knotsi
$age

20% 40% 60% 80%
19 22 25 28

##

$re75

40% 60% 80%
357.9499 1961.8640 5588.6640
##

$ed

207 40% 60% 80%
9 10 11 12
##

$married

NULL

We see that it is set to NULL for married, because it is a binary variable. The number of treated workers
is 297. Given the default nknots, it implies a number of starting knots equal to 4. This is the number of
knots we have for ed and age, but not for re75. The reason is that re75 contains many zeros. Since the
20% quantile is equal to 0 and 0 in also the minimum value of ed75, it is dropped (the type argument is to
replicate what is implemented in the package).

quantile(nsw[nsw$treat==1, 're75'], c(.2,.4,.6,.8), type=1)

20% 40% 60% 80%
0.0000 357.9499 1961.8640 5588.6640

By printing the object, we see a summary of the model. It includes the list of variable with a positive number
of knots and the ones with no knots.

modell

Semiparametric Thresholding LSE Model

i okokokokokokokokokokokokok ok ok sk ok o ok sk ok ok ok ok sk sk sk sk ok ok ok ok ok

#i#

Number of treated: 297

Number of control: 425

Number of missing values: O

Selection Method: SLSE

Covariates being approximated by a piecewise function:
age, re75, ed

Covariates not being approximated by a piecewise function:
married

SLSE: We see that the selection method is set to SLSE, which stands for Semiparametric Least
Squares Estimator. We refer to this when the knots are automatically selected by the method

described above. Later in the document, we will present methods for selecting a subset of this
SLSE selection.

As another example, the simulated dataset simDat4 contains special types of covariates. It help illustrate
better how the knots are determined. The dataset contains a continuous variable X1 with a large proportion
of zeros, categorical variables X2 and X3 with 2 and 3 levels, respectively, and a binary variable X4.

data(simDat4)
model2 <- setModel(Y~Z |~X1+X2+X3+X4, data=simDat4)

model2$knotsO

$X1

40% 60% 80%
0.2531388 2.9118507 12.1110772
#

$X2

NULL

##

$X3

40%

##t 2

##

$X4

NULL

We see that the number of knots for the two categorical variables with 2 levels is set to 0 and it is equal to 1
for the one with two levels.

Setting the number of knots to 0 for specific variables

To avoid having a positive number of knots for a variable, we can enter its name in the argument userRem.
For example, if we want the number of knots to be zero for ed and age, we can create the model as follows:

model3 <- setModel(re78~treat | ~age+re75+ed+married, data=nsw,
userRem=c("ed","age"))
model3

Semiparametric Thresholding LSE Model

i okokokokokokokokokokskokokokok sk ok ok ok ok sk ok ok ok ok sk sk sk sk ok ok ok ok ok

##

Number of treated: 297

Number of control: 425

Number of missing values: O

Selection Method: SLSE

Covariates being approximated by a piecewise function:
1re7b

Covariates not being approximated by a piecewise function:
age, ed, married

We see that only re75 has a positive number of knots.

Setting the knots manually

We have the control over the knots through the arguments knots0 and knots1. When the arguments are
missing (the default), all knots are set automatically. One way to set the number of knots to 0 for all variables
in a given group is to set the argument to NULL. For example, the number of knots is equal to 0 for all
variables of the treated group in the following:

setModel(re78~treat | ~aget+re75+ed+married, data=nsw, knots1=NULL)

Semiparametric Thresholding LSE Model
i skokorskokokskokkokok kol ki skokokskok ok skok sk sk fksk ok sk ok ok sk ok
##

Number of treated: 297

Number of control: 425

Number of missing values: O

Selection Method: User Based

Covariates being approximated by a piecewise function:

Treated: None

Control: age, re75, ed

Covariates not being approximated by a piecewise function:
Treated: age, re75, ed, married

Control: married

Notice that the selection method is defined as “User Based” whenever knots are provided manually by the
user. The other option is to provide a list of knots. The list must have the same length as the number of
covariates. For each element, we have three options:

e NA: The knots are set automatically for this variable only.
e NULL: The number of knots is set to 0 for this variable only.

e A numeric vector: The vector cannot contain missing or duplicated values and must be strictly inside
the range of the variable for the group.

Suppose you want to set for the control group an automatic selection for age, no knots for ed and the knots
{1000, 5000, 10000} for re75, and let the knots be automatically selected for the treated group, we proceed
this way. Note that setting the value to NA or NULL has the same effect for the binary variable married. In
the following, the argument knots=TRUE is added to the print method to only print the knots.

model <- setModel(re78~treat | ~agetre75+ed+married, data=nsw,
knotsO=1ist (NA, c(1000,5000,10000), NULL, NA))
print (model, knots=TRUE)

Lists of knots for the treated group
i okokokokokokokok ok skokoskokskskok ok sk ok sk sk sk kokok ok ok sk sk sk sk ok sk ok ok
age:

20% 40% 60% 80%

19 22 256 28

re7b:

40% 60% 80%
357.9499 1961.8640 5588.6640
ed:

207 40% 60% 80%

9 10 11 12

married:

None

##

Lists of knots for the Control group

B koo ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ko ok

age:

16.66667), 33.33333% 507, 66.66667% 83.33333%
18 20 23 26 30
re75:

k1 k2 k3

1000 5000 10000

ed:

None

married:

None

Estimating the model

Given the set of knots from the model object, the estimation is just a least squares method. We want to
estimate the model

Y =Bo(1 = 2)+ 51 Z + poUo(X) + 01U (X) + u,

where Up(X) and U;(X) are the bases defined above and depends on the model knots. The function that
estimate the model is estModel. The function has three arguments, but two of them are mostly used internally
by other functions. We present it in case it is needed. The arguments are:

e model: A model created by the function setModel.

e w0: A list of integers to select knots for the control group from the model. By default, all the knots are
used.

o wl: A list of integers to select knots for the treated group from the model. By default, all the knots are
used.

We illustrate with a simple model containing only two covariates and one knot per eligible variables.

model <- setModel(re78~treat | ~agetmarried, data=nsw,
nknots=function(n) 2)

fit <- estModel(model)

fit

Semiparametric Thresholding LSE Estimate

##

factor(treat)0 factor(treat)l XfOage_1 XfOage_2 XfOmarried
4558.28061 3754 .98326 27.79868 -12.51415 -115.81593
Xflage_1 Xflage_2 Xfimarried

89.25358 22.22331 1435.28205

The object has its own print method to returns the coefficient estimates. A more detrailed presentation of
the results can be obtained using the summary method. The following is an example with just a one knot per
eligible variable.

summary (fit)

Semiparametric Thresholding LSE Estimate

##

#t Estimate Std. Error t value Pr(>|t])
factor(treat)0 4558.28 3380.43 1.348 0.178
factor(treat)l 3754.98 4043.48 0.929 0.353
XfOage_1 27.80 164.59 0.169 0.866
XfOage_2 -12.51 67.11 -0.186 0.852
XfOmarried -115.82 859.66 -0.135 0.893
Xflage_1 89.25 194.19 0.460 0.646
Xflage_ 2 22.22 76.46 0.291 0.771
Xfimarried 1435.28 1014.69 1.415 0.157
##

Multiple R-squared: 0.009618, Adjusted R-squared: -9.119e-05
Note that the R? and adjusted R? are different from what we obtain using the summary of the 1m object:

summary (fit$lm.out) [c("r.squared","adj.r.squared")]

$r.squared
[1] 0.4379272

#it
$adj.r.squared
[1] 0.4316295

This is because R thinks that our model does not contain an intercept and the R? is computed differently for
models without an intercept. The definition of the R? used by R is the following (RSS means residual sum of
squares):

R2_1_ RSS for the model with the regressors

RSS for the model without the regressors

In a model with an intercept, the residual of the model without the regressors is ¥; — Y, but it is equal to Y;
when the model does not have an intercept. As a result, the R? with and without an intercept are

Z?:l é12 _
> (Yi—Y)?
_ Z?:l é%
n
i Y
However, our model does contain an intercept since we include a binary variable for both the control and

treated groups. To illustrate the issue, the following two regression models are identical in terms of goodness
of fit, because the sets of regressors span the same vector space:

2
Rwith =1-

2 _
Rwithout =1

re78 = 1 + Bamarried + u

re78 = aymarried + az(1 — married) + u

But R computes very different R?:

summary (lm(re78~married, nsw))$r.squared

[1] 0.001505512

summary (lm(re78~factor (married)-1, nsw))$r.squared

[1] 0.4333229

The second R? overestimates the goodness of fit of our model and should not be used. The one returned by
estModel is the right one.

The predict and plot method

The predict method is very similar to the predict.lm method. We find the same arguments: object,
interval, se.fit, newdata and level. The difference is that it returns the predicted outcome for the
treated and control groups separately and the argument vcov., a function like vcovHC or vcovCL, can be
used to compute robust standard errors. The function return a list of two elements, treated and control.
Each element contains the prediction fit and the standard errors se.fit when se.fit is set to TRUE. When
interval is set to “confidence”, fit is a matrix containing the prediction, and the lower and upper bound of
the confidence interval. Here is an example with the previous simplified model:

pr <- predict(fit, newdata=data.frame(treat=c(1,1,0,0),age=20:23, married=1),
interval="confidence")
pr

$treated

fit lower upper
1 6975.337 4960.082 8990.592
2 7064.591 5119.244 9009.937
#it

$control

fit lower upper
3 5054.036 3455.978 6652.093
4 5081.834 3423.558 6740.110

The predict method is called by the plot method to compare the predicted outcome for the treated and
control group with respect to a given covariate. By default, all other covariates are fixed to their sample
means. Consider the following model:

modell <- setModel(re78~treat | ~age+re75+ed+married, data=nsw)
fitl <- estModel (modell)

Suppose we want to compare the predicted income with respect to age or education, holding the other
covariates fixed to their means. The following show some possible options.

library(sandwich)

plot(fitl, "ed", colO="darkgreen", coll="darkred", lty0=2, ltyl=4,
legendPos="topleft")

plot(fitl, "age", interval='confidence', level=0.9, vcov.=vcovHC)

re78

8000 12000

4000

Outcome versus ed using piecewise polynomials

Treated
Control

ed

re78

6000 10000

0 2000

QOutcome versus age using piecewise polynomials

Treated
—— Control

20 30 40 50

age

It is also possible to set some of the other covariates to a specific value by changing the argument newdata.
This argument must be a named vector with the names corresponding to the variables you want to fix. You
can also add a description to the legend with the argument addToLegend.

plot(fitl, "age", newdata=c(married=1, re75=10000), addTolLegend="married", cex=0.8)
plot(fitl, "age", newdata=c(married=0, re75=10000), addTolLegend="non-married", cex=0.8)

Outcome versus age using piecewise polynomials Outcome versus age using piecewise polynomials

Treated (marr_ied)
8 | —— Control (married) 8 |
S =}
© ©
o _
8 -
o K ©
® s g
o 3
o _|
=}
© —
3
g g |
I I I I N I I I I
20 30 40 50 20 30 40 50
age age

To be better compare the two, it is also possible to have them plotted on the same graph by setting the

argument add. to TRUE. We just to be careful and adjust the arguments correctly to avoid confusion.

plot(fitl, "age", newdata=c(married=1, re75=10000), addTolLegend="married", cex=0.8,
ylim.=c(3000,10000))

plot(fitl, "age", newdata=c(married=0, re75=10000), addTolLegend="non-married", cex=0.8,
legendPos="'topleft', colO="darkgreen", coll="darkred", 1lty0=4, 1ltyl=5,

add.=TRUE,)
Outcome versus age using piecewise polynomials
“|— - Treated (non-married) Treated (married)
8 + = - Control (non—married) —— Control (married)
S
o
o _|
o O
~ o~
g |
o
o _
S
e}
o
o _|
S
™ I I I I
20 30 40 50
age

Finally, it is also possible to add the observed points to the graph.

plot(fitl, "ed", colO="darkgreen", coll="darkred", 1lty0=2, ltyl=4,
legendPos="topleft", addPoints=TRUE)
plot(fitl, "re75", addPoints=TRUE)

Outcome versus ed using piecewise polynomials Outcome versus re75 using piecewise polynomials

o o
8 o S |
2 |® Treated = Treated

_|-= Control i —&— Control
o o
S - S -
=} g o =} o
< o <

fee] o
E — = o o E) - o =

o 8 o o
§ _ o u] a 9 § | =
« 8 8 6 O_.- I\

| o B B o |

o Py
°_8.% 8. _E_..E.-_ -8 8 8-t 8 i :
o - 5] =]] g a o — 1
T T T T T T T T T T
4 6 8 10 12 14 16 0 10000 20000 30000
ed re75

The causal function

Once we have a model with knots, we can estimate the different causal effects. This is done by the causal
function. The function assumes we are satisfied with the knots and estimate the causal effects and their
standard errors. To define the different causal effect measures, let’s redefine Uy(X) and Uy (X) as the spline
bases using the knots of the control and treated group respectively, but with all data points. This differs
from how it is defined in the introduction, because this Up(X;) is not equal to 0 when Z; = 1 and Uy (X;) is
not equal to 0 when Z; = 0. The regression estimated by estModel, or the one defined in the introduction,
can be written as

Y =Bo(1 = 2)+ A1 Z + 9 [Uo(X)(1 = Z)] + 1 [U1(X) Z] + u.

Let BO, Bl, 1&0 and 1&1 be the least squares estimates. Then, the estimated causal effects are defined as:

ACE = Bi - Bo+ ¢ U1 (X) — dhUo(X)
ACT = B —Bo+ ¢ Ui(X)Z — ¢Us(X)Z

ACN = B = fo+ ¢ U(X)(1 - 2) - dpUo(X)(1 - 2),
where
1 n

U(X) = EZUJ), for j=0,1

_ 1 &

U;(X)Z = fZUJ) Z;, for j=0,1
(X)1-2) = — (X;)(1 — Z;), for j=0,1
U;(X)() nOZUJ()), for j=0,

and ng and n; are the number of individuals in the control and treated groups. The function causal is a
method registered for t1seFit and tlseModel objects. In other words, we can compute the causal effects
directly from the model:

causal (modell)

Causal Effect using Thresholding Least Squares
i korokokokokskokokokokokskok sk ok skskok ok sk skok sk sk sksk sk ok sk sk sk ok sk sk ok sk ok ok sk ok

10

Selection Method: SLSE

ACE = 814.3083
ACT = 831.8856
ACN = 802.0249

or from the estimated model:

causal(fitl)

Causal Effect using Thresholding Least Squares
i krokokokokskoskokokokkskoksk ok skskok ok sksksk sk ok skskok ok sksk sk sk sk sk sk sk ok sk ok
Selection Method: SLSE

ACE = 814.3083

ACT = 831.8856

ACN = 802.0249

We see that the selection method (for the knots) and the criteria used to select the knots are set to unknown.
This is because it is not specified in the model object how the knots were selected. We will clarify this below.
The method return an object of class causaltlse. We see above what its print method returns and the
following show its summary method:

ce <- causal (modell)
summary (ce)

Causal Effect using Thresholding Least Squares
i korokokokokskokokokok ok skok sk ok ok skl ok ok sk sk ok sk ok ok sk sk sk ke ok sk sk sk ok sk sk ok sk ok ok sk ok

Selection Method: SLSE

#it Estimate Std. Error t value Pr(>|t])

ACE 814.3 482.1 1.689 0.0912 .

ACT 831.9 499.5 1.665 0.0958 .

ACN 802.0 498.9 1.608 0.1079

—--

Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The standard errors are computed using an analytical expression derived in the paper (need to add a citation
to our paper), which takes into account the variance of the sample means of the covariates. Asymptotically,
these variances converge to 0, so it only makes a difference in small samples. Alternatively, we can set the
argument seType to “Im” and use the least squares standard errors based on the asymptotic properties. By
default, vcov.1m is used, but it is possible to modify it by changing the argument vcov.. In the following,
we estimate the standard errors using the HC3 type of heteroskedasticity robust standard errors.

ce2 <- causal(modell, seType="1lm", vcov.=vcovHC, type="HC3")
summary (ce2)

Causal Effect using Thresholding Least Squares
FHHE skook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 5k ok 5k ok 3k ok 5k ok 5k ok ok ok ok >k ok ok ok ok >k ok ok 5k >k %k >k %k %k

Selection Method: SLSE

#it Estimate Std. Error t value Pr(>|t])
ACE 814.3 506.1 1.609 0.108
ACT 831.9 527.4 1.577 0.115
ACN 802.0 514.2 1.560 0.119

The object causaltlse inherits from the class t1seFit, so we can apply the plot (or the predict) method
directly on this object.

plot(ce2, "re75")

11

Outcome versus re75 using piecewise polynomials

o] T ted
S Control
o
-
o
o
o -
[ee] N
~ —
L |
o
S |
o
oo
o
S - 7
~ T T T T
0 10000 20000 30000
re75

Optimal selection of the knots

We propose two methods for selecting the knots: a backward (BTLSE) and a forward (FTLSE) methods.
For each method, we propose three criteria: the asymptotic (ASY), the Akaike Information (AIC) and the
Bayesian Information (BIC). The two selection methods can be summarized as follows:

BTLSE:
1. We estimate the model with all knots included in the model.

2. For each knot, we test if the slope of the piecewise linear polynomial is the same before and
after, and return the p-value.

3. The knots are selected using one of the following criteria
e ASY: We remove all knots with a p-value greater than a specified threshold.

e AIC or BIC: We order the p-values in descending order. Then, going from the largest
to the smallest, we remove the knot associated with the p-value one by one, estimate
the model and return the information criterion. We keep the model with the smallest
information citerion.

FTLSE:

1. We estimate the model by including a subset of the knots one variable at the time. When
we test a knot for one variable, the number of knots is set to 0 for all the others.

2. For each knot, we test if the slope of the piecewise linear polynomial is the same before and
after, and return the p-value. The set of knots used for each test depends on the following;:

e Variables with 1 knot: we return the p-value of the test of equality before and after the
knot.

e Variables with 2 knots: we include the two knots and return the p-values of the test of
equality before and after for each knot.

o Variables with p knots (p > 2): We test the equality before and after the knot ¢, for
i =1,...,p, using the sets of knots {1,2}, {1,2,3}, {2,3,4}, ..., {p —2,p — 1,p} and
{p — 1, p} respectively.
3. The knots are selected using one of the following criteria

e ASY: We remove all knots with a p-value greater than a specified threshold.

12

e AIC or BIC: We order the p-values in ascending order. Then, starting with a model
with no knots and going from the smallest to the highest highest p-value, we add the knot
associated with the p-value one by one, estimate the model and return the information
criterion. We keep the model with the smallest information citerion.

The selection is done using the function selTLSE. The arguments are:
e« model: An object of class t1seModel.

o method: This is the selection method. We have the choice between “FTLSE” (the default) and
“BTLSE".

o crit: This is the criterion used by the selection method. We have the choice between “ASY” (the
default), “AIC” or “BIC”.

e minPV: This is a function that returns the p-value threshold. It is a function of one argument, the
average number of knots per covariate. The default is function(p) 1/log(p). It is also possible to
set it to a fix threshold. For example, function(p) 0.20 set the threshold to 0.2. This argument
affects the result only when method is set to “ASY™.

e vcov.: By default, the p-values are computed with the 1m covariance matrix method vcov. Alternatively,
we can use sandwich estimators like vcovHC.

e ...: This is used to pass arguments to the vcov. function.

The function returns a model of class t1seModel with the optimal selection of knots. For example, we can
compare the starting knots of modell, with the model selected by the default arguments.
print (modell, knots=TRUE)

Lists of knots for the treated group
i Rrokkokokokokk ok Kok kKR KOk Kok KoKk Kok Kok Kok Kok Kok Kok
age:

20% 40% 60% 80%

19 22 25 28

re75:

#i# 40% 60% 80%
357.9499 1961.8640 5588.6640
ed:

20% 40% 60% 80%

9 10 11 12

married:

None

##

Lists of knots for the Control group
i Rrokkokokokok ok Kok kKR Kok ok ok ok Kok ok Kok Kok Kok ok Kok

age:

16.66667) 33.33333% 507, 66.66667 83.33333%
18 20 23 26 30
re75:

50% 66.66667% 83.33333),

823.2544 2292.1710 6567.3290

ed:

16.66667) 33.33333), 66.66667% 83.33333)

9 10 11 12

married:

None

model2 <- selTLSE(modell)
print (model2, knots=TRUE)

Lists of knots for the treated group
H# orokokskokokokokskokskokok ok ok ok sk sk ok ok sk ok sk sk ok ok ok sk ok ok
age:

20% 40% 60% 80%

19 22 25 28

re75:

13

60%

1961.864

ed:

207 40% 60% 80%

9 10 11 12

married:

None

##

Lists of knots for the Control group
i krokokskoRskokskoskokskok ok ok sk sk ok ok sk sk kokkok sk ok ok

age:

33.33333%, 507, 66.66667%, 83.33333%
20 23 26 30
re75:

50% 66.66667% 83.33333},

823.2544 2292.1710 6567.3290

ed:

16.66667), 66.66667

9 11

married:

None

For example, the method has removed all knots from re75 for the treated group and kept 2 knots for the
control group. We can then compute the causality measures for the new model. Notice that the selection
method and criterion reflects what was used to update the model. In this case, we see FTLSE as selection
method and ASY as criterion.

causal (model2)

Causal Effect using Thresholding Least Squares
HH skokorkokokskokokskok ok skok sk sk kk sk sk sk ok sk sk ok sk ok sk sk sk sk sk sk sk ok ok sk ok
Selection Method: FTLSE

Criterion: ASY

#

ACE = 820.3279
ACT = 837.1689
ACN = 808.559

We can compare with other methods:

model3 <- selTLSE(modell, method="BTLSE", crit="BIC")
causal (model3)

Causal Effect using Thresholding Least Squares
i kokokokokokskokok ok ok ok skok ok ok skok ok o sk sk sk ok o sk sk ok ok ek sk ok sk o sk ok ok ok ok ok ok
Selection Method: BTLSE

Criterion: BIC

##

ACE = 818.8162
ACT = 889.3806
ACN = 769.5041

The extract method

The package comes with an extract method for objects of class causaltlse, which is a required method for
creating Latex tables using the texreg package. For example, we can compare different methods in a single
table.

library(texreg)
cl <- causal(modell)
c2 <- causal(selTLSE(modell, method="BTLSE"))

14

c3 <- causal (selTLSE(modell, method="FTLSE"))
texreg(list (SLSE=cl, BTLSE=c2, FTLSE=c3), table=FALSE, digits=4)

SLSE BTLSE FTLSE
ACE 814.3083 816.1558 820.3279
(482.1393) (483.7087) (483.7472)
ACT 831.8856 827.8434 837.1689
(499.4948) (501.7417) (500.7082)
ACN 802.0249 807.9883 808.5590
(498.8671) (495.9641) (495.3648)
Num. knots (Control) 12 10 9
Num. knots (Treated) 11 8 9
Num. covariates 4 4 4
Num. obs. 722 722 722
R? 0.0869 0.0866 0.0863
R, 0.0445 0.0511 0.0507

***p < 0.001; **p < 0.01; *p < 0.05

The causalTLSE function

We just saw how to estimate the causal effects step by step. The function causalTLSE estimate them in one
step, once the model has been created. It returns an object of class causaltlse like the causal method
does, so we can apply the same print, summary and predict and plot method to it. The last two can be
applied to the object, because it inherits from the tlseFit class. The arguments are almost like the ones
from the selTLSE and causal functions.

model: An object of class tlseModel.

selType: This is the selection method. We have the choice between “SLSE” (the default), “FTLSE”
and “BTLSE”. The SLSE method implies no selection, so all knots from the model are kept. It is
therefore identical to estimating the model using the causal method.

selCrit: This is the criterion used by the selection method. We have the choice between “ASY” (the
default), “AIC” or “BIC”.

causal: What causality measure should the function compute? We have the choice between “All” (the
default), “ACT”, “ACE” or “ACT".

seType: The method to compute the standard error of the causality measures. We have the choice
between “analytical” (the default) or “lm”. We have explained the difference when we presented the
causal method.

minPV: This is a function that returns the p-value threshold. We explained this argument when we
presented the sel1TLSE function.

vcov.: An alternative was to compute the covariance matrix of the least squares estimates.

...: This is used to pass arguments to the vcov. function.

For example, we can generate the previous table as follows:

cl <- causalTLSE(modell, selType="SLSE")
c2 <- causalTLSE(modell, selType="BTLSE")
c3 <- causalTLSE(modell, selType="FTLSE")
texreg(list (SLSE=cl, BTLSE=c2, FTLSE=c3), table=FALSE, digits=4)

15

SLSE BTLSE FTLSE
ACE 814.3083 816.1558 820.3279
(482.1393) (483.7087) (483.7472)
ACT 831.8856 827.8434 837.1689
(499.4948) (501.7417) (500.7082)
ACN 802.0249 807.9883 808.5590
(498.8671) (495.9641) (495.3648)
Num. knots (Control) 12 10 9
Num. knots (Treated) 11 8 9
Num. covariates 4 4 4
Num. obs. 722 722 722
R? 0.0869 0.0866 0.0863
R2, 0.0445 0.0511 0.0507

***p < 0.001; **p < 0.01; *p < 0.05

An example with simulated data

In the package, the data set datSim1l was generated using the following data generating process.

Y(0) = 1+X+X°+e
Y(1) = 1-2X+u

Z = Ber[A(1+ X)]

Y = Y()Z+Y(0)(1-2)

where X, e and u are standard normal, A(z) is the CDF of the standard logistic distribution and Ber(p)
is the Bernoulli distribution. The true causal effects ACE, ACT and ACN are approximately equal to -1,
-1.6903 and 0.5867. We can start by building starting model:

data(simDat1)
mod <- setModel(Y~Z | ~X, data=simDatl)

Then we can compare three different methods:

cl <- causalTLSE(mod, selType="SLSE")
c2 <- causalTLSE(mod, selType="BTLSE", selCrit="BIC")
c3 <- causalTLSE(mod, selType="FTLSE", selCrit="BIC")

texreg(list (SLSE=cl, BTLSE=c2, FTLSE=c3), table=FALSE, digits=4)

SLSE BTLSE FTLSE
ACE —1.4396*** —1.4530*** —1.4530***
(0.2614) (0.2605) (0.2605)
ACT —1.9316*** —1.9316*** —1.9316***
(0.3030) (0.3024) (0.3024)
ACN —0.0865 —0.1369 —0.1369
(0.3263) (0.3224) (0.3224)
Num. knots (Control) 2 2 2
Num. knots (Treated) 4 0 0
Num. covariates 1 1 1
Num. obs. 300 300 300
R?2 0.7434 0.7386 0.7386
R2 . 0.7354 0.7342 0.7342

***p < 0.001; **p < 0.01; *p < 0.05

We see that both selection methods choose to assign 0 knots for the treated group, which is not surprising
since the true fi(x) is linear. We can compare the different fits (we ignore the FTLSE because the selected

knots are the same):

plot(cl, "X")

curve(1-2*x, -3,3, col="darkgreen", 1ty=3, lwd=3, add=TRUE)

curve(1l+x+x"2, -3,3, col="darkorange", 1lty=3, lwd=3, add=TRUE)

16

legend("bottomleft", c("True-treated","True-control"),
col=c("darkgreen", "darkorange"), 1lty=3, lwd=3, bty='n')

plot(c2, "X")

curve(1-2*x, -3,3, col="darkgreen", lty=3, lwd=3, add=TRUE)

curve(1+x+x~2, -3,3, col="darkorange", 1lty=3, lwd=3, add=TRUE)

legend ("bottomleft", c("True-treated","True-control"),
col=c("darkgreen", "darkorange"), 1lty=3, lwd=3, bty='n')

Outcome versus X using piecewise polynomials Outcome versus X using piecewise polynomials

R . Treated A . Treated
< 4 tey —— Control T —— Control
. < <y
] \ - ¥ e 7 \ /

> © 7 > o 4
o~
| N
|
<
! <t
+ True-treated [+ True-treated
© True-control True—control
T T T T T T T ? T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
X X

We see that the piecewise polynomials are very close to the true fi(z) and fa(z). We can see from the
folllowing graph how the lines are fit through the observations by group.

plot(cl, "X", addPoints=TRUE)

Outcome versus X using piecewise polynomials

o a
Treated
o —&— Control
> O
o _|
|

An example with another simulated data

The dataset datSim2 was generated using the following data generating process.

Y0) = 1+X)I(X<-1)+(-1-X)I(X>-1)+e¢
Y(1) = (1-2X)I(X<0)+(1+2X)[(X >0)+e

Z = Ber[A(1+ X)]

Y = Y(1)Z+Y(0)(1-2)

where I(A) is the indicator function equal to 1 if A is true, X, e and u are standard normal, A(z) is the CDF

17

of the standard logistic distribution and Ber(p) is the Bernoulli distribution. The true causal effects ACE,
ACT and ACN are approximately equal to 3.763, 3.858 and 3.545. We can compare the SLSE, BTLSE with
AIC and BTLSE with BIC.

data(simDat2)
mod <- setModel(Y~Z | ~X, data=simDat2)

cl <- causalTLSE(mod, selType="SLSE")

c2 <- causalTLSE(mod, selType="BTLSE", selCrit="BIC")

c3 <- causalTLSE(mod, selType="BTLSE", selCrit="AIC")

texreg(list (SLSE=c1, BTLSE.BIC=c2, BTLSE.AIC=c3), table=FALSE, digits=4)

SLSE BTLSE.BIC BTLSE.AIC

ACE 3.9290*** 3.9201%** 3.9201***
(0.1703) (0.1717) (0.1717)
ACT 3.9552%** 3.9404*** 3.9404***
(0.1891) (0.1904) (0.1904)
ACN 3.8670%** 3.8721%** 3.8721%**
(0.2371) (0.2362) (0.2362)
Num. knots (Control) 2 1 1
Num. knots (Treated) 3 2 2
Num. covariates 1 1 1
Num. obs. 300 300 300
R? 0.7833 0.7829 0.7829
R2 0.7774 0.7784 0.7784

***p < 0.001; **p < 0.01; *p < 0.05

The following illustrate the fit of BTLSE-AIC with the true fi(z) and $f_0(x), and the observations.

plot(c2, "X", legendPos="right", cex=.8)
curve ((1-2%x) * (x<=0)+ (1+2*x) *(x>0), -3,3,
col="darkgreen", 1lty=3, lwd=3, add=TRUE)
curve ((1+x)* (x<=-1)+(-1-x) *(x>-1),
-3,3, col="darkorange", 1lty=3, lwd=3, add=TRUE)
legend("left", c("True-treated","True-control"),
col=c("darkgreen","darkorange"), lty=3, lwd=3, bty='n', cex=.8)
plot(c2, "X", addPoints=TRUE, legendPos="topleft", cex=.8)

Outcome versus X using piecewise polynomials Outcome versus X using piecewise polynomials
© - .l i Treated
N - © ——=— Control
< < -
o~ — ++ True-treated e - : Treated ~
> True—-control T — Control |~
o
o ///
/”
o
N / 1
|
T T T T T T T T T T T T
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2
X X

18

	Introduction
	The causalTLSE package
	Setting up the Model
	The starting knots
	Setting the number of knots to 0 for specific variables
	Setting the knots manually

	Estimating the model
	The predict and plot method
	The causal function
	Optimal selection of the knots
	The extract method
	The causalTLSE function
	An example with simulated data
	An example with another simulated data

