prof_alpha {tramnet}R Documentation

Profiling tuning parameters

Description

Computes the regularization path of all coefficients for a single tuning, alpha, parameter over a sequence of values.

Usage

prof_alpha(model, min_alpha = 0, max_alpha = 1, nprof = 5,
  as.lm = FALSE)

Arguments

model

model of class tramnet

min_alpha

minimal value of alpha (default = 0)

max_alpha

maximal value of alpha (default = 15)

nprof

number of profiling steps (default = 5)

as.lm

return scaled coefficients for class "tramnet_Lm"

Value

Object of class "prof_alpha" which contains the regularization path of all coefficients and the log-likelihood over the mixing parameter alpha

Author(s)

Lucas Kook

Examples


library("tramnet")
library("survival")

data("nki70", package = "penalized")
nki70$resp <- with(nki70, Surv(time, event))
x <- scale(model.matrix( ~ 0 + DIAPH3 + NUSAP1 + TSPYL5 + C20orf46, data = nki70))
y <- Coxph(resp ~ 1, data = nki70, order = 10, log_first = TRUE)
fit <- tramnet(y, x, lambda = 1, alpha = 1)
pfa <- prof_alpha(fit)
plot_path(pfa)


[Package tramnet version 0.0-6 Index]