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Abstract

This document discusses technical details on the empirical evaluation of the reference
implementation of transformation boosting machines in the tbm package. Model estima-
tion, interpretation, and criticism is illustrated for eight life science applications. Setup
and detailed results of a simulation study based on artificial data generating processes are
presented.

Keywords: Conditional Transformation Model, Shift Transformation Model.

1. Introduction
Transformation boosting machines estimate conditional transformation models (CTMs) and
shift transformation models (STMs) by optimising the corresponding log-likelihood. In a
nutshell, transformation models are fully parameterised by appropriate basis functions those
parameters are (in total or partially) linked to predictor variables. The method is applicable to
a broad range of problems because (1) the likelihood allows to handle discrete and continuous
responses under all forms or random censoring and truncation and (2) simple linear, more
complex nonlinear additive, or completely unstructured (tree-based) conditional paramater
functions can be estimated by using appropriate basis functions for the predictor variables.
This document describes technical details of the empirical evaluation of transformation boost-
ing machines by means of eight applications (Section 2) and artificial data generating processes
(Section 3). For each of the eight applications, the exact model setup, the best performing
model, and the corresponding model interpretation and model criticism is presented. The
source code for these benchmark analysis is available from the directory

R> system.file("applications", package = "tbm")

Simulation experiments based on the data generating processes presented in Section 3 can be
reproduced using the source code in

R> system.file("simulations", package = "tbm")

This document also contains graphical representations of the out-of-sample log-likelihoods for
all settings in the simulation experiments (Section 3.2).
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Figure 1: Beetles Exctinction Risk. Out-of-sample log-likelihood (centered by out-of-sample
log-likelihood of unconditional model).

2. Applications
For eight prediction problems, the out-of-sample log-likelihood was evalulated based on 100
subsamples (3/4N as learning sample and 1/4N as test sample). For problems with categorical
responses or right-censored responses, subsamples were stratified with respect to the response
class or censoring status (such that the distribution of the response or the the censoring rate
were the same in learning and test samples). The out-of-sample log-likelihood was centered by
the out-of-sample log-likelihood of the uninformative model which was estimated and tested
on the very same folds.
Transformation boosting machines were estimated using package tbm (Hothorn 2022). Trans-
formation trees and forests as implemented in package trtf (Hothorn 2021) served as main
competitors.
Boosting CTM Likelihoods (parameter ϑ(x)) with nonlinear (N, B-spline) basis functions,
linear (L) basis functions, and tree-based (T, depth two) basis functions. Boosting STM
Likelihoods (parameter β(x)) with nonlinear (N, B-spline) basis functions, linear (L) basis
functions, and tree-based (T, depth two) basis functions.

2.1. Beetles Exctinction Risk

This problem aims at the prediction of the exctinction risk of beetles (Seibold et al. 2015).
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Figure 2: Beetles Exctinction Risk. Unconditional response distribution.

The response is the Red List status ranging from 0 (least concern) to 5 (regionally extinct)
of N = 1025 saproxylic beetles, where for each species 10 (7 numeric and 3 categorical)
predictors are available.
We start with an unconditional proportional odds model (using FZ = expit and one parameter
for each but the highest Red List category):

R> m_mlt <- Polr(RL ~ 1, data = ldata)
R> logLik(m_mlt)

'log Lik.' -1176.571 (df=5)

The corresponding unconditional distribution is depicted in Figure 2.
Model evaluation (Figure 1) indicated that a tree-structured model for β(x) had the best
performance; this model was fitted using

R> fm_tree

RL ~ mean_body_size + mean_elev + flowers + niche_decay + niche_diam +
niche_canopy + distribution + tree + feeding + habitat

R> bm <- stmboost(m_mlt, formula = fm_tree, data = ldata,
+ method = quote(mboost::blackboost))[626]

(the default tree was grown to a depth of two). The in-sample log-likelihood is shown in
Figure 3.
The model consists of trees with two-way interactions, basically all variables seemed to play a
role in the model (the numbers giving the absolute number of splits in each of these variables):
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Figure 3: Beetles Exctinction Risk. In-sample log-likelihood maximisation.

mean_body_size mean_elev flowers niche_decay niche_diam
215 100 66 60 252

niche_canopy distribution tree feeding habitat
141 483 307 195 59

For six selected beetle species, the conditional distribution of extinction as predicted from the
tree-based model is given in Figure 4.
In this special case, the algorithm is identical to boosting for proportional odds models as
implemented in the PropOdds() family (Schmid et al. 2011); and thus the in-sample risks are
essentially identical:

R> po <- blackboost(fm_tree, data = ldata, family = PropOdds())[626]
R> max(abs(risk(bm) - risk(po)))

[1] 0.4888434

2.2. Birth Weight Prediction

Models shall be used to improve birth weight prediction in small fetuses (weighting ≤ 1600 g
at birth) based on measurements obtained using three-dimensional (3D) sonography (Schild
et al. 2008).
The response is the birth weight in gram of N = 150 singleton fetuses, where for each fetus
5 numeric predictors are available.
We start with an unconditional model (using FZ = Φ and an Bernstein polynomial of order
six):
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Figure 4: Beetles Exctinction Risk. Conditional response distribution.
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Figure 5: Birth Weight Prediction. Out-of-sample log-likelihood (centered by out-of-sample
log-likelihood of unconditional model).

R> m_mlt <- BoxCox(birthweight ~ 1, data = ldata, extrapolate = TRUE)
R> logLik(m_mlt)

'log Lik.' -1082.233 (df=7)

The corresponding unconditional distribution is depicted in Figure 6.
Model evaluation (Figure 5) indicated that an additive smooth model for β(x) had the best
performance; this model was fitted using

R> fm_gam[["stm"]]

birthweight ~ bols(volabdo, intercept = FALSE) + bols(hccalc,
intercept = FALSE) + bols(volos, intercept = FALSE) + bols(fe,
intercept = FALSE) + bols(bip, intercept = FALSE) + bbs(volabdo,
center = TRUE, df = 1) + bbs(hccalc, center = TRUE, df = 1) +
bbs(volos, center = TRUE, df = 1) + bbs(fe, center = TRUE,
df = 1) + bbs(bip, center = TRUE, df = 1)

R> bm <- stmboost(m_mlt, formula = fm_gam[["stm"]], data = ldata,
+ method = quote(mboost::mboost))[253]



Hothorn 7

Birth Weight (in gram)

D
en

si
ty

400 600 800 1000 1200 1400 1600

0.
00

00
0.

00
04

0.
00

08
0.

00
12

Figure 6: Birth Weight Prediction. Unconditional response distribution.

The in-sample log-likelihood is shown in Figure 7 and a QQ-plot based on the probability-
integral transform in Figure 8. It is important to note that the term β(x) must not contain
an intercept. The model was therefore composed of linear model terms (without intercept)
and smooth deviations from linear functions (all with the same degree of freedom to facilitate
unbiasedness). Thus, the model selects between linear and smooth additive functions.
The selected terms were

bols(volabdo, intercept = FALSE) 66
bols(hccalc, intercept = FALSE) 58
bols(volos, intercept = FALSE) 38
bols(fe, intercept = FALSE) 40
bols(bip, intercept = FALSE) 0
bbs(volabdo, df = 1, center = TRUE) 0
bbs(hccalc, df = 1, center = TRUE) 0
bbs(volos, df = 1, center = TRUE) 0
bbs(fe, df = 1, center = TRUE) 0
bbs(bip, df = 1, center = TRUE) 51

and the corresponding partial contributions are plotted in Figure 9. Only minor deviations
from linearity can be observed (and the out-of-sample risk of the linear model was almost the
same). In addition, the baseline transformation (Figure 10) is almost linear, indicating that
a normal linear model (reported by Schild et al. 2008) might be a good compromise between
prediction accuracy and interpretability for this problem.
For five selected observations, the conditional distribution of birth weight is shown in Fig-
ure 11. The blue dots indicate the actual observations. Except for the right-most density,
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Figure 7: Birth Weight Prediction. In-sample log-likelihood maximisation.

the predicted conditional densities are almost perfectly symmetric (as a consequence of the
linear baseline transformation).

2.3. Body Fat Mass

The response is the body fat mass (in kilogram) of N = 71 study participants, where for each
subject 9 numeric predictors are available (Garcia et al. 2005).
We start with an unconditional model (using FZ = Φ and an Bernstein polynomial of order
six):

R> m_mlt <- BoxCox(DEXfat ~ 1, data = ldata, prob = c(.1, .99))
R> logLik(m_mlt)

'log Lik.' -267.0084 (df=7)

The corresponding unconditional distribution is depicted in Figure 13.
Model evaluation (Figure 12) indicated that an additive smooth model for ϑ(x) had the best
performance; this model was fitted using

R> fm_gam[["ctm"]]

DEXfat ~ bbs(age) + bbs(waistcirc) + bbs(hipcirc) + bbs(elbowbreadth) +
bbs(kneebreadth) + bbs(anthro3a) + bbs(anthro3b) + bbs(anthro3c) +
bbs(anthro4)

R> bm <- ctmboost(m_mlt, formula = fm_gam[["ctm"]], data = ldata,
+ method = quote(mboost::mboost))[1000]
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Figure 8: Birth Weight Prediction. Probability-integral transform QQ-plot.

The in-sample log-likelihood is shown in Figure 14 and a QQ-plot based on the probability-
integral transform in Figure 15.
The model is additive in the sense that h(y | x) = h0(y) +

∑J
j=1 hj(y | xj). The partial

transformation functions hj are plotted in Figure 16.

bbs(age) 101
bbs(waistcirc) 178
bbs(hipcirc) 145
bbs(elbowbreadth) 72
bbs(kneebreadth) 156
bbs(anthro3a) 4
bbs(anthro3b) 117
bbs(anthro3c) 187
bbs(anthro4) 40

For five selected observations, the conditional distribution of body fat mass is shown in Fig-
ure 17. The blue dots indicate the actual observations.
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Figure 9: Birth Weight Prediction. Partial contributions to additive predictor β(x).
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Figure 10: Birth Weight Prediction. Baseline transformation.
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Figure 12: Body Fat Mass. Out-of-sample log-likelihood (centered by out-of-sample log-
likelihood of unconditional model).

2.4. CAO/ARO/AIO-04 DFS

The response is the disease-free survival time of rectal cancer patients from the CAO/ARO/AIO-
04 randomised controlled clinical trial (Rödel et al. 2015). For N = 1153 patients, 18 (3
numeric and 15 categorical) baseline predictors are available.
We start with an unconditional Cox model (FZ = 1−exp(− exp()) and a Bernstein polynomial
of order six):

R> m_mlt <- Coxph(DFS ~ 1, data = ldata, prob = c(0, .9))
R> logLik(m_mlt)

'log Lik.' -3088.753 (df=7)

The corresponding unconditional distribution is depicted in Figure 19.
Model evaluation (Figure 18) indicated that a linear model for β(x) had the best performance,
this model was fitted using

R> fm_glm[["stm"]]
R> bm <- stmboost(m_mlt, formula = fm_glm[["stm"]], data = ldata,
+ method = quote(mboost::mboost))[963]



Hothorn 13

Body Fat Mass (in kilogram)

D
en

si
ty

10 20 30 40 50 60

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Figure 13: Body Fat Mass. Unconditional response distribution.
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Figure 14: Body Fat Mass. In-sample log-likelihood maximisation.
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Figure 15: Body Fat Mass. Probability-integral transform QQ-plot.

This is, in fact, a linear Cox model which could have also been fitted using

R> bmCoxPH <- mboost(fm_glm[["stm"]], data = ldata, family = CoxPH())[963]

2.5. Childhood Malnutrition

The aim is to predict childhood malnutrition, here measured as stunting, that is, insufficient
height for age. The data for N = 24166 children from India were compiled by Fenske et al.
(2011) and include 20 (6 numeric and 14 categorical) predictors.
We start with an unconditional model (using FZ = Φ and an Bernstein polynomial of order
six):

R> m_mlt <- BoxCox(stunting ~ 1, data = ldata, prob = c(.05, .975), extrapolate = TRUE)
R> logLik(m_mlt)

'log Lik.' -157843.8 (df=7)
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Figure 16: Body Fat Mass. Scatterplots of all predictor variables and the response, overlaid
with partial transformation functions.
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Figure 17: Body Fat Mass. Conditional response distribution.

The corresponding unconditional distribution is depicted in Figure 21.
Model evaluation indicated that a tree-based model for ϑ(x) had the best performance; this
model was fitted using

R> fm_tree
R> bm <- ctmboost(m_mlt, formula = fm_tree, data = ldata,
+ method = quote(mboost::blackboost))[515]

2.6. Head Circumference
The Fourth Dutch Growth Study (Fredriks et al. 2000) is a cross-sectional study that measures
growth and development of the Dutch population between the ages of 0 and 22 years. The
study measured, among other variables, head circumference (HC) and age of 7482 males
and 7018 females. Stasinopoulos and Rigby (2007) analysed the head circumference of 7040
males with explanatory variable age using a GAMLSS model with a Box-Cox t distribution
describing the first four moments of head circumference conditionally on age. The models
show evidence of kurtosis, especially for older boys.
We start with an unconditional model (using FZ = Φ and an Bernstein polynomial of order
six):

R> m_mlt <- BoxCox(head ~ 1, data = ldata)
R> logLik(m_mlt)

'log Lik.' -21182.17 (df=7)

Model evaluation (Figure 22) indicated that an additive smooth model for ϑ(x) had the best
performance; this model was fitted using
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Figure 18: CAO/ARO/AIO-04 DFS. Out-of-sample log-likelihood (centered by out-of-sample
log-likelihood of unconditional model).

R> fm_gam[["ctm"]]

head ~ bbs(lage)

R> bm <- ctmboost(m_mlt, formula = fm_gam[["ctm"]], data = ldata,
+ method = quote(mboost::mboost))[1000]

The in-sample log-likelihood is shown in Figure 23 and a QQ-plot based on the probability-
integral transform in Figure 24.
Figure 25 shows the model as a growth curve model. The observations are overlaid with
quantile curves obtained via inversion of the estimated conditional distributions. The figure
can be directly compared with Figure 16 of Stasinopoulos and Rigby (2007) (the quantile
curves in these two plots are essentially equivalent) and also indicates a certain asymmetry
towards older boys.

2.7. PRO-ACT ALSFRS

This data origines from the PRO-ACT Prize4Life challenge 2012 (http://prize4life.org.
il/en/prediction-prize/), comprising clinical trials data from N = 1013 patients suffer-
ing Amypthropic Lateral Sclerosis (ALS). The response is the ALS-Functional Rating Scale

http://prize4life.org.il/en/prediction-prize/
http://prize4life.org.il/en/prediction-prize/
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Figure 19: CAO/ARO/AIO-04 DFS. Unconditional response distribution.

(ALSFRS) six months after diagnosis. For each patient, 59 (43 numeric and 16 categorical)
predictors are available. An overview on the challenge and winning algorithms is available
from Küffner et al. (2015).
The response is an ordinal variable, ranging from 0 to 40. We start with an unconditional
proportional odds model featuring a continuous basis transformation of the response (FZ =
expit and a Bernstein polynomial of order six):

R> m_mlt <- Colr(ALSFRS.halfYearAfter ~ 1, data = ldata, prob = c(.05, .9), extrapolate = TRUE)
R> logLik(m_mlt)

'log Lik.' -3416.895 (df=7)

The corresponding unconditional distribution is depicted in Figure 27.
Model evaluation (Figure 26) indicated that a linear model for β(x) (also known as “distri-
bution regression”) had the best performance; this model was fitted using

R> bm <- ctmboost(m_mlt, formula = fm_glm[["ctm"]], data = ldata,
+ method = quote(mboost::mboost))[613]

The in-sample log-likelihood is shown in Figure 28.
Time since onset and ALSFRS at time of diagnosis are the two most important variables
(roughly assessed by the selection frequency):

bols(time_onset_treatment, df = 2)
119

bols(ALSFRS.Start, df = 2)
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Figure 20: Childhood Malnutrition. Out-of-sample log-likelihood (centered by out-of-sample
log-likelihood of unconditional model).
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bols(sex, df = 2)
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bols(age, df = 2)
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bols(height, df = 2)

20
bols(atrophy, df = 2)

5
bols(fasciculations, df = 2)

5
bols(speech, df = 2)

15
bols(stiffness, df = 2)

1
bols(swallowing, df = 2)
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Figure 21: Childhood Malnutrition. Unconditional response distribution.
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Figure 22: Head Circumference. Out-of-sample log-likelihood (centered by out-of-sample
log-likelihood of unconditional model).
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bols(value_red_blood_cells_rbc, df = 2)
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2
bols(value_creatinine, df = 2)
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bols(value_total_cholesterol, df = 2)
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Figure 23: Head Circumference. In-sample log-likelihood maximisation.

6
bols(value_triglycerides, df = 2)

3

The response-varying coefficients for these two variables are given in Figure 29.

2.8. PRO-ACT OS

Overall survival data from ALS patients were compiled from the PRO-ACT database by
Seibold et al. (2017). For each of N = 2711 patients, 19 (3 numeric and 16 categorical)
predictors are available.
We start with an unconditional Cox model (FZ = 1−exp(− exp()) and a Bernstein polynomial
of order six):

R> m_mlt <- Coxph(y ~ 1, data = ldata)
R> logLik(m_mlt)

'log Lik.' -6827.902 (df=7)

The corresponding unconditional distribution is depicted in Figure 31.
Model evaluation indicated that tree-based model for β(x) had the best performance; this
model was fitted using

R> fm_tree
R> bm <- stmboost(m_mlt, formula = fm_tree, data = ldata,
+ control = boost_control(nu = 0.01),
+ method = quote(mboost::blackboost))[451]
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Figure 24: Head Circumference. Probability-integral transform QQ-plot.

This model is roughly equivalent to a boosted Cox-model using trees as baselearners:

R> blackboost(fm_tree, data = ldata, family = CoxPH())

3. Artificial Data Generating Processes

3.1. Simulation Models

Data were generated based on two groups and one numeric predictor variable x ∈ [0, 1] based
on transformation models of the form

P(Y ≤ y | Group, x) = Φ(h(y | Group, x))

where the conditional transformation function h(y | Group, x) = Φ−1(P(Y ≤ y | Group, x))
for four data generating processes is given in Table 1.
General parameters of the simulation were defined as



24 The tbm Package

Figure 25: Head Circumference. Observed head circumference and age for 7040 boys with
estimated quantile curves for τ = 0.04, 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98, 0.996.

DGP Φ−1(P(Y ≤ y | Group 1, x)) Φ−1(P(Y ≤ y | Group 2, x))
Linear β(x) hY (y)− 2x hY (y) + 2− x
Nonlinear β(x) hY (y)− 2g(x) hY (y) + 2− g(x)
Linear ϑ(x) hY (y)− β1(y)− β2(y)x hY (y) + β1(y)− (β2(y) + β3(y))x
Nonlinear ϑ(x) hY (y)− β1(y)− β2(y)g(x) hY (y) + β1(y)− (β2(y) + β3(y))g(x)

Table 1: Artificial Data Generating Processes (DGPs). Description of four simulation models.
g(x) = sin(2πx)(1 + x), hY , β1, β2, β3 are Bernstein polynomials of order six.

R> library("tram")
R> ### set-up RNG
R> set.seed(27031105)
R> ### order of Bernstein polynomials
R> order <- 6
R> ### support of distributions
R> sup <- c(-4, 6)
R> ### bounds (essentially for plots)
R> bds <- c(-8, 8)
R> ### shift effects: main effect of grp, x, and interaction effect
R> beta <- c(-2, 2, -1)

Group information and x along with g(x) was generated via

R> ### two groups
R> grp <- gl(2, 1)
R> ### uniform predictor
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Figure 26: PRO-ACT ALSFRS. Out-of-sample log-likelihood (centered by out-of-sample log-
likelihood of unconditional model).

R> x <- seq(from = 0, to = 1, length.out = 1000)
R> d <- expand.grid(grp = grp, x = x)
R> ### transformation of x: sin(2 pi x) (1 + x)
R> d$g <- with(d, sin(x * 2 * pi) * (1 + x))
R> ### generate some response (this is NOT the
R> ### response used for the simulations)
R> X <- model.matrix(~ grp * x, data = d)[,-1]
R> d$y <- rnorm(nrow(d), mean = X %*% beta)

For the first model (“Linear β(x)”), the baseline transformation hY is a nonlinear function,
parameterised as a Bernstein polynomial with the following coefficients

R> ### h_Y
R> (cf0 <- seq(from = sup[1], to = sup[2], length = order + 1) +
+ sin(seq(from = 0, to = 2*pi, length = order + 1)) *
+ (seq(from = 0, to = 2*pi, length = order + 1) <= pi) * 2)

[1] -4.0000000 -0.6012825 1.0653841 1.0000000 2.6666667 4.3333333
[7] 6.0000000

R> m1 <- BoxCox(y ~ grp * x, data = d, order = order,
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Figure 27: PRO-ACT ALSFRS. Unconditional response distribution.
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Figure 28: PRO-ACT ALSFRS. In-sample log-likelihood maximisation.
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Figure 29: PRO-ACT ALSFRS. Response-varying coefficients.

+ model_only = TRUE, support = sup, bounds = bds)
R> cf <- coef(m1)
R> (cf[] <- c(cf0, beta))

[1] -4.0000000 -0.6012825 1.0653841 1.0000000 2.6666667 4.3333333
[7] 6.0000000 -2.0000000 2.0000000 -1.0000000

R> coef(m1) <- cf

The linear part simply consists of a main effect of group, a main effect of x and an interaction
effect. This is a linear transformation model with nonnormal response.
The second model (“Nonlinear β(x)”) is based on the same coefficients, however, after the
transformation g(x)

R> m2 <- BoxCox(y ~ grp * g, data = d, order = order,
+ model_only = TRUE, support = sup, bounds = bds)
R> cf <- coef(m2)
R> cf[] <- c(cf0, beta)
R> coef(m2) <- cf

The third model (“Linear ϑ(x)”) is a distribution regression model featuring response-varying
coefficients:

R> m3 <- BoxCox(y | grp * x ~ 1, data = d, order = order,
+ model_only = TRUE, support = sup, bounds = bds)
R> cf <- coef(m3)
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Figure 30: PRO-ACT OS. Out-of-sample log-likelihood (centered by out-of-sample log-
likelihood of unconditional model).

R>
R> ### beta_1
R> (cf1 <- sin(seq(from = 0, to = pi / 2, length.out = order + 1)) * beta[1])

[1] 0.0000000 -0.5176381 -1.0000000 -1.4142136 -1.7320508 -1.9318517
[7] -2.0000000

R> ### beta_2
R> (cf2 <- sqrt(seq(from = 0, to = 2, length.out = order + 1)) / sqrt(2) * beta[2])

[1] 0.0000000 0.8164966 1.1547005 1.4142136 1.6329932 1.8257419 2.0000000

R> ### beta_3
R> (cf21 <- sin(seq(from = 0, to = pi / 2, length.out = order + 1)) * beta[3])

[1] 0.0000000 -0.2588190 -0.5000000 -0.7071068 -0.8660254 -0.9659258
[7] -1.0000000

R> cf[] <- c(cf0, cf1, cf2, cf21)
R> coef(m3) <- cf
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Figure 31: PRO-ACT OS. Unconditional response distribution.

In the last model (“Nonlinear ϑ(x)”), the same response-varying coefficients are used after
the transformation g(x):

R> m4 <- BoxCox(y | grp * g ~ 1, data = d, order = order,
+ model_only = TRUE, support = sup, bounds = bds)
R> cf <- coef(m4)
R>
R> cf[] <- c(cf0, cf1, cf2, cf21)
R> coef(m4) <- cf

The conditional transformation functions are depicted in Figure 32.
Samples from the conditional distributions described by these four models were drawn as
follows:

R> y1 <- simulate(m1, newdata = d, n = 100)
R> y2 <- simulate(m2, newdata = d, n = 100)
R> y3 <- simulate(m3, newdata = d, n = 100)
R> y4 <- simulate(m4, newdata = d, n = 100)

For each combination of data generating process, sample size (N = 75, 150, 300), number
of additional uninformative predictor variables (J+ = 0, 5, 25), two choices of FZ (standard
normal and standard logistic in the specification of the boosting procedure, the data were
always generated using FZ = Φ), and two choices of the order of the Bernstein polynomials
(six and 12, also only for the specification of the boosting procedures ), the out-of-sample
log-likelihood was estimated for 100 simulation runs. Very extreme outliers (centered log-
likelihoods smaller than −105) were not drawn.
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Figure 32: Artificial Data Generating Processes. Conditional transformation functions h(y |
Group, x) given two groups (left and right panel) and x ∈ [0, 1] (grey color coding) for four
different types of transformation models.
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3.2. Results

The following figures depict the out-of-sample log-likelihoods (centered by the out-of-sample
log-likelihood of the true model) for each combination of distribution function FZ , number of
additional noninformative uniform predictors J+, and order M of the Bernstein polynomial.
The panels correspond to the different DGPs (columns) and sample sizes (rows). Abbrevia-
tions of the boosting procedures and basis functions used are given at the x-axis. The boxplot
of the best performing model is highlighted in yellow.
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