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Abstract

This introduction to the R package evtree is a (slightly) modified version of Grubinger,
Zeileis, and Pfeiffer (2014), published in the Journal of Statistical Software.

Commonly used classification and regression tree methods like the CART algorithm
are recursive partitioning methods that build the model in a forward stepwise search.
Although this approach is known to be an efficient heuristic, the results of recursive tree
methods are only locally optimal, as splits are chosen to maximize homogeneity at the
next step only. An alternative way to search over the parameter space of trees is to
use global optimization methods like evolutionary algorithms. This paper describes the
evtree package, which implements an evolutionary algorithm for learning globally optimal
classification and regression trees in R. Computationally intensive tasks are fully computed
in C++ while the partykit package is leveraged for representing the resulting trees in R,
providing unified infrastructure for summaries, visualizations, and predictions. evtree
is compared to the open-source CART implementation rpart, conditional inference trees
(ctree), and the open-source C4.5 implementation J48. A benchmark study of predictive
accuracy and complexity is carried out in which evtree achieved at least similar and
most of the time better results compared to rpart, ctree, and J48. Furthermore, the
usefulness of evtree in practice is illustrated in a textbook customer classification task.

Keywords: machine learning, classification trees, regression trees, evolutionary algorithms, R.

1. Introduction

Classification and regression trees are commonly applied for exploration and modeling of
complex data. They are able to handle strongly nonlinear relationships with high order
interactions and different variable types. Commonly used classification and regression tree al-
gorithms, including CART (Breiman, Friedman, Olshen, and Stone 1984) and C4.5 (Quinlan
1993), use a greedy heuristic, where split rules are selected in a forward stepwise search for
recursively partitioning the data into groups. The split rule at each internal node is selected
to maximize the homogeneity of its child nodes, without consideration of nodes further down
the tree, hence yielding only locally optimal trees. Nonetheless, the greedy heuristic is com-
putationally efficient and often yields reasonably good results (Murthy and Salzberg 1995).
However, for some problems, greedily induced trees can be far from the optimal solution, and
a global search over the tree’s parameter space can lead to much more compact and accurate
models.
The main challenge in growing globally optimal trees is that the search space is typically
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huge, rendering full-grid searches computationally infeasible. One possibility to solve this
problem is to use stochastic optimization methods like evolutionary algorithms. In practice,
however, such stochastic methods are rarely used in decision tree induction. One reason
is probably that they are computationally much more demanding than a recursive forward
search but another one is likely to be the lack of availability in major software packages. In
particular, while there are several packages for R (R Core Team 2014) providing forward-
search tree algorithms, there is only little support for globally optimal trees. The former
group of packages includes (among others) rpart (Therneau and Atkinson 1997), the open-
source implementation of the CART algorithm; party, containing two tree algorithms with
unbiased variable selection and statistical stopping criteria (Hothorn, Hornik, and Zeileis
2006; Zeileis, Hothorn, and Hornik 2008); and RWeka (Hornik, Buchta, and Zeileis 2009),
the R interface to Weka (Witten and Frank 2011) with open-source implementations of tree
algorithms such as J48 and M5P, which are the open source implementation of C4.5 and M5,
respecitively (Quinlan 1992). A notable exception is the LogicReg package (Kooperberg and
Ruczinski 2013) for logic regression, an algorithm for globally optimal trees based on binary
covariates only and using simulated annealing. Furthermore, the GA package Scrucca (2013)
provides a collection of general purpose functions, which allows the application of a wide
range of genetic algorithm methods. See Hothorn (2014) for an overview of further recursive
partitioning packages for R.

To fill this gap, we introduce a new R package evtree, available from the Comprehensive R
Archive Network at http://CRAN.R-project.org/package=evtree, providing evolutionary
methods for learning globally optimal classification and regression trees. Generally speak-
ing, evolutionary algorithms are inspired by natural Darwinian evolution employing concepts
such as inheritance, mutation, and natural selection. They are population-based, i.e., a whole
collection of candidate solutions – trees in this application – is processed simultaneously and
iteratively modified by variation operators called mutation (applied to single solutions) and
crossover (merging different solutions). Finally, a survivor selection process favors solutions
that perform well according to some quality criterion, usually called fitness function or eval-
uation function. In this evolutionary process the mean quality of the population increases
over time (Bäck 1996; Eiben and Smith 2007). In the case of learning decision trees, this
means that the variation operators can be applied to modify the tree structure (e.g., number
of splits, splitting variables, and corresponding split points etc.) in order to optimize a fitness
function such as the misclassification or error rate penalized by the complexity of the tree. A
notable difference to comparable algorithms is the survivor selection mechanism where it is
important to avoid premature convergence. In the following, we use a steady state algorithm
with deterministic crowding (Mahfoud 1992). Here, each parent solution competes with its
most similar offspring for a place in the population. In this way, a fast convergence to similar
solutions is avoided and the diversity of candidate solutions is maintained. Furthermore, the
applied survivor selection mechanism can be argued to offer computational advantages for
the application to classification and regression trees.

Classification and regression tree models are widely used and are especially attractive for many
applications, as tree-structured models offer a compact and intuitive representation that can
be easily interpreted by practitioners. The goal of evtree is to maintain this simple tree struc-
ture and offer better performance (in terms of predictive accuracy and/or complexity) than
commonly-used recursive partitioning algorithms. However, in cases where the interpretation
of the model is not important, other “black-box” methods including support vector machines
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(SVM; Vapnik 1995) and tree ensemble methods like random forests (Breiman 2001) typically
offer better predictive performance (Caruana and Niculescu-Mizil 2006; Hastie, Tibshirani,
and Friedman 2009).
The remainder of this paper is structured as follows: Section 2 describes the problem of
learning globally optimal decision trees and contrasts it to the locally optimal forward-search
heuristic that is utilized by recursive partitioning algorithms. Section 3 introduces the evtree
algorithm before Section 4 addresses implementation details along with an overview of the im-
plemented functions. A benchmark comparison – comprising 14 benchmark datasets, 3 real-
world datasets, and 3 simulated scenarios – is carried out in Section 5, showing that the
predictive performance of evtree is often significantly better compared to the commonly
used algorithms rpart (from the rpart package), ctree (from the party package) and J48
(from the RWeka interface to Weka). Section 6 investigates how the choice of the user-defined
hyperparameters influences evtree’s classification performance. Finally, Section 7 gives con-
cluding remarks about the implementation and the performance of the new algorithm.

2. Globally and locally optimal decision trees
Classification and regression tree analysis aims at modeling a response variable Y by a vector
of P predictor variables X = (X1, ..., XP ) where for classification trees Y is qualitative and
for regression trees Y is quantitative. Tree-based methods first partition the input space X
into a set of M rectangular regions Rm (m = 1, ...,M) then fit a (typically simple) model
within each region {Y |X ∈ Rm}, e.g., the mean, median, or variance etc. Typically, the mode
is used for classification trees and the arithmetic mean is employed for regression trees.
To show why forward-search recursive partitioning algorithms typically lead to globally sub-
optimal solutions, their parameter spaces and optimization problems are presented and con-
trasted in a unified notation. Although all arguments hold more generally, only binary tree
models with some maximum number of terminal nodesMmax are considered. Both restrictions
make the notation somewhat simpler while not really restricting the problem: (a) Multiway
splits are equivalent to a sequence of binary splits in predictions and number of resulting
subsamples; (b) the maximal size of the tree is always limited by the number of observations
in the learning sample.
In the following, a binary tree model with M terminal nodes (which consequently has M − 1
internal splits) is denoted by

θ = (v1, s1, ..., vM−1, sM−1), (1)

where vr ∈ {1, . . . , P} are the splitting variables and sr the associated split rules for the
internal nodes r ∈ {1, ...,M − 1}. Depending on the domain of Xvr , the split rule sr contains
either a cutoff (for ordered and numeric variables) or a non-empty subset of {1, . . . , c} (for
a categorical variable with c levels), determining which observations are sent to the first or
second subsample. In the former case, there are u − 1 possible split rules if Xvr takes u
distinct values; and in the latter case, there are 2c−1 − 1 possible splits. Thus, the product
of all of these combinations forms all potential elements θ from ΘM , the space of conceivable
trees with M terminal nodes. The overall parameter space is then Θ = ⋃Mmax

M=1 ΘM (which in
practice is often reduced by excluding elements θ resulting in too small subsamples etc.).
Finally, f(X, θ) denotes the prediction function based on all explanatory variables X and the
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chosen tree structure θ from Equation 1. As pointed out above, this is typically constructed
using the means or modes in the respective partitions of the learning sample.

2.1. The parameter space of globally optimal decision trees

As done by Breiman et al. (1984), let the complexity of a tree be measured by a function of
the number of terminal nodes, without further considering the depth or the shape of trees.
The goal is then to find that classification and regression tree which optimizes some tradeoff
between prediction performance and complexity:

θ̂ = argmin
θ∈Θ

loss{Y, f(X, θ)} + comp(θ). (2)

where loss(·, ·) is a suitable loss function for the domain of Y ; typically, the misclassification
(MC) rate and the mean squared error (MSE) are employed for classification and regression,
respectively. The function comp(·) is a function that is monotonically non-decreasing in the
number of terminal nodes M of the tree θ, thus penalizing more complex models in the tree
selection process. Note that finding θ̂ requires a search over all ΘM .
The parameter space Θ becomes large for already medium sized problems and a complete
search for larger problems is computationally intractable. In fact, Hyafil and Rivest (1976)
showed that building optimal binary decision trees, such that the expected number of splits
required to classify an unknown sample is minimized, is NP-complete. Zantema (2000) proved
that finding a decision tree of minimal size that is decision-equivalent to a given decision tree
is also NP-hard. As a consequence the search space is usually limited by heuristics.

2.2. The parameter space of locally optimal decision trees

Instead of searching all combinations in Θ simultaneously, recursive partitioning algorithms
only consider one split at a time. At each internal node r ∈ {1, ...,M − 1}, the split variable
vr and the corresponding split point sr are selected to locally minimize the loss function.
Starting with an empty tree θ0 = (∅), the tree is first grown recursively and subsequently
pruned to satisfy the complexity tradeoff:

θ̃r = argmin
θ=θr−1∪(vr,sr)

loss{Y, f(X, θ)} (r = 1, . . . ,Mmax − 1), (3)

θ̃ = argmin
θ̃r

loss{Y, f(X, θ̃r)} + comp(θ̃r). (4)

For nontrivial problems, forward-search recursive partitioning methods only search a small
fraction of the global search space (v1, s1, . . . , vMmax−1, sMmax−1). They only search each
(vr, sr) once, and independently of the subsequent split rules, hence typically leading to a
globally suboptimal solution θ̃.
Note that the notation above uses an exhaustive search for the r-th split, jointly over (vr, sr),
as is employed in CART or C4.5. So-called unbiased recursive partitioning techniques modify
this search by first selecting the variable vr using statistical significance tests and subsequently
selecting the optimal split sr for that particular variable. This approach is used in conditional
inference trees (see Hothorn et al. 2006, for references to other algorithms) and avoids selecting
variables with many potential splits more often than those with fewer potential splits.
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Figure 1: Class distribution of the (X1, X2)-plane. The two classes are indicated by black
circles and gray crosses.

2.3. An illustration of the limitations of locally optimal decision trees

A very simple example that illustrates the limitation of forward-search recursive partitioning
methods is depicted in Figure 1. The example only contains two independent variables and
can be solved with three splits that partition the input space into four regions. As expected
the recursive partitioning methods rpart, ctree, and J48 fail to find any split at all, as the
loss function on the resulting subsets cannot be reduced by the first split. For methods that
explore Θ in a more global fashion it is straightforward to find an optimal solution to this
problem. One solution is the tree constructed by evtree:

Model formula:
Y ~ X1 + X2

Fitted party:
[1] root
| [2] X1 < 1.25
| | [3] X2 < 1.25: X (n = 4, err = 0.0%)
| | [4] X2 >= 1.25: O (n = 4, err = 0.0%)
| [5] X1 >= 1.25
| | [6] X2 < 1.25: O (n = 4, err = 0.0%)
| | [7] X2 >= 1.25: X (n = 4, err = 0.0%)

Number of inner nodes: 3
Number of terminal nodes: 4

All instances are classified correctly. Each of the terminal nodes 3 and 7 contain four instances
of the class X. Four instances of class O are assigned to each of the terminal nodes 4 and 6.



6 evtree: Evolutionary Learning of Globally Optimal Trees in R

2.4. Approaches for learning globally optimal decision trees

When compared with the described forward stepwise search, a less greedy approach is to
calculate the effects of the split rules deeper down in the tree. In this way optimal trees can
be found for simple problems. However, split selection at a given node in Equation 3 has
complexity O(PN) (if all P variables are numeric/ordered with N distinct values). Through
a global search up to D levels – i.e., corresponding to a full binary tree withM = 2D terminal
nodes – the complexity increases to O(PDND) (Papagelis and Kalles 2001). One conceivable
compromise between these two extremes is to look ahead d steps with 1 < d < D (see e.g.,
Esmeir and Markovitch 2007), also yielding a locally optimal tree but less constrained than
that from a 1-step-ahead search.
Another class of algorithms is given by stochastic optimization methods that, given an initial
tree, seek improved solutions through stochastic changes to the tree structure. Thus, these
algorithms try to explore the full parameter space Θ but cannot be guaranteed to find the
globally optimal solution but only an approximation thereof. Besides evolutionary algorithms
(Koza 1991), Bayesian CART (Denison, Mallick, and Smith 1998), and simulated annealing
(Sutton 1991) were used successfully to solve difficult classification and regression tree prob-
lems. Koza (1991) first formulated the concept of using evolutionary algorithms as a stochastic
optimization method to build classification and regression trees. Papagelis and Kalles (2001)
presented a classification tree algorithm and provided results on several datasets from the
UCI machine learning repository (Bache and Lichman 2013). Another method for the con-
struction of classification and regression trees via evolutionary algorithms was introduced by
Gray and Fan (2008) and Fan and Gray (2005), respectively. Cantu-Paz and Kamath (2003)
used an evolutionary algorithm to induce so-called oblique classification trees. An up-to-date
survey of evolutionary algorithms for classification and regression tree induction is provided
by Barros, Basgalupp, de Carvalho, and Freitas (2012). A comprehensive survey on the ap-
plication of genetic programming to classification problems – including classification trees –
can be found in (Espejo, Ventura, and Herrera 2010).

3. The evtree algorithm
The general framework of evolutionary algorithms emerged from different representatives.
Holland (1992) called his method genetic algorithms, Rechenberg (1973) invented evolution
strategies, and Fogel, Owens, and Walsh (1966) introduced evolutionary programming. More
recently, Koza (1992) introduced a fourth stream and called it genetic programming. All four
representatives only differ in the technical details, for example the encoding of the individual
solutions, but follow the same general outline (Eiben and Smith 2007). Evolutionary algo-
rithms are being increasingly widely applied to a variety of optimization and search problems.
Common areas of application include data mining (Freitas 2003; Cano, Herrera, and Lozano
2003), statistics (de Mazancourt and Calcagno 2010), signal and image processing (Man,
Tang, Kwong, and Halang 1997), and planning and scheduling (Jensen 2003).
The pseudocode for the general evolutionary algorithm is provided in Table 1. In the context
of classification and regression trees, all individuals from the population (of some given size)
are θs as defined in Equation 1. The details of their evolutionary selection is given below
following the general outline displayed in Table 1.
As pointed out in Section 2, some elements θ ∈ Θ are typically excluded in practice to satisfy
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1. Initialize the population.

2. Evaluate each individual.

3. While(termination condition is not satisfied) do:

a. Select parents.
b. Alter selected individuals via variation operators.
c. Evaluate new solutions.
d. Select survivors for the next generation.

Table 1: Pseudocode of the general evolutionary algorithm.

minimal subsample size requirements. In the following, the term invalid node refers to such
excluded cases, not meeting sample size restrictions.

3.1. Initialization

Each tree of the population is initialized with a valid, randomly generated, split rule in the
root node. First, v1 is selected with uniform probability from 1, ..., P . Second, a split point
s1 is selected. If Xv1 is numeric or ordinal with u unique values, a split point s1 is selected
with uniform probability from the u − 1 possible split points of Xv1 . If Xv1 is nominal and
has c categories, each k = 1, ..., c has a probability of 50% to be assigned to the left or the
right daughter node. In cases where all k are allocated to the same terminal node, one of
the c categories is allocated to the other terminal node, to have the effect of ensuring both
terminal nodes are nonempty. If this procedure results in a non-valid split rule, the two steps
of random split variable selection and split point selection are repeated. With the definition
of r = 1 (the root node) and the selection of v1 and s1, the initialization is complete and each
individual of the population of trees is of type θ1 = (v1, s1).

3.2. Parent selection

In every iteration, each tree is selected once to be modified by one of the variation operators.
In cases where the crossover operator is applied, the second parent is selected randomly
from the remaining population. In this way, some trees are selected more than once in each
iteration.

3.3. Variation operators

Four types of mutation operators and one crossover operator are utilized by our algorithm.
In each modification step, one of the variation operators is randomly selected for each tree.
The mutation and crossover operators are described below.
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Split
Split selects a random terminal-node and assigns a valid, randomly generated, split rule to
it. As a consequence, the selected terminal node becomes an internal node r and two new
terminal nodes are generated.
The search for a valid split rule is conducted as in Section 3.1 for a maximum of P iterations.
In cases where no valid split rule can be assigned to internal node r, the search for a valid
split rule is carried out on another randomly selected terminal node. If, after 10 attempts,
no valid split rule can be found, then θi+1 = θi. Otherwise, the set of parameters in iteration
i+ 1 are given by θi+1 = θi ∪ (vr, sr).

Prune
Prune chooses a random internal node r, where r > 1, which has two terminal nodes as
successors and prunes it into a terminal node. The tree’s parameters at iteration i + 1 are
θi+1 = θi \ (vr, sr). If θi only comprises one internal node, i.e., the root node, then θi+1 = θi
and no pruning occurs.

Major split rule mutation
Major split rule mutation selects a random internal node r and changes the split rule, defined
by the corresponding split variable vr, and the split point sr. With a probability of 50%, a
value from the range 1, ..., P is assigned to vr. Otherwise vr remains unchanged and only sr
is modified. Again, depending on the domain of Xvr , either a random split point from the
range of possible values of Xvr is selected, or a non-empty set of categories is assigned to each
of the two terminal nodes. If the split rule at r becomes invalid, the mutation operation is
reversed and the procedure, starting with the selection of r, is repeated for a maximum of
3 attempts. Subsequent nodes that become invalid are pruned.
If no pruning occurs, θi and θi+1 contain the same set of parameters. Otherwise, the set of
parameters (vm1 , sm1 , ..., vmf

, smf
), corresponding to invalid nodes, is removed from θi. Thus,

θi+1 = θi \ (vm1 , sm1 , ..., vmf
, smf

).

Minor split rule mutation
Minor split rule mutation is similar to the major split rule mutation operator. However, it
does not alter vr and only changes the split point sr by a minor degree, which is defined by
one of the following 4 cases:

• Xvr is numerical or ordinal and has at least 20 unique values: The split point sr is
randomly shifted by a non-zero number of unique values of Xvr that is not larger than
10% of the range of unique values.

• Xvr is numerical or ordinal and has less than 20 unique values: The split point is
changed to the next larger, or the next lower, unique value of Xvr .

• Xvr is nominal and has at least 20 categories: At least one and at most 10% of the
variable’s categories are changed.

• Xvr is nominal and has less than 20 categories: One of the categories is randomly
modified.
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In cases where subsequent nodes become invalid, further split points are searched that preserve
the tree’s topology. After five non-successful attempts at finding a topology preserving split
point, the non-valid nodes are pruned.
Equivalently to the major split rule mutation operator the subsequent solution θi+1 = θi \
(vm1 , sm1 , ..., vmf

, smf
).

Crossover

Crossover exchanges, randomly selected, subtrees between two trees. Let θ1
i and θ2

i be the two
trees chosen from the population for crossover. First, two internal nodes r1 and r2 are selected
randomly from θ1

i and θ2
i , respectively. Let sub1(θji , rj) denote the subtree of θji rooted by

rj (j = 1, 2), i.e., the tree containing rj and its descendant nodes. Then, the complementary
part of θji can be defined as sub2(θji , rj) = θji \ sub1(θji , rj). The crossover operator creates
two new trees θ1

i+1 = sub2(θ1
i , r1) ∪ sub1(θ2

i , r2) and θ2
i+1 = sub2(θ2

i , r2) ∪ sub1(θ1
i , r1). If

the crossover creates some invalid nodes in either one of the new trees θ1
i+1 or θ2

i+1, they are
omitted.

3.4. Evaluation function

The evaluation function represents the requirements to which the population should adapt.
In general, these requirements are formulated by Equation 2. A suitable evaluation function
for classification and regression trees maximizes the models’ accuracy on the training data,
and minimizes the models’ complexity. This subsection describes the currently implemented
choices of evaluation functions for classification and for regression.

Classification

The quality of a classification tree is most commonly measured as a function of its misclassi-
fication rate (MC) and the complexity of a tree by a function of the number of its terminal
nodes M . evtree uses 2N · MC(Y, f(X, θ)) as the loss function. The number of terminal
nodes, weighted by logN and a user-specified parameter α, measures the complexity of trees.

loss(Y, f(X, θ)) = 2N ·MC(Y, f(X, θ))

= 2 ·
N∑
n=1

I(Yn 6= f(X·n, θ)), (5)

comp(θ) = α ·M · logN.

With these particular choices, Equation 2 seeks trees θ̂ that minimize the misclassification
loss at a BIC-type tradeoff with the number of terminal nodes.
Other, existing and commonly used choices of evaluation functions include the Bayesian in-
formation criterion (BIC, as in Gray and Fan 2008) and minimum description length (MDL,
as in Quinlan and Rivest 1989). For both evaluation functions deviance is used for accuracy
estimation. Deviance is usually preferred over the misclassification rate in recursive partition-
ing methods, as it is more sensitive to changes in the node probabilities (Hastie et al. 2009,
pp. 308–310). However, this is not necessarily an advantage for global tree building methods
like evolutionary algorithms.
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Regression

For regression trees, accuracy is usually measured by the mean squared error (MSE). Here,
it is again coupled with a BIC-type complexity measure:
Using N · log MSE as a loss function and α · 4 · (M + 1) · logN as the complexity part, the
general formulation of the optimization problem in can be rewritten as:

loss(Y, f(X, θ)) = N log MSE(Y, f(X, θ))

= N log
{

N∑
n=1

(Yn − f(X·n, θ))2
}
, (6)

comp(θ) = α · 4 · (M + 1) · logN.

Here,M+1 is the effective number of estimated parameters, taking into account the estimates
of a mean parameter in each of the terminal nodes and the constant error variance term. With
α = 0.25 the criteria is, up to a constant, equivalent to the BIC used by Fan and Gray (2005).
However, the effective number of parameters estimated for is actually much higher thanM+1
due to the selection of parameters in the split variable and the selection of the variable itself.
It is however unclear how these should be counted (Gray and Fan 2008; Ripley 2008, p. 222).
Therefore, a more conservative default value of α = 1 is assumed.

3.5. Survivor selection

The population size stays constant during the evolution and only a fixed subset of the candi-
date solutions can be kept in memory. A common strategy is the (µ+ λ) selection, where µ
survivors for the next generation are selected from the union of µ parents and λ offsprings.
An alternative approach is the (µ, λ) strategy where µ survivors for the next generation are
selected from λ offsprings.
Our algorithm uses a deterministic crowding approach, where each parent solution competes
with its most similar offspring for a place in the population. In the case of a mutation
operator, either the solution before modification, θi, or after modification, θi+1, is kept in
memory. In the case of the crossover operator, the initial solutions of θ1

i competes with its
subsequent solutions θ1

i+1. Correspondingly, one of the two solutions θ2
i and θ2

i+1 is rejected.
The survivor selection is done deterministically. The tree with lower fitness, according to the
evaluation function, is rejected. Note that, due to the definition of the crossover operator,
some trees are selected more than once in an iteration. Correspondingly, these trees undergo
the survival selection process more than once in an iteration.
As in classification and regression tree analysis the individual solutions are represented by
trees. This design offers computational advantages over (µ + λ) and (µ, λ) strategies. In
particular, for the application of mutation operators no new trees have to be constructed.
The tree after modification is simply accepted or reversed to the previous solution.
There are two important issues in the evolution process of an evolutionary algorithm: popu-
lation diversity and selective pressure (Michalewicz 1994). These factors are related, as with
increasing selective pressure the search is focused more around the currently best solutions.
An overly strong selective pressure can cause the algorithm to converge early in local optima.
On the other hand, an overly weak selective pressure can make the search ineffective. Using
a (µ+ λ) strategy, a strong selective pressure can occur in situations as follows. Suppose the
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b-th tree of the population is one of the fittest trees in iteration i, and in iteration i one split
rule of the b-th tree is changed only by a minor degree. Then very few instances are classified
differently and the overall misclassification might not even change. However, as the parent
and the offspring represent one of the best solutions in iteration i, they are both selected for
the subsequent population. This situation can occur frequently, especially when a fine-tuning
operator like the minor split rule mutation is used. Then, the diversity of different trees is lost
quickly and the algorithm likely terminates in a local optimum. The deterministic crowding
selection mechanism clearly avoids these situations, as only the parent or the offspring can
be part of the subsequent population.

3.6. Termination

Using the default parameters, the algorithm terminates when the quality of the best 5% of
trees stabilizes for 100 iterations, but not before 1000 iterations. If the run does not converge
the algorithm terminates after a user-specified number of iterations. In cases where the
algorithm does not converge, a warning message is written to the command line. The tree
with the highest quality according to the evaluation function is returned.

4. Implementation and application in practice
Package evtree provides an efficient implementation of an evolutionary algorithm that builds
classification trees in R. CPU- and memory-intensive tasks are fully computed in C++, while
the user interfaces and plot functions are written in R. The .C() interface (Chambers 2008)
was used to pass arguments between the two languages. evtree depends on the partykit
package (Hothorn and Zeileis 2014), which provides an infrastructure for representing, sum-
marizing, and visualizing tree-structured models.

4.1. User interface

The principal function of the evtree package is the eponymous function evtree() taking
arguments

evtree(formula, data = list(), weights = NULL, subset = NULL,
control = evtree.control(...), ...)

where formula, data, weights, and subset specify the data in the usual way, e.g., via
formula = y ~ x1 + x2. Additionally, control comprises a list of control parameters

evtree.control(minbucket = 7L, minsplit = 20L, maxdepth = 9L,
niterations = 10000L, ntrees = 100L, alpha = 1,
operatorprob = list(pmutatemajor = 0.2, pmutateminor = 0.2,

pcrossover = 0.2, psplit = 0.2, pprune = 0.2),
seed = NULL, ...)

where the parameters minbucket, minsplit, and maxdepth constrain the solution to a min-
imum number of observations in each terminal node, a minimum number of observations in
each internal node, and a maximum tree depth. Note that the memory requirements in-
crease by the square of the maximum tree depth. Parameter alpha regulates the complexity
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parameter α in Equations 5 and 6, respectively. niterations and ntrees specify the max-
imum number of iterations and the number of trees in the population, respectively. With
the argument operatorprob, user-specified probabilities for the variation operators can be
defined. For making computations reproducible, argument seed is an optional integer seed
for the random number generator (at C++ level). If not specified, the random number gen-
erator is initialized by as.integer(runif(1, max = 2^16)) in order to inherit the state of
.Random.seed (at R level). If set to -1L, the seed is initialized by the system time.
The trees computed by evtree inherit from class ‘party’ supplied by the partykit pack-
age. The methods inherited in this way include standard print(), summary(), and plot()
functions to display trees and a predict() function to compute the fitted response or node
number etc.

4.2. Case study: Customer targeting

An interesting application for classification tree analysis is target marketing, where limited
resources are aimed at a distinct group of potential customers. An example is provided by
Lilien and Rangaswamy (2004) in the Bookbinder’s Book Club marketing case study about
a (fictitious) American book club. In this case study, a brochure of the book “The Art
History of Florence” was sent to 20,000 customers, 1,806 of which bought the book. The
dataset contains a subsample of 1,300 customers with 10 explanatory variables (see Table 2)
for building a predictive model of customer choice.
Besides predictive accuracy, model complexity is a crucial issue in this application: Smaller
trees are easier to interpret and communicable to marketing experts and management pro-
fessionals. Hence, we use evtree with a maximal depth of two levels of splits only. This is
contrasted with rpart and ctree with and without such a restriction of tree depth to show
that the evolutionary search of the global parameter space can be much more effective in bal-
ancing predictive accuracy and complexity compared to forward-search recursive partitioning.
Results for J48 on this data set are not reported in detail because the tree depth is very large
(even with pruning the depth is 8) and J48 does not support restriction of the tree depth.
All trees are constrained to have a minimum number of 10 observations per terminal node.

Variable Description
choice Did the customer buy the advertised book?
amount Total amount of money spent at the book Club.
art Number of art books purchased.
child Number of children’s books purchased.
cook Number of cookbooks purchased.
diy Number of do-it-yourself books purchased.
first Number of months since the first purchase.
freq Number of books purchased at the book Club.
gender Factor indicating gender.
last Number of months since the last purchase.
youth Number of youth books purchased.

Table 2: Variables of the Bookbinder’s Book Club data.
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Additionally, a significance level of 1% is employed in the construction of conditional infer-
ence trees, which is more appropriate than the default 5% level for 1, 300 observations. To
provide uniform visualizations and predictions of the fitted models, ‘party’ objects are used
to represent all trees. For ‘rpart’ trees, partykit provides a suitable as.party() method
while a reimplementation of ctree() is provided in partykit (as opposed to the original in
party) that directly leverages the ‘party’ infrastructure.
First, the data is loaded and the forward-search trees are grown with and without depth
restriction, visualizing the unrestricted trees in Figure 2.

R> data("BBBClub", package = "evtree")
R> library("rpart")
R> rp <- as.party(rpart(choice ~ ., data = BBBClub, minbucket = 10), model = TRUE)
R> rp2 <- as.party(rpart(choice ~ ., data = BBBClub, minbucket = 10, model = TRUE,
+ maxdepth = 2))
R> ct <- ctree(choice ~ ., data = BBBClub, minbucket = 10, mincrit = 0.99)
R> ct2 <- ctree(choice ~ ., data = BBBClub, minbucket = 10, mincrit = 0.99,
+ maxdepth = 2)
R> plot(rp)
R> plot(ct)

With the objective of building a smaller, but at still accurate tree, evtree is constrained to
a maximum tree depth of 2, see Figure 3.

R> set.seed(1090)
R> ev <- evtree(choice ~ ., data = BBBClub, minbucket = 10, maxdepth = 2)

The resulting evolutionary tree is printed below and visualized in Figure 3.

R> plot(ev)
R> ev

Model formula:
choice ~ gender + amount + freq + last + first + child + youth +

cook + diy + art

Fitted party:
[1] root
| [2] first < 12
| | [3] art < 1: no (n = 250, err = 30.8%)
| | [4] art >= 1: yes (n = 69, err = 30.4%)
| [5] first >= 12
| | [6] art < 2: no (n = 864, err = 21.8%)
| | [7] art >= 2: yes (n = 117, err = 25.6%)

Number of inner nodes: 3
Number of terminal nodes: 4
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Figure 2: Trees for customer targeting constructed by rpart (upper panel) and ctree (lower
panel). The target variable is the customer’s choice of buying the book. The variables used
for splitting are the number of art books purchased previously (art), the number of months
since the first purchase (first), the frequency of previous purchases at the Bookbinder’s
Book Club (freq), and the customer’s gender.
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Figure 3: Tree for customer targeting constructed by evtree. The target variable is the
customer’s choice of buying the book. The variables used for splitting are the number of art
books purchased previously (art), and the number of months since the first purchase (first).

Not surprisingly, the explanatory variable art – the number of art books purchased previously
at the book club – plays a key role in all constructed classification trees along with the number
of months since the first purchase (first), the frequency of previous purchases (freq), and
the customer’s gender. Interestingly, though, the forward-search trees select the arguably
most important variable in the first split while the evolutionary tree uses first in the first
split and art in both second splits. Thus, the evolutionary tree uses a different cutoff in art
for book club members that made their first purchase during the last year as opposed to older
customers. While the former are predicted to be buyers if they had previously bought at
least one art book, the latter are predicted to purchase the advertised art book only if they
had previously bought at least two other art books. Certainly, this classification is easy to
understand and communicate (helped by Figure 3) to practitioners.
However, we still need to answer the question how well it performs in contrast to the other
trees. Hence, we set up a function mc() the computes the misclassification rate as a measure
of predictive accuracy and a function evalfun() that computes the evaluation function (i.e.,
penalized by tree complexity) from Equation 5.

R> mc <- function(obj) 1 - mean(predict(obj) == BBBClub$choice)
R> evalfun <- function(obj) 2 * nrow(BBBClub) * mc(obj) +
+ width(obj) * log(nrow(BBBClub))
R> trees <- list("evtree" = ev, "rpart" = rp, "ctree" = ct, "rpart2" = rp2,
+ "ctree2" = ct2)
R> round(sapply(trees, function(obj) c("misclassification" = mc(obj),
+ "evaluation function" = evalfun(obj))), digits = 3)
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evtree rpart ctree rpart2 ctree2
misclassification 0.243 0.238 0.248 0.262 0.255
evaluation function 660.680 655.851 701.361 701.510 692.680

Not surprisingly the evolutionary tree evtree outperforms the depth-restricted trees rpart2
and ctree2, both in terms of misclassification and the penalized evaluation function. How-
ever, it is interesting to see that evtree performs even better than the unrestricted conditional
inference tree ctree and is comparable in performance to the unrestricted CART tree rpart.
Hence, the practitioner may choose the evolutionary tree evtree as it is the easiest to com-
municate.
Although the constructed trees are considerably different, the code above shows that the pre-
dictive accuracy is rather similar. Moreover, below we see that the structure of the individual
predictions on the dataset are rather similar as well:

R> ftable(tab <- table(evtree = predict(ev), rpart = predict(rp),
+ ctree = predict(ct), observed = BBBClub$choice))

observed no yes
evtree rpart ctree
no no no 799 223

yes 38 24
yes no 0 0

yes 12 18
yes no no 0 0

yes 0 0
yes no 21 19

yes 30 116

R> sapply(c("evtree", "rpart", "ctree"), function(nam) {
+ mt <- margin.table(tab, c(match(nam, names(dimnames(tab))), 4))
+ c(abs = as.vector(rowSums(mt))[2],
+ rel = round(100 * prop.table(mt, 1)[2, 2], digits = 3))
+ })

evtree rpart ctree
abs 186.000 216.000 238.000
rel 72.581 70.833 66.387

In this case, evtree classifies fewer customers (186) as buyers as rpart (216) and ctree
(238). However, evtree achieves the highest proportion of correct classification among the
declared buyers: 72.6% compared to 70.8% (rpart) and 66.4% (ctree).
In summary, this illustrates how evtree can be employed to better balance predictive accuracy
and complexity by searching a larger space of potential trees. As a final note, it is worth
pointing out that in this setup, several runs of evtree() with the same parameters typically
lead to the same tree. However, this may not always be the case. Due to the stochastic nature
of the search algorithm and the vast search space, trees with very different structures but
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similar evaluation function values may be found by subsequent runs of evtree(). Here, this
problem is alleviated by restricting the maximal depth of the tree, yielding a clear solution.

5. Performance comparison
In this section, we compare evtree with rpart, ctree, and J48 in a more rigorous benchmark
comparison.
In the first part of the analysis (Section 5.1) the tree algorithms are compared on 14 benchmark
datasets that are publicly available and 3 real-world datasets from the Austrian Diagnosis
Related Group (DRG) system (Bundesministerium für Gesundheit 2010). As J48 can only be
used for classification, the algorithm is only employed for the 12 classification datasets.
The analysis is based on the evaluation of 250 bootstrap samples for each of the datasets. The
misclassification rate on the out-of-bag samples is used as a measure of predictive accuracy
(Hothorn, Leisch, Zeileis, and Hornik 2005). Furthermore, the complexity is estimated by the
number of terminal nodes. The results are summarized by the mean differences of the 250
runs – each corresponding to one of the 250 different bootstrap samples. For the assessment of
significant differences in predictive accuracy and complexity, respectively, Dunnett’s correc-
tion from R package multcomp (Hothorn, Bretz, and Westfall 2008) was used for calculating
simultaneous 95% confidence intervals on the individual datasets. Confidence intervals that
do not encompass the zero-line indicate significant differences at the 5% level.
In the second part (Section 5.2) the algorithms’ performances are assessed on an artificial
chessboard problem that is simulated with different noise levels. The estimation of predictive
accuracy and the number of terminal nodes is based on 250 realizations for each simulation.
evtree, rpart, and ctree models are constrained to a minimum number of 7 observations
per terminal node, 20 observations per internal node, and a maximum tree depth of 9. Apart
from that, the default settings of the algorithms are used. J48 is only constrained to a
minimum number of 7 observations per terminal node, as other restrictions are available in
this implementation.
As missing values are currently not supported by evtree (e.g., by surrogate splits), the
16 missing values in the Breast cancer database – the only dataset in the study with missing
values – were removed before analysis.

5.1. Benchmark and real-world problems

In Table 3 the benchmark and real-world datasets from the Austrian DRG system are de-
scribed. In the Austrian DRG system, resources are allocated to hospitals by simple rules
mainly regarding the patients’ diagnoses, procedures, and age. Regression tree analysis is
performed to model patient groups with similar resource consumption. A more detailed de-
scription of the datasets and the application can be found in Grubinger, Kobel, and Pfeiffer
(2010).
The datasets were chosen from different domains and cover a wide range of dataset charac-
teristics and complexities. The sample sizes of the selected datasets range from 214 instances
(Glass identification data) to 19020 instances (MAGIC gamma telescope). The number of
attributes varies between 4 (Servo) and 180 (DNA). The types of attributes vary among
datasets, and include datasets which have both categorical and numerical variables or just
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Dataset Instances Attributes
Binary Nominal Ordered Metric Classes

Glass identification# 214 - - - 9 6
Statlog heart* 270 3 3 1 6 2
Ionosphere# 351 2 - - 32 2
Musk+ 476 - - - 166 2
Breast cancer database# 685 - 4 5 - 2
Pima Indians diabetes# 768 - - - 8 2
Vowel# 990 - 1 - 9 11
Statlog German credit* 1000 2 10 1 7 2
Contraceptive method* 1437 3 - 4 2 3
DNA# 3186 180 - - - 3
Spam+ 4601 - - - 57 2
MAGIC gamma telescope* 19020 - - - 10 2
Servo# 167 - 4 - - -
Boston housing# 506 1 - - 12 -
MEL0101� 875 1 4 1 108 -
HDG0202� 3933 1 7 1 46 -
HDG0502� 8251 1 7 1 91 -

Table 3: Description of the evaluated benchmark datasets. The datasets marked with ∗
originate from the UCI machine learning repository (Bache and Lichman 2013) and are made
available in the evtree package. Datasets marked with # and + are from the R packages
mlbench (Leisch and Dimitriadou 2012) and kernlab (Karatzoglou et al. 2004), respectively.
The three real-world datasets from the Austrian DRG system are marked with �.

one of them. The number of classes for the classification task vary between 2 and 11 classes.
The relative performance of evtree and rpart is summarized in Figure 4 (upper panels).
Performance differences are displayed relative to evtree’s performance. For example, on the
Glass dataset, the average misclassification rate of rpart is 2.7% higher than the misclassifi-
cation rate of evtree. It can be observed that on 12 out of 17 datasets evtree significantly
outperforms rpart in terms of predictive accuracy. Only on the Contraceptive method dataset
does evtree perform slightly worse. In terms of complexity, evtree models are significantly
more complex on 9 and less complex on 7 datasets.
Figure 4 (lower panels) summarizes the relative performance of evtree and ctree. For 15 out
of 17 datasets evtree shows a better predictive performance. The algorithms’ performances
is significantly worse on the MEL0101 dataset, where the mean squared error of ctree is
5.6% lower. However, on this dataset, ctree models are on average 86.5% larger than evtree
models. The relative complexity of evtree models is significantly smaller for 15 and larger
for 1 dataset.
The relative performance of evtree and J48 is summarized in Figure 5. It can be observed
that on 8 out of 11 classification datasets evtree significantly outperforms J48 in terms
of predictive accuracy. evtree’s performance is significantly worse on the Vowel dataset,
where the misclassification error of evtree is 2.7% higher. As J48 allows multiway splits, the
complexity of the two algorithms is compared by the total number of nodes (internal nodes +
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Figure 4: Performance comparison of evtree vs. rpart (upper panels) and evtree vs.
ctree (lower panels). Prediction error (left panels) is compared by the relative difference
of the misclassification rate or the mean squared error. The complexity (right panels) is
compared by the relative difference of the number of terminal nodes.

terminal nodes). evtree model are significantly less complex on all 11 datesets. Note that we
also investigated whether the reduced-error pruning option in J48 improves the performance
of J48. However, pruning only slightly reduced the complexity while deteriorating accurcay
on the Vowel, Musk, and Spam datasets. Therefore, we only report the unpruned results here.
From these results, it is not obvious which characteristics drive evtree’s relative performance.
Presumably, for some datasets the forward-search algorithms already yield trees that are close
to optimal, thus leaving little room for further improvements. In contrast, for other datasets
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Figure 5: Performance comparison of evtree vs. J48. Prediction error (left panel) is
compared by the relative difference of the misclassification rate. The complexity (right panel)
is compared by the relative difference of the total number of nodes.

with more complex interaction patterns (and possibly low main effects) evtree’s global-search
strategy is probably able to provide better predictive accuracy and/or sparser trees.

Disadvantages of the evtree algorithm are computation time and memory requirements.
While the smallest of the analyzed datasets, Glass identification, only needed approximately
4–6 seconds to fit, larger datasets demanded several minutes. The fit of a model from the
largest dataset, MAGIC gamma telescope, required approximately 40–50 minutes and a main
memory of 400 MB. The required resources were measured on an Intel Core 2 Duo with 2.2
GHz and 2 GB RAM using the 64-bit version of Ubuntu 10.10.

Another important issue to be considered is the random nature of evolutionary algorithms.
For larger datasets, frequently, considerably different solutions exist that yield a similar or
even the same evaluation function value. Therefore, subsequent runs of evtree can result in
very different tree structures. This is not a problem if the tree is intended only for predictive
purposes, and it is also not a big issue for many decision and prognosis tasks. Typically,
in such applications, the resulting model has to be accurate, compact, and meaningful in its
interpretation, but the particular tree structure is of secondary importance. Examples of such
applications include the presented marketing case study and the Austrian DRG system. In
cases where a model is not meaningful in its interpretation, the possibility of constructing
different trees can even be beneficial. However, if the primary goal is to interpret relationships
in the data, based on the selected splits, the random nature of the algorithm has to be
considered.
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Figure 6: Class distribution of the simulated 4 × 4 chessboard problem with zero noise,
plotted on the (X1, X2)-plane. The two classes are indicated by black circles and gray crosses,
respectively.

5.2. Artificial problem

In this section we demonstrate the ability of evtree to solve an artificial problem that is
difficult to solve for most recursive classification tree algorithms (Loh 2009). The data was
simulated with 2000 instances for both the training set and the test set. Predictor variables
X1 and X2 are simulated to be uniformly distributed in the interval [0, 4]. The classes are
distributed in alternating squares forming a 4 × 4 chessboard in the (X1, X2)-plane. One
realization of the simulated data is shown in Figure 6. Furthermore, variables X3–X8 are
noise variables that are uniformly distributed on the interval [0, 1]. The ideal model for this
problem only uses variables X1 and X2 and has 16 terminal nodes, whereas each terminal
node comprises the observations that are in the region of one square. Two further simulations
are done in the same way, but 5% and 10% percent of the class labels are randomly changed
to the other class.

Noise Accuracy Complexity
evtree rpart ctree J48 evtree rpart ctree J48

0% 93.2(7.4) 69.1(18.3) 49.9(1.1) 50.0(1.1) 14.4(2.2) 16.6(8.2) 1.1(0.3) 1.2(1.1)
5% 89.0(6.8) 65.7(17.4) 50.1(1.6) 50.1(1.1) 14.4(2.2) 14.6(8.0) 1.1(0.7) 1.2(1.1)
10% 84.5(5.6) 62.8(14.1) 50.1(1.3) 50.2(3.6) 14.6(2.0) 14.3(7.3) 1.1(0.4) 1.5(4.8)

Table 4: Mean (and standard deviation) of accuracy and complexity for simulated 4 × 4
chessboard examples.

The results are summarized in Table 4. It can be seen that, in the absence of noise, evtree
classifies 93.2% of the instances correctly and requires 14.4 terminal nodes. rpart models, on
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the other hand, on average classify 69.1% of the data points correctly and have 16.6 terminal
nodes. An average ctree model has only 1.1 terminal nodes – i.e., typically does not split at
all (as expected in an unbiased forward selection) – and consequently a classification accuracy
of 49.9%. J48 trees on average have 1.2 nodes and classify 50.0% of the datapoints correctly.
In the presence of 5% and 10% noise, evtree classifies 89.0% and 84.5% of the data correctly
but still performs clearly better than the other models.

6. Choice of evtree parameters
In this section, evtree is simulated with different (hyper)parameter choices. In general,
the optimal choice of parameters clearly depends on the particular dataset. This section
gives some insight into which parameter choices work for which kind of data complexity.
Furthermore, the results give insight into the robustness of the default parameter choices.
As in Section 5, evtree models are constrained to a minimum number of 7 observations
per terminal node, 20 observations per internal node, and a maximum tree depth of 9. The
analysis is based on 4 datasets (Statlog heart, Statlog german credit, Spam, and the 4x4
Chessboard problem with 5% noise). Again, the analysis of each of the 4 datasets is based
on 250 bootstrap samples. In Section 6.1, evtree is simulated with a diverse set of variation
operator probability choices. Section 6.2 provides results for the choice of different population
sizes.

6.1. Variation operator probabilities

Table 5 displays the different operator probability settings that are used in Figure 7. The
Mutation column summarizes the probability of selecting the minor split rule mutation or the
major split rule mutation operator – which both have the same probability. The Split/Prune
column summarizes the probability of selecting the prune or the split operator – again both
operators have the same probability. For example, the operator probability setting c0m50sp50
has a 0% probability of selecting the crossover operator, a 50% probability for selecting one
of the mutation operators (25% for minor split rule mutation and 25% for major split rule
mutation) and a 50% probability for selecting one of the split (with 25% probability) or the
prune operators (with 25% probability). Note that thus the default choice in evtree.control
corresponds to c20m40sp40. The different operator probability settings are simulated with
different numbers of iterations. Simulations with a very low number of iterations (two settings
with 200 and 500 iterations are used) should give insight into the efficiency of the variation
operator settings. Additionally, the results from a simulation with 10000 iterations is included,
which provides an estimate of performance differences for the default setting.
Figure 7 summarizes evtree’s performance with different variation operator probabilities.
For the two datasets Statlog heart and Statlog German credit, the results of the different
variation operator settings are nearly the same. The simulations with only 200 iterations and
500 iterations give similar results as the simulations with 10000 iterations. Thus, for the two
smaller datasets, neither the choice of variation operator probabilities, nor the duration of
the search, has a relevant effect on the results.
For the more complex spam dataset and the Chessboard 4x4 problem, an increased number of
iterations leads to a (much) better performance. For the simulation with only 200 iterations,
large differences between the variation operator settings can be observed. For both datasets
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Figure 7: Results of evtree with different variation operator probabilities (see Table 5) and
number of iterations. In addition to the standard boxplot statistics, the mean differences are
indicated by red dots.
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Operator probability setting Crossover [%] Mutation [%] Split/Prune[%]
c0m50sp50 0 50 50
c20m20sp60 20 20 60
c20m40sp40 20 40 40
c20m60sp20 20 60 20
c40m30sp30 40 30 30

Table 5: Operator probability settings used for the simulation of the different operator
probabilities. The default choice in evtree.control corresponds to c20m40sp40. The corre-
sponding results are displayed in Figure 7.

the variation operator setting without crossover performed worst. The performance differences
of the different variation operator settings become smaller with an increasing number of
iterations. For the Spam dataset, a search over 10000 iterations leads to approximately the
same performance for all variation operator settings. In case of the Chessboard 4x4 problem
the best setting (c20m20sp60; 20% crossover, 20% mutation and 60% split/prune) classifies,
on average, 90.8% of the instances correctly. evtree’s default setting (c20m40sp40; 20%
crossover, 40% mutation and 40% split/prune) is the second-best setting and classifies 89.8%
of the instances correctly.

6.2. Population size

In this subsection, evtree is simulated with population sizes between 25 trees and 500 trees.
The results of the simulation are illustrated in Figure 8. For the two smaller datasets Statlog
heart an Statlog German credit the results are similar for all population sizes. In fact, the
smallest population sizes (25 trees; Statlog heart: 77.1%, Statlog German credit: 72.2%) even
perform very slightly bettr on average (500 trees; Statlog heart: 76.5%, Statlog German credit:
71.7%). Compared to the overall variation over samples, these differences are very small
though. The average number of terminal nodes for the largest population size is larger than
the trees from the smalles population size (Statlog heart: 7.3 terminal nodes when simulated
with a population of 500 trees, 6.5 terminal nodes when simulated with a population of 25
trees; Statlog German credit: 13.4 terminal nodes when simulated with a population of 500
trees, 10.9 terminal nodes when simulated with a population of 25 trees).
However, for the more complex datasets Spam and Chessboard 4x4 (with 5% noise), the
predictive accuracy is monotonically increasing with the search space. The largest perfor-
mance difference can be observed on the chessboard simulation problem. With a simulation
of 25 trees only 81.0% of the instance are classified correctly, while with a simulation of
500 trees, 93.6% of the instances are classified correctly.

7. Conclusions
In this paper, we present the evtree package, which implements classification and regression
trees that are grown by an evolutionary algorithm. The package uses standard print(),
summary(), and plot() functions to display trees and a predict() function to predict the
class labels of new data from the partykit package. As evolutionary learning of trees is
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Figure 8: Results of evtree with different population sizes. In addition to the standard
boxplot statistics, the mean differences are indicated by red dots.

computationally demanding, most calculations are conducted in C++. At the moment our
algorithm does not support parallelism. However, we intend to extend evtree to parallel
computing in future versions.
The comparisons with recursive partitioning methods rpart, ctree, and J48 in Sections 4
and 5 shows that evtree performs very well in a wide variety of settings, often balancing
predictive accuracy and complexity better than the forward-search methods.
In Section 6, we compare different parameter settings for the evtree algorithm. It can be
observed that the particular choice of variation operator probabilities is fairly robust, provided
the population size is sufficiently large. The default settings in the number of iterations and
the population size are sufficient for most datasets with medium complexity. However, for
very complex datasets an increase in the number of iterations or the population size, may
significantly improve evtree’s predictive performance.
The goal of evtree is not to replace the well-established algorithms like rpart, ctree, and
J48 but rather to complement the tree toolbox with an alternative method which may perform
better given sufficient amounts of time and main memory. By the nature of the algorithm it is
able to discover patterns which cannot be modeled by a greedy forward-search algorithm. As
evtree models can be substantially different to recursively fitted models, it can be beneficial
to use both approaches, as this may reveal additional relationships in the data.
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