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1 Introduction

In the following, let X ∈ Rq be a random q-vector of covariates, Y (j) be the random
(potential) outcome when the subject is exposed to the treatment j, where 0 ≤ j ≤ p
and j = 0 corresponds to the control treatment. We consider Z0 as an indicator for
the control treatment, and in the case when the observational study does not have a
well defined control treatment, then we treat Z0 as the baseline treatment, i.e., the
treatment with which we are interested to compare all other treatments. Let further
Z = (Zj) ∈ Rp be a random p-vector of treatment indicators (other than the control
treatment), with Zj = 1 and Zk = 0 for all k 6= j if the subject receives the treatment j,
where j = 1, . . . , p. Since all individuals receive only one treatment, then

∑p
j=0 Zj = 1,

and we only observe Y =
∑p

j=0 Y (j)Zj . Note that we do not consider here the case
of clinical trials with non-compliance where the subjects are assigned to treatments
but they may receive other treatments, and thus, the available data consist of only the
treatment received and the outcome under the treatment received in addition to the
covariates for all subjects.

1.1 Randomized experiments

Let θ1 ∈ R, θ2 = (θ2,1, . . . , θ2,p) ∈ Rp, and θ3 = (θ3,1, . . . , θ3,p) ∈ Rp be defined
as θ1 = E(Y (0)), θ2,j = [E(Y (j)) − E(Y (0))], θ3,j = E(Zj), 1 ≤ j ≤ p, and let
θ = (θ1, θ2, θ3) ∈ R2p+1. By the definition of conditional expectation,

E(Y |Zj = 1) = E(Y (j)) = E(Y Zj)/E(Zj) , 1 ≤ j ≤ p . (1)

Hence, E[(Y − θ1 − θT2 Z)Zj ] = 0 for all 1 ≤ j ≤ p, and thus,

E
(
(Y − θ1 − θT2 Z)Z

)
= 0 . (2)

By the law of total expectation formula,

E(Y ) =

p∑
j=0

E(Y (j)) Pr(Zj = 1) . (3)

Hence,
E(Y − θ1 − θT2 Z) = 0 . (4)

By the definition of θ3, θ3,j = E(Zj) for 1 ≤ j ≤ p; hence

E(Z − θ3) = 0 . (5)

Note that E(Z0) = 1−
∑p

j=1 θ3,j .
In randomized trials, (Z0, Z) ⊥⊥ X, which implies that E[(Zj − θ3,j)u(X)] = 0 for

1 ≤ j ≤ p, where u(X) ∈ Rk is a k-vector of functions of X. Hence,

E[(Z − θ3)⊗ u(X)] = 0 . (6)

To illustrate what u(x) can be, suppose x = (x1, x2) ∈ R2, then we can define u(x) =
x ∈ R2, or u(x) = (x1, x2, x1x2) ∈ R3, or u(x) = (x1, x2, x

2
1, x

2
2, x1x2) ∈ R5.
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Let T = (X,Z, Y ) ∈ Rp+q+1 denote a generic random variable distributed according
to a distribution on Rp+q+11. Therefore, Equations (2) and (4) to (6) imply that the
parameter of interest θ0 satisfies the following moment conditions:

E(g(T, θ0)) = 0 , (7)

where θ0 = (θ01, θ
0
2, θ

0
3) ∈ R2p+1 and g(t, θ) is defined as

g(t; θ) =


y − θ1 − θT2 z

(y − θ1 − θT2 z)z
z − θ3

(z − θ3)⊗ u(x)

 , t = (x, z, y) ∈ Rp+q+1 . (8)

The ACE of the treatment j is given by τ0j = θ02,j , for 1 ≤ j ≤ p.
The package offers a way to estimate θ0 using the generalized method of moments

(GEL). Using the primal form of GEL, the estimator of θ0 is defined as:

θ̂ = argminθ∈R2p+1 min
p∈Pn

{
Dγ(p, n−11n) :

n∑
i=1

pig(Ti; θ) = 0
}
, (9)

where

Pn =
{
p = (pi) ∈ Rn :

n∑
i=1

pi = 1 , pi ≥ 0
}
,

and Dγ(p, n−11n) is the power divergence discrepancy function (Newey and Smith,
2004):

Dγ(p, n−11n) =
n∑
i=1

(npi)
γ+1 − 1

nγ(γ + 1)
.

In particular, γ = −1 corresponds to the empirical likelihood (EL), γ = 0 corresponds
to the exponential tilting (ET), γ = 1 corresponds to the Euclidean empirical likelihood
(EEL) estimator also known as the continuously updated GMM estimator (CUE),
and γ = −1/2 corresponds to the Hellinger distance (HD) used by Kitamura et al.
(2013). Newey and Smith (2004) present the GEL method in its dual form, which is
the following saddle point problem:

θ̂ = argminθ∈R2p+1 max
λ∈R1+p(2+k)

n∑
i=1

ργ
(
λT g(Ti; θ)

)
, (10)

where

ργ(v) = −(1 + γv)(γ+1)/γ

γ + 1
.

In particular ρ−1(v) = log(1− v) for EL, ρ0(v) = − exp(v) for ET, ρ1(v) = −1/2− v−
v2/2 for EEL, and ρ−1/2(v) = −2/(1−v/2) for HD. Using the dual form, the estimated
probability weights from the primal problem are defined as:

p̂i(θ, λ) =
ρ′γ(λT g(Ti; θ))∑n
j=1 ρ

′
γ(λT g(Ti; θ))

, (11)

where ρ′γ(v) is the first order derivative of ργ(v).

1Notice that we omit Z0 from T because its value is implied by Z through Z0 = 1−
∑p

j=1 Zj .
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1.2 Observational studies

When the treatment (group) assignment is not random, we can still use the GEL as a
weighting method. GEL is used as a way to re-weight the probability of each obser-
vation so that our sample is as if it had been generated by a randomized experiment.
The parameter of interest θ0 satisfies the following moment conditions:

E0(g(T, θ0)) = 0 , (12)

where θ0 is as in Section 1.1, and g(t, θ) is defined as

g(t; θ) =


y − θ1 − θT2 z

(y − θ1 − θT2 z)z
z − θ3

(z − θ3)⊗ u(x)
u(x)− u0

 , t = (x, z, y) ∈ Rp+q+1 , (13)

where u0 is the expected value of u(X) for a target population. Note that while the
first three moment conditions (under E0) identify the parameters, the fourth moment
condition makes Z “almost independent” of X as k →∞. The last condition is what
differentiates randomized experiments from observational studies. It imposes moments
of X to match the ones from a given target population. The choice of u0 is driven by
the type of causal effect we are interested in. We will present the different options in
the next section.

2 Estimating the causal effect

The package is based on the “momentfit” package (Chaussé, 2020), which offers ways
to build classes for moment-based models, and algorithms to estimate them. It offers
two ways to fit a model. We can either create the model object and call the gmmFit
or gelFit method to estimate it by GMM or GEL, or diectly call the gmm4() or gel4()
function. The “causalGEL” package is built in th same way. Section 2.1 presents the
two-step way, which is useful is we want to fit the same model using different methods,
and Section 3 presents the one-step way, using the causalGel() function.

2.1 An S4 class object for causal inference

To illustrate the methods, we consider the experiment analyzed first by Lalonde (1986)
and used later by Dehejia and Wahba (1999, 2002). The objective of the original paper
was to measure the effect of a training program on the real income. The dependent
variable is the real income in 1978 and the covariates used for matching the treated
group to the control are age, education, 1975 real income and dummy variables for
race, marital status, and academic achievement.

First, we load the package and the dataset:

library(causalGel)

data(nsw)

## We express income in thousands for better stability

nsw$re78 <- nsw$re78/1000

nsw$re75 <- nsw$re75/1000
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The model class, is “causalModel” which inherits directly from the “functionModel”
class defined in the “modelfit” package. The constructor is the causalModel() function.
The arguments are:

• g : A formula that defines the regression of the outome on the treatment indicator.
For our dataset, the variable “treat” is the indicator, and “re78” is the outcome.
The formula is therefore:

g <- re78~treat

• balm: A formula or a data.frame representing u(X). For example, if we want to
balance 1975 income, age, education and race, we would use the following:

balm <- ~age+ed+black+hisp+re75

• theta0 : An optional starting value to be passed to the numerical algorithm.

• momType: This is the main argument to determine which type of causal effect
we want to estimate. The options are:

– “ACE”: This one is for estimating the average causal effect. The moment
function g(t; θ) is defined by Equation (13), and µ0 is defined as:

µ0 =
1

n

n∑
i=1

u(Xi)

– “ACT”: This is for the causal effect on the treated. In that case, the argument
“ACTmom” determines which of the treated groups we are refering to. The
moment function g(t; θ) is defined by Equation (13), and µ0 is defined as:

µ0 =
1

nj

n∑
i=1

Zjiu(Xi) ,

where nj =
∑n

i=1 Zji, and j is the value of “ACTmom”.

– “ACC”: This is for the causal effect on the control. The moment function
g(t; θ) is defined by Equation (13), and µ0 is defined as:

µ0 =
1

n0

n∑
i=1

Z0iu(Xi) ,

where n0 =
∑n

i=1 Z0i.

– “uncondBal”: This is used to estimate the average causal effect in random-
ized trials. The moment function g(t; θ) is defined by Equation (8). In the
case of observational data, it is not recommended because the moments are
balanced, but represent estimates of the moments for an undefined popula-
tion.

– “fixedMom”: The causal effect of a target population for which E(µ(X) is
known. The moment function g(t; θ) is defined by Equation (13), and µ0 is
set to “popMom”, which is another argument of causalModel() (see below).
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• popMom: A k × 1 vector, representing E(µ(X)). If provided, momType is auto-
matically set to “popMom”.

• gelType: The type of GEL method. The options are “EL” (the default), “ET”,
“EEL” and “HD”, as defined above. The exponentially tilted empirical likelihood
(ETEL) and exponentially tilted Hellinger distance (ETHD) are also available.
The last available method is “REEL” which is the restricted EEL. The solution
is obtained by restricting the EEL implied probability, defined in Equation (11),
to be non-negative.

• rhoFct : An optional ρ(v) function if the desired GEL method is not available
in the package (see the GEL vignette from the “momentfit” package for more
details).

• data: A data.frame with all the variables needed to evaluate the formulas g and
balm.

The following are three different models:

ace <- causalModel(g, balm, nsw, momType="ACE")

act <- causalModel(g, balm, nsw, momType="ACT")

aceRT <- causalModel(g, balm, nsw, momType="uncondBal")

The third one is the ACE assuming randomized assignments. A print method for
that class summarizes the model:

ace

## Causal Model

## *************

## Model type: Average causal effect

## Number of treatments: 1

## Number of moment conditions: 13

## Number of balancing covariates: 5

## Sample size: 722

The option “printBalCov” allows us to see the balancing covariates:

print(act, printBalCov=TRUE)

## Causal Model

## *************

## Model type: Causal effect on the treated

## Number of treatments: 1

## Number of moment conditions: 13

## Number of balancing covariates: 5

## Sample size: 722

## Balancing covariates:

## age, ed, black

## hisp, re75

To add powers and interactions, we can follow the usual rules for formulas. Here
is an example in which age is interacted with education, and 1975 income squared is
included:
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balm2 <- ~age*ed+black+hisp+re75+I(re75^2)

ace2 <- causalModel(g, balm2, nsw, momType="ACE")

print(ace2, printBalCov=TRUE)

## Causal Model

## *************

## Model type: Average causal effect

## Number of treatments: 1

## Number of moment conditions: 17

## Number of balancing covariates: 7

## Sample size: 722

## Balancing covariates:

## age, ed, black

## hisp, re75, I(re75^2)

## age:ed

2.2 The gelFit method and the “causalGelfit” object

As mentioned in the previous section, the “causalModel” inherits from the “function-
Model” class. The gelFit method is therefore a slightly modified method that calls
the gelFit for “functionModel” objects, and creates a “causalGelfit” object. It inherits
directly from “gelfit” class, but having a different one allows to build other methods
such as print and vcov, that are specific to our model. The following print method
offers the option of printing the λ̂ and the model info.

fit1 <- gelFit(ace, gelType="EL") ## EL is the default

print(fit1, model=FALSE, lambda=TRUE)

##

## Estimation: EL

## Convergence Theta: 0

## Convergence Lambda: 0

## coefficients:

## control causalEffect probTreatment

## 5.0945926 0.8223392 0.4113576

## lambdas:

## control causalEffect probTreatment treat_age treat_ed

## -5.171055e-07 1.432391e-06 5.289036e-01 -3.288704e-03 -5.962977e-02

## treat_black treat_hisp treat_re75 age ed

## 1.635445e-01 2.907282e-01 8.043465e-04 -5.643722e-05 4.119271e-03

## black hisp re75

## -5.736834e-03 3.484319e-03 -8.729253e-04

The coefficients are labeled as “control” for θ1, “causalEffect” for θ2, and “prob-
Treatment” for θ3. For the case of multiple treatments, the treatment effect coefficients
are labeled “causalEffecti”, where i identifies the treatment. The following are the
existing methods for “causalGelfit” objects. Since “causalGelfit” contains a “gelfit”
object, most methods are the one built for “gelfit” objects. Here is a list:

• vcov : It computes the covariance matrix of θ̂ and λ̂ in a list. The list contains
other information used by other methods. We don’t often need to run the method,
but if needed, the covariance matrix of θ̂ is

8



vcov(fit1)$vcov_par

##

## 7.481449e-02 -7.392353e-02 4.311762e-06

## -7.392353e-02 2.242136e-01 2.762385e-05

## 4.311762e-06 2.762385e-05 3.353775e-04

By default, the covariance matrix is robust to misspecification, which is what
we should used in observational studies. For randomized trials, we can set the
argument “robToMiss” to FALSE, because it is not needed.

• confint The method computes a confidence interval. By default, it is a Wald type
of confidence:

confint(fit1)

##

## Wald type confidence interval

## 0.025 0.975

## control 4.5585 5.6307

## causalEffect -0.1057 1.7504

## probTreatment 0.3755 0.4473

It is also possible to get an interval based on the inversion of the likelihoo ratio.
The empirical likelihood confidence is:

confint(fit1, 2, type="invLR")

##

## Confidence interval based on the inversion of the LR test

## 0.025 0.975

## causalEffect -0.07155 1.808

Confidence regions are also possible using a pair of coefficients:

cr <- confint(fit1, 1:2, area=TRUE)

cr

## Wald type confidence region

## ***************************

## Level: 0.95

## Number of points: 20

## Variables:

## Range for control: [4.434, 5.764]

## Range for causalEffect: [-0.3362, 1.971]

This is an object of class “mconfint” for which a plot method exists:

plot(cr, col="lightblue", density=20)
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• summary : The method creates a “summaryGel” with its own print method. It
returns an output similar to the summary method of “lm” objects.

summary(fit1)

## Causal Model

## *************

## Model type: Average causal effect

## Number of treatments: 1

## Number of moment conditions: 13

## Number of balancing covariates: 5

## Sample size: 722

##

## Estimation: EL

## Convergence Theta: 0

## Convergence Lambda: 0

## Average |Sum of pt*gt()]|: 4.2944e-16

## |Sum of pt - 1|: 0

##

## coefficients:

## Estimate Std. Error t value Pr(>|t|)

## control 5.094593 0.273522 18.6259 < 2e-16 ***

## causalEffect 0.822339 0.473512 1.7367 0.08244 .

## probTreatment 0.411358 0.018313 22.4622 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Lambdas:

## Estimate Std. Error t value Pr(>|t|)

## control -5.1711e-07 2.5083e-08 -20.6155 <2e-16 ***

## causalEffect 1.4324e-06 5.8736e-08 24.3871 <2e-16 ***

## probTreatment 5.2890e-01 6.0880e-01 0.8688 0.3850
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## treat_age -3.2887e-03 1.1630e-02 -0.2828 0.7773

## treat_ed -5.9630e-02 4.4931e-02 -1.3271 0.1845

## treat_black 1.6354e-01 2.6588e-01 0.6151 0.5385

## treat_hisp 2.9073e-01 3.4583e-01 0.8407 0.4005

## treat_re75 8.0435e-04 1.5495e-02 0.0519 0.9586

## age -5.6437e-05 7.1538e-04 -0.0789 0.9371

## ed 4.1193e-03 4.4968e-03 0.9160 0.3596

## black -5.7368e-03 1.1078e-02 -0.5178 0.6046

## hisp 3.4843e-03 1.8667e-02 0.1867 0.8519

## re75 -8.7293e-04 9.3098e-04 -0.9376 0.3484

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Test E(g)=0

## Statistics df pvalue

## LR: 3.0180 10 0.98100

## LM: 3.0169 10 0.98102

## J: 3.0177 10 0.98100

2.3 Other useful methods

Instead of creating a new model with different balancing moments µ(X), it is possible
to use the method “[“ to subset the existing µ(X). We can think of a model object as
being a two dimensional array, the first dimension being the balancing moments, and
the second being the observations. Consider the following

ace <- causalModel(re78~treat,

~(age+black+ed)*(age+black+ed) + I(age^2) + I(ed^2),

data=nsw)

print(ace, TRUE)

## Causal Model

## *************

## Model type: Average causal effect

## Number of treatments: 1

## Number of moment conditions: 19

## Number of balancing covariates: 8

## Sample size: 722

## Balancing covariates:

## age, black, ed

## I(age^2), I(ed^2), age:black

## age:ed, black:ed

Suppose we want to removed the squared components:

print(ace[-c(3,4)], TRUE)

## Causal Model

## *************

## Model type: Average causal effect

## Number of treatments: 1

## Number of moment conditions: 15
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## Number of balancing covariates: 6

## Sample size: 722

## Balancing covariates:

## age, black, I(ed^2)

## age:black, age:ed, black:ed

Or remove interactions

print(ace[1:5], TRUE)

## Causal Model

## *************

## Model type: Average causal effect

## Number of treatments: 1

## Number of moment conditions: 13

## Number of balancing covariates: 5

## Sample size: 722

## Balancing covariates:

## age, black, ed

## I(age^2), I(ed^2)

We can use a subset of the sample by adding a second argument:

print(ace[,1:100], TRUE)

## Causal Model

## *************

## Model type: Average causal effect

## Number of treatments: 1

## Number of moment conditions: 19

## Number of balancing covariates: 8

## Sample size: 100

## Balancing covariates:

## age, black, ed

## I(age^2), I(ed^2), age:black

## age:ed, black:ed

print(ace[1:3,nsw$re75>0], TRUE)

## Causal Model

## *************

## Model type: Average causal effect

## Number of treatments: 1

## Number of moment conditions: 9

## Number of balancing covariates: 3

## Sample size: 433

## Balancing covariates:

## age, black, ed

An easy way to re-estimate a new model specified by “[“, is to use the method for
“causalGelfit” objects. It changes the model and re-estimate it.
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Model 1 Model 2 Model 3
control 5.1263∗∗∗ 5.1627∗∗∗ 5.1013∗∗∗

(0.2795) (0.2972) (0.2777)
causalEffect 0.7713 0.6855 0.4535

(0.4798) (0.4876) (0.7817)
probTreatment 0.4114∗∗∗ 0.4120∗∗∗ 0.1500∗∗∗

(0.0183) (0.0184) (0.0160)
Num. obs. 722 716 500
Num. Bal. Cov. 8 8 3
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 1: Statistical models

fit <- gelFit(ace)

fit2 <- fit[,nsw$age<48]

fit3 <- fit[1:3,1:500]

The results are shown in Table 1, which is constructed using the “texreg” package
of Leifeld (2013). The code for the extract method is in the appendix.

Details about the convergence are obtained using the checkConv method:

checkConv(fit)

## Convergence details of the Causal estimation

## ********************************************

## Average causal effect

##

## Convergence of the Lambdas: TRUE

## Convergence of the Coefficients: TRUE

## Achieved moment balancing: TRUE

##

## Moments for each group:

## treat=0 treat=1

## age 24.520776 24.520776

## black 0.800554 0.800554

## ed 10.267313 10.267313

## I(age^2) 645.110803 645.110803

## I(ed^2) 108.319945 108.319945

## age:black 19.876731 19.876731

## age:ed 252.038781 252.038781

## black:ed 8.265928 8.265928

It compares sample moments of µ(X) for each group, using the estimated implied
probabilities. We can then see if the balancing was achieved. As an example, the
first column is [

∑n
i=1 p̂i(1 − Zi)µ(Xi)]/[

∑n
i=1 p̂i(1 − Zi)], and the second column is

[
∑n

i=1 p̂iZiµ(Xi)]/[
∑n

i=1 p̂iZi], which are respectively estimates of E(µ(X)|Z = 0) and
E(µ(X)|Z = 1). We can see that the moments are well balanced, at least up to six
decimals.

13



ACE(rand.) ACE(non-random) ACT ACC
control 5.0969∗ 5.0946∗ 5.1047∗ 5.0901∗

[4.5606; 5.6332] [4.5585; 5.6307] [4.5450; 5.6644] [4.5471; 5.6331]
causalEffect 0.8157 0.8223 0.8717 0.7892

[−0.1108; 1.7423] [−0.1057; 1.7504] [−0.0838; 1.8272] [−0.1325; 1.7108]
probTreatment 0.4114∗ 0.4114∗ 0.4114∗ 0.4114∗

[0.3755; 0.4473] [0.3755; 0.4473] [0.3755; 0.4473] [0.3755; 0.4473]
Num. obs. 722 722 722 722
Num. Bal. Cov. 5 5 5 5
∗ Null hypothesis value outside the confidence interval.

Table 2: Causal Effect for a Training Program

3 The causalGEL function

The function allows to estimate the causal effect without having to go through the
step of creating the model. The different arguments are a mixture of the arguments
of causalModel(), the solveGel method of the “momentfit” package, and the gelFit
method. The average causal effect of the training program, assuming random assign-
ment and using EL, can be obtained as follows:

data(nsw)

nsw$re78 <- nsw$re78/1000

nsw$re75 <- nsw$re75/1000

fit1 <- causalGEL(re78~treat, ~age+ed+black+hisp+re75, nsw, gelType="EL",

momType="uncondBal")

Similarly, the ACE, ACT and ACC can be computed as follows (The results are
presented in Table 2).

fit2 <- causalGEL(re78~treat, ~age+ed+black+hisp+re75, nsw, gelType="EL",

momType="ACE")

fit3 <- causalGEL(re78~treat, ~age+ed+black+hisp+re75, nsw, gelType="EL",

momType="ACT")

fit4 <- causalGEL(re78~treat, ~age+ed+black+hisp+re75, nsw, gelType="EL",

momType="ACC")

It is also possible to estimate restricted models, by passing restrictions to the ar-
guments “cstLHS” and “cstRHS”. There are two possible approaches. The first one
is to define the restrictions in a vector of characters. In that case, “cstRHS” is set to
its default value. For example, if we want to restrict the causal effect coefficient to be
equal to 1, we proceed as:

causalGEL(re78~treat, ~age+ed+black+hisp+re75, nsw, gelType="EL",

momType="uncondBal", cstLHS="causalEffect=1")

## Causal Model

## *************

## Model type: Unconditional balancing

## Number of treatments: 1
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## Number of moment conditions: 8

## Number of balancing covariates: 5

## Sample size: 722

## Additional Specifications: Restricted model

## Constraints:

## causalEffect ~ 1

##

## Estimation: EL

## Convergence Theta: 0

## Convergence Lambda: 0

## coefficients:

## control probTreatment

## 5.0384965 0.4113554

If we want the above restriction plus the probability of being in the treatment group
to be equal 0.5, we proceed this way. Notice that the restricted model only has one
coefficient. To avoid complains coming from optim(), which warns you that Nelder-
Mead is not reliable in one-dimensional optimization problems, we set the method to
“Brent” using the “tControl” argument:

causalGEL(re78~treat, ~age+ed+black+hisp+re75, nsw, gelType="EL",

momType="uncondBal", cstLHS=c("causalEffect=1", "probTreatment=0.5"),

tControl=list(method="Brent", lower=0, upper=10))

## Causal Model

## *************

## Model type: Unconditional balancing

## Number of treatments: 1

## Number of moment conditions: 8

## Number of balancing covariates: 5

## Sample size: 722

## Additional Specifications: Restricted model

## Constraints:

## causalEffect ~ 1

## probTreatment ~ 0.5

##

## Estimation: EL

## Convergence Theta: 0

## Convergence Lambda: 0

## coefficients:

## control

## 5.038502

The problem with the above approach is that we need to know the names of the
coefficients before calling causalGel(). For equallity constraints, we can instead set
“cstLHS” to the coefficient positions, and “cstRHS” to their restricted values. The
above two restricted models can therefore be obtained as follows:

causalGEL(re78~treat, ~age+ed+black+hisp+re75, nsw, gelType="EL",

momType="uncondBal", cstLHS=2, cstRHS=1)@theta

## control probTreatment

## 5.0384965 0.4113554
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causalGEL(re78~treat, ~age+ed+black+hisp+re75, nsw, gelType="EL",

momType="uncondBal", cstLHS=2:3, cstRHS=c(1,.5),

tControl=list(method="Brent", lower=0, upper=10))@theta

## control

## 5.038502

Notice that it is also possible to create a restricted model and follow the method
described in Section 2. To create the above two restricted models, we first create the
unrestricted one:

Un_model <- causalModel(re78~treat, ~age+ed+black+hisp+re75, nsw,

momType="uncondBal")

Then, we use the restModel method from the “momentfit” package:

restModel(Un_model, causalEffect~1)

## Causal Model

## *************

## Model type: Unconditional balancing

## Number of treatments: 1

## Number of moment conditions: 8

## Number of balancing covariates: 5

## Sample size: 722

## Additional Specifications: Restricted model

## Constraints:

## causalEffect ~ 1

# or restModel(Un_model, "causalEffect=1")

restModel(Un_model, list(causalEffect~1, probTreatment~0.5))

## Causal Model

## *************

## Model type: Unconditional balancing

## Number of treatments: 1

## Number of moment conditions: 8

## Number of balancing covariates: 5

## Sample size: 722

## Additional Specifications: Restricted model

## Constraints:

## causalEffect ~ 1

## probTreatment ~ 0.5

# or restModel(Un_model, c("causalEffect=1", "probTreatment=0.5"))

The gelFit method can then be applied to the restricted models.

3.1 Restricting the λ’s

For the moment conditions defined by Equations 13 and 8, the analytical solution of
the λ’s associated with the first two lines is exactly 0. However, the numerical solution
is not exactly zero:
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fit1 <- causalGEL(re78~treat, ~age+ed+black+hisp+re75, nsw, gelType="EL",

momType="uncondBal")

fit1@lambda[1:2]

## control causalEffect

## 3.924937e-08 7.426004e-07

It may be faster and more precise to restrict these λ’s to be zero. If we set the option
reatrictLam to TRUE, these lambda are fixed at 0 and the coefficients associated with
the causal effect equation are computed by solving:

n∑
i=1

p̂i(θ̂, λ̂)

(
Yi − θ1 − θT2 Zi

(Yi − θ1 − θT2 Zi)Zi

)
.

Notice that the implied probabilities do not depend on θ1 and θ2, which is why we can
get them first and then solve for θ1 and θ2. We can see that the results are similar,
but it may speedup estimation especially in simulation studies.

fit2 <- causalGEL(re78~treat, ~age+ed+black+hisp+re75, nsw, gelType="EL",

momType="uncondBal", restrictLam=TRUE)

rbind(coef(fit1), coef(fit2))

## control causalEffect probTreatment

## [1,] 5.096869 0.8157308 0.4113575

## [2,] 5.096868 0.8156973 0.4113550

rbind(fit1@lambda, fit2@lambda)

## control causalEffect probTreatment treat_age treat_ed

## [1,] 3.924937e-08 7.426004e-07 0.5127469 -0.003384372 -0.05793918

## [2,] 0.000000e+00 0.000000e+00 0.5127335 -0.003384329 -0.05793893

## treat_black treat_hisp treat_re75

## [1,] 0.1635749 0.2928064 0.0008990034

## [2,] 0.1635743 0.2928069 0.0008990083

3.2 Using orthogonal bases

When the number of balancing moments increases, it may become numerically unstable
to use them directly. It is also likely that they become collinear. To avoid the problem,
we can replace the balancing matrix by the matrix of orthogonal bases that span the
same space. We borrowed the function orth() from the pracma package (Borchers,
2019). This is done by adding the option orthoBases=TRUE. The following is used to
compare the results, which are shown in Table 3. We can see that in most cases, there
is very little difference.

fit1 <- causalGEL(re78~treat, ~age+ed+black+hisp+re75, nsw, gelType="EL",

momType="ACT")

fit2 <- causalGEL(re78~treat, ~age+ed+black+hisp+re75, nsw, gelType="EL",

momType="ACT", orthoBases=TRUE)
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Original Orthogonal Bases
control 5.104714∗∗∗ 5.104703∗∗∗

(0.285569) (0.285568)
causalEffect 0.871684 0.871709

(0.487502) (0.487503)
probTreatment 0.411359∗∗∗ 0.411357∗∗∗

(0.018313) (0.018313)
Num. obs. 722 722
Num. Bal. Cov. 5 5
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 3: Comparing estimates with and without the orthogonal bases

The difference can be seen by looking at the ouput from the checkConv method:

checkConv(fit2)

## Convergence details of the Causal estimation

## ********************************************

## Causal effect on the treated

##

## Convergence of the Lambdas: TRUE

## Convergence of the Coefficients: TRUE

## Achieved moment balancing: TRUE

##

## Moments for each group:

## treat=0 treat=1

## Basis1 -0.0364384452 -0.0364384452

## Basis2 0.0001946842 0.0001946842

## Basis3 0.0074397641 0.0074397641

## Basis4 0.0002770831 0.0002770831

## Basis5 0.0001206859 0.0001206859

The method no longer compare the moments of the original data (age, educ, black,
etc.) but the moments of the bases. If some moments happen to be nearly collinear,
we may see fewer bases.
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A Some extra codes

The following extract is used with the “texreg” package of Leifeld (2013) to produce
nice latex tables.

library(causalGel)

library(texreg)

setMethod("extract", "causalGelfit",

function(model, includeSpecTest=FALSE,

specTest=c("LR","LM","J"), include.nobs=TRUE,

include.obj.fcn=TRUE, ...)

{
specTest <- match.arg(specTest)

s <- summary(model, ...)

wspecTest <- grep(specTest, rownames(s@specTest@test))

spec <- modelDims(model@model)

coefs <- s@coef

names <- rownames(coefs)

coef <- coefs[, 1]

se <- coefs[, 2]

pval <- coefs[, 4]

n <- model@model@n

gof <- numeric()

gof.names <- character()

gof.decimal <- logical()

if (includeSpecTest) {
if (spec$k == spec$q)

{
obj.fcn <- NA

obj.pv <- NA

} else {
obj.fcn <- s@specTest@test[wspecTest,1]

obj.pv <- s@specTest@test[wspecTest,3]

}
gof <- c(gof, obj.fcn, obj.pv)

gof.names <- c(gof.names,
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paste(specTest,"-test Statistics", sep=""),

paste(specTest,"-test p-value", sep=""))

gof.decimal <- c(gof.decimal, TRUE, TRUE)

}
if (include.nobs == TRUE) {

gof <- c(gof, n)

gof.names <- c(gof.names, "Num.\\ obs.")

gof.decimal <- c(gof.decimal, FALSE)

}
nbal <- length(model@model@X@balCov)

gof.names <- c(gof.names, "Num. Bal. Cov.")

gof <- c(gof, nbal)

gof.decimal <- c(gof.decimal, FALSE)

tr <- createTexreg(coef.names = names, coef = coef,

se = se, pvalues = pval,

gof.names = gof.names, gof = gof,

gof.decimal = gof.decimal)

return(tr)

})

20


