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Abstract

This vignette is a (slightly) modified version of Mair and Wilcox (2020), published in
Behavior Research Methods.

It introduces the R package WRS2 that implements various robust statistical methods.
It elaborates on the basics of robust statistics by introducing robust location, dispersion,
and correlation measures. The location and dispersion measures are then used in robust
variants of independent and dependent samples t-tests and ANOVA, including between-
within subject designs and quantile ANOVA. Further, robust ANCOVA as well as robust
mediation models are introduced. The paper targets applied researchers; it is therefore
kept rather non-technical and written in a tutorial style. Special emphasis is placed on
applications in the social and behavioral sciences and illustrations of how to perform
corresponding robust analyses in R. The R code for reproducing the results in the paper
is given in the supplementary materials.

Keywords: robust statistics, robust location measures, robust ANOVA, robust ANCOVA,
robust mediation, robust correlation.

1. Introduction
Classic inferential methods based on means (e.g., the ANOVA F -test) assume normality
and homoscedasticity (equal variances). A fundamental issue is whether violating these two
assumptions is a serious practical concern. Based on numerous articles summarized in Wilcox
(2017), the answer is an unequivocal “yes”. Under general conditions they can have relatively
poor power, they can yield inaccurate confidence intervals, and they can poorly characterize
the extent groups differ. Even a small departure from normality can be a serious concern.
Despite the central limit theorem, certain serious concerns persist even when dealing with
large sample sizes. Least squares regression inherits all of these concerns and new concerns
are introduced.
A strategy for salvaging classic methods is to test assumptions. For example, test the hy-
pothesis that groups have equal variances and if it fails to reject, assume homoscedasticity.
However, published papers summarized in Wilcox (2017) indicate that this strategy is unsat-
isfactory. Roughly, such tests do not have enough power to detect situations where violating
assumptions is a serious practical concern. A simple transformation of the data is another
strategy that is unsatisfactory under general conditions.
The family of robust statistical methods offers an attractive framework for dealing with these
issues. In some situations robust methods make little practical difference, but they can sub-
stantially alter our understanding of data. The only known method for determining whether
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this is the case is to simply use a robust method and compare to the results based on a classic
technique.
The R (R Core Team 2019) package ecosystem gives the user many possibilities to apply
robust methods. A general overview of corresponding implementations is given on the CRAN
task view on robust statistics1. Here we focus on the WRS2 package, available on CRAN, that
implements methods from the original WRS package (Wilcox and Schönbrodt 2017). WRS2
is less comprehensive than WRS but implements the most important functionalities in a user-
friendly manner (it uses data frames as basic input structures instead of lists, formula objects
for model specification, basic S3 print/summary/plot methods, etc). Here we elaborate on
basic data analysis strategies implemented in WRS2 and especially relevant for the social and
behavioral sciences. The article starts with simple robust measures of location, dispersion
and correlation, followed by robust group comparison strategies such as t-tests, ANOVA,
between-within subject designs, and quantile comparisons. Subsequently, we present robust
ANCOVA and robust mediation strategies.
Note that in the text we only give a minimum of technical details, necessary to have a basic
understanding of the respective method. An excellent introduction to robust methods within
a psychology context is given in Field and Wilcox (2017), more comprehensive treatments are
given in Wilcox (2017).

2. Robust Measures of Location, Scale, and Dependence

2.1. Robust Location Measures

A robust alternative to the arithmetic mean x̄ is the class of trimmed means, which contains
the sample median as a special case. A trimmed mean discards a certain percentage at both
ends of the distribution. For instance, a 10% trimmed mean cuts off 10% at the lower end
and 10% the higher end of the distribution. Let x1, . . . x10 be n = 10 sample values, sorted
in ascending order. The 10% trimmed sample mean is

x̄t = (x2 + x3 + · · ·+ x8 + x9)/8. (1)

That is, it excludes the lowest and the largest value and computes the arithmetic mean on
the remaining values. The sample size h after trimming is called effective sample size (here,
h = 8). Note that if the trimming portion is set to γ = 0.5, the trimmed mean x̄t results in
the median x̃. An appeal of a 20% trimmed mean is that it achieves nearly the same amount
of power as the mean when sampling from a normal distribution. And when there are outliers,
a 20% trimmed mean can have a subtantially smaller standard error.
In R, a trimmed mean can be computed via the basic mean function by setting the trim
argument accordingly. Let us illustrate its computation using a simple data vector taken
from a self-awareness and self-evaluation study by Dana (1990). The variable reflects the
time (in sec.) persons could keep a portion of an apparatus in contact with a specified target.
Note that this variable is skewed, which is the standard for duration data. The 10% trimmed
mean including the standard error (see Appendix for details) can be computed as follows. For
comparison we also report the standard arithmetic mean and its standard error.

1URL: http://cran.r-project.org/web/views/Robust.html

http://cran.r-project.org/web/views/Robust.html
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R> library("WRS2")
R> timevec <- c(77, 87, 88, 114, 151, 210, 219, 246, 253, 262, 296, 299,
+ 306, 376, 428, 515, 666, 1310, 2611)
R> mean(timevec, 0.1)

[1] 342.7059

R> trimse(timevec, 0.1)

[1] 103.2686

R> mean(timevec)

[1] 448.1053

R> sd(timevec)/sqrt(length(timevec))

[1] 136.4174

The median including standard error from WRS2 is:

R> median(timevec)

[1] 262

R> msmedse(timevec)

[1] 77.83901

Note that in the case of ties, extant methods for estimating the standard error of the sample
median can be highly inaccurate. This includes the method used by msmedse. Inferential
methods based on a percentile bootstrap effectively deal with this issue, as implemented in
the onesampb function.
Another robust location alternative to the mean is the Winsorized mean. A 10% Winsorized
mean, for example, is computed as follows. Rather than discarding the lowest 10% of the
values, as done by the 10% trimmed mean, they are set equal to the smallest value not
trimmed. In a similar manner, the largest 10% are set equal to the largest value not trimmed.
This process is called Winsorizing, which in effect transforms the tails of the distribution.
Instead of Eq. (1), the 10% Winsorized sample mean uses

x̄w = (x2 + x2 + x3 + · · ·+ x8 + x9 + x9)/10. (2)

Thus, it replaces the lowest and the largest values by its neighbors and computes the arith-
metic mean on this new sequence of values. Similar to the trimmed mean, the amount of
Winsorizing (i.e., the Winsorizing level γ) has to be chosen a priori. The WRS2 function
to compute Winsorized mean is called winmean, whereas winvar calculates the Winsorized
variance.
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R> winmean(timevec, 0.1)

[1] 380.1579

R> winse(timevec, 0.1)

[1] 92.9417

R> winvar(timevec, 0.1)

[1] 129679

A general family of robust location measures are so called M -estimators (the “M” stands
for “maximum likelihood-type”) which are based on a loss function to be minimized. In the
simplest case we can consider a loss function of the form ∑n

i=1(xi−µ)2. Minimization results
in a standard mean estimator µ̂ = 1

n

∑n
i=1 xi. Instead of quadratic loss we can think of a more

general, differentiable distance function ξ(·):
n∑

i=1
ξ(xi − µm)→ min! (3)

Let Ψ = ξ′(·) denote its derivative. The minimization problem reduces to∑n
i=1 Ψ(xi−µm) = 0

where µm denotes the M -estimator. Several distance functions have been proposed in the
literature. Huber (1981), for instance, proposed the following function:

Ψ(x) =
{
x if |x| ≤ K
Ksign(x) if |x| > K

(4)

K is the bending constant for which Huber suggested a value of K = 1.28. Increasing K
decreases sensitivity to the tails of the distribution. The estimation of M -estimators is per-
formed iteratively (see Wilcox 2017, for details) and implemented in the mest function.

R> mest(timevec)

[1] 285.1576

R> mestse(timevec)

[1] 52.59286

Other M -estimators are the one-step estimator and the modified one-step estimator (MOM),
as implemented in the functions onestep and mom. In effect, they empirically determine
which values are outliers and eliminate them. One-sample tests for the median, one-step, and
MOM are implemented in onesampb (using a percentile bootstrap approach). Further details
on these measures including expressions for standard errors can be found in Wilcox (2017,
Chapter 3).
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2.2. Robust Correlation Coefficients

Pearson’s correlation is not robust. Outliers can mask a strong association among the bulk
of the data and even a slight departure from normality can render it meaningless (Wilcox
2017). Here we present two M -measures of correlation, meaning that they guard against the
deleterious impact of outliers among the marginal distributions. The first is the percentage
bend correlation ρpb, a robust measure of the linear association between two random vari-
ables. When the underlying data are bivariate normal, ρpb gives essentially the same values
as Pearson’s ρ. In general, ρpb is more robust to slight changes in the data than ρ. The
computation, involving a bending constant β (0 ≤ β ≤ 0.5), is given in Wilcox (2017, p. 491).
WRS2 provides the pbcor function to calculate the percentage bend correlation coefficient
and to perform a one-sample test (H0: ρpb = 0). For simultaneous inference on a correlation
matrix, pball can be used. It also includes a statistic H which tests the global hypothesis
that all percentage bend correlations in the matrix are equal to 0 in the population.
A second robust correlation measure is the Winsorized correlation ρw, which requires the
specification of the amount of Winsorization. The computation is simple: it uses Person’s
correlation formula applied on the Winsorized data. The wincor function can be used in
a similar fashion as pbcor; its extension to several random variables is called winall and
illustrated here using the hangover data from Wilcox (2017, p. 452). In a study on the effect
of consuming alcohol, the number hangover symptoms were measured for two independent
groups, with each subject consuming alcohol and being measured on three different occasions.
One group consisted of sons of alcoholics and the other one was a control group. Here we
are interested in the Winsorized correlations across the three time points for the participants
in the alcoholic group. The corresponding data subset needs to be organized in wide format
with the test occasions in separate columns.

R> library("reshape")
R> hangctr <- subset(hangover, subset = group == "alcoholic")
R> hangwide <- cast(hangctr, id ~ time, value = "symptoms")[,-1]
R> colnames(hangwide) <- paste("Time", 1:3)
R> winall(hangwide)

Call:
winall(x = hangwide)

Robust correlation matrix:
Time 1 Time 2 Time 3

Time 1 1.0000 0.2651 0.4875
Time 2 0.2651 1.0000 0.6791
Time 3 0.4875 0.6791 1.0000

p-values:
Time 1 Time 2 Time 3

Time 1 NA 0.27046 0.03935
Time 2 0.27046 NA 0.00284
Time 3 0.03935 0.00284 NA
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Figure 1: Scatterplot matrix for hangover data. The upper triangle panels report the Pearson
correlations.

Figure 1 shows the scatterplot matrix with the Pearson correlations in the upper triangle
panels. These correlations clearly differ from the robust correlations reported above.
In order to test for equality of two correlation coefficients, twopcor can be used for Pearson
correlations and twocor for percentage bend or Winsorized correlations. As an example,
using the hangover dataset we want to test whether the time 1/time 2 correlation ρpb1 of the
control group is the same as the time1/time2 correlation ρpb2 of the alcoholic group.

R> ct1 <- subset(hangover, subset = (group == "control" & time == 1))$symp
R> ct2 <- subset(hangover, subset = (group == "control" & time == 2))$symp
R> at1 <- subset(hangover, subset = (group == "alcoholic" & time == 1))$symp
R> at2 <- subset(hangover, subset = (group == "alcoholic" & time == 2))$symp
R> set.seed(123)
R> twocor(ct1, ct2, at1, at2, corfun = "pbcor", beta = 0.15)

Call:
twocor(x1 = ct1, y1 = ct2, x2 = at1, y2 = at2, corfun = "pbcor",

beta = 0.15)

First correlation coefficient: 0.5886
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Second correlation coefficient: 0.5628
Confidence interval (difference): -0.5783 0.8399
p-value: 0.9219

Note that the confidence interval (CI) for the correlation differences is bootstrapped. Other
types of robust correlation measures are the well-known Kendall’s τ and Spearman’s ρ as
implemented in the base R cor function.

3. Robust Two-Sample Testing Strategies

3.1. Robust Tests for Two Independent Groups and Effect Sizes

Yuen (1974) proposed a test statistic for a two-sample trimmed mean test which allows for
the presence of unequal variances. The test statistic is

Ty = X̄t1 − X̄t2√
d1 + d2

, (5)

where dj is an estimate of the squared standard error for X̄tj , which is based in part on the
Winsorized data. Under the null (H0: µt1 = µt2), the test statistic follows, approximately,
a t-distribution2 with νy degrees of freedom (df). Formal expressions for the standard error
in Eq. (5) and the df can be found in the Appendix. Note that if no trimming is involved,
this method reduces to Welch’s classical t-test with unequal variances (Welch 1938), as im-
plemented in t.test.
Yuen’s test is implemented in the yuen function. There is also a bootstrap version (see
yuenbt) which is suggested to be used when the amount of trimming is close to zero. The
example dataset, included in the WRS2 package, consists of various soccer team statistics in
five different European leagues, collected at the end of the 2008/2009 season. Here we focus
on the Spanish Primera División (20 teams) and the German Bundesliga (18 teams). The
data are organized in an object called SpainGer in which the goals scored per game are in the
(metric) variable called GoalsGame, and the variable League is a factor (nominal) indicating
whether the team was from the Spanish Primera División or the German Bundesliga.
We are interested in comparing the trimmed means of goals scored per game across these
two leagues. The group-wise boxplots with superimposed 1D scatterplots (points jittered) in
Figure 2 visualize potential differences in the distributions. Spain has a considerably right-
skewed goal distribution involving three outliers (Barcelona, Real Madrid, Atletico Madrid).
In the German league, the distribution looks fairly symmetric.
Yuen’s test based on the trimmed means with default trimming level of γ = 0.2 can be
computed as follows

R> yuen(GoalsGame ~ League, data = SpainGer)

Call:
yuen(formula = GoalsGame ~ League, data = SpainGer)

2It is not suggested to use this test statistic for a γ = 0.5 trimming level (which would result in median
comparisons) since the standard errors become highly inaccurate.
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Figure 2: Boxplots for scored goals per game (Spanish vs. German league) with superimposed
1D jittered scatterplot.
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Test statistic: 0.8394 (df = 16.17), p-value = 0.4135

Trimmed mean difference: -0.11494
95 percent confidence interval:
-0.405 0.1751

Explanatory measure of effect size: 0.15

The result suggests that there are no significant differences in the trimmed means across the
two leagues.
In terms of effect size, Algina, Keselman, and Penfield (2005) propose a robust version of
Cohen’s d (Cohen 1988).

δt = 0.642X̄t1 − X̄t2
S∗w

(6)

The formal expression for S∗w as well as a modification for unequal variances can be found
in the Appendix. In WRS2 this effect size (equal variances assumed) can be computed as
follows:

R> akp.effect(GoalsGame ~ League, data = SpainGer)

$AKPeffect
[1] -0.281395

$AKPci
[1] -1.2875813 0.3477103

$alpha
[1] 0.05

$call
akp.effect(formula = GoalsGame ~ League, data = SpainGer)

attr(,"class")
[1] "AKP"

The same rules of thumb as for Cohen’s d can be used; that is, |δt| = 0.2, 0.5, and 0.8
correspond to small, medium, and large effects. However, we would like to point out that
these rules should not be used blindly. As Cohen (1988, p. 79) puts it, if one finds that, “what
is here defined as large is too small (or too large) to meet what his area of behavioral science
would consider appropriate standards is urged to make more suitable operational definitions”.
Wilcox and Tian (2011) proposed an explanatory measure of effect size ξ which does not
require equal variances and can be generalized to multiple group settings. A simple way
to introduce this measure is to use the concept of explanatory power from regression with
response Y and fitted values Ŷ :

ξ2 = σ2(Ŷ )
σ2(Y ) , (7)
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where σ2(Y ) is some measure of variation associated with Y . When σ2(Y ) is taken to be the
usual variance, ξ2 = ρ2, where ρ is Pearson’s correlation.
In a t-test setting with equal samples sizes, σ2(Y ) can be simply estimated by the sample
variance based on the 2n pooled observations, whereas σ2(Ŷ ) is estimated with

(X̄1 − X̄)2 + (X̄2 − X̄)2, (8)

where X̄ is the grand mean3. The explanatory measure of effect size is simply ξ =
√
ξ2. To

make this effect size measure “robust”, all that needs to be done is to replace the grand mean
X̄ and group means X̄1 and X̄2 in Eq. (8) with a robust location measure (e.g., trimmed
mean, Winsorized mean, median) in order to estimate σ2(Ŷ ). The variance σ2(Y ) needs to
be replaced by the corresponding robust variance estimator (e.g., Winsorized variance).
In WRS2, the explanatory measure of effect size can be computed as follows:

R> set.seed(123)
R> yuen.effect.ci(GoalsGame ~ League, data = SpainGer)

$effsize
[1] 0.1506268

$alpha
[1] 0.05

$CI
[1] 0.0000000 0.6134423

Values of ξ̂ = 0.10, 0.30, and 0.50 correspond to small, medium, and large effect sizes. The
function also gives a confidence interval (CI) for ξ̂ based on a percentile bootstrap. Varying
dispersions in the response variable across the factor levels (heteroscedasticity) are allowed.
If we want to run a two-sample test on median differences or generalM -estimator differences,
the pb2gen function can be used.

R> set.seed(123)
R> pb2gen(GoalsGame ~ League, data = SpainGer, est = "median")

Call:
pb2gen(formula = GoalsGame ~ League, data = SpainGer, est = "median")

Test statistic: -0.1238, p-value = 0.39733
95% confidence interval:
-0.5062 0.2214

R> pb2gen(GoalsGame ~ League, data = SpainGer, est = "onestep")
3For unequal sample sizes a modified estimator is used that accounts for unbalancedness in the data.
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Call:
pb2gen(formula = GoalsGame ~ League, data = SpainGer, est = "onestep")

Test statistic: -0.1181, p-value = 0.39065
95% confidence interval:
-0.3838 0.1894

These tests simply use the differences in medians (i.e., X̃1− X̃2) and differences in Huber’s Ψ
estimator from Eq. (4) (i.e., Ψ(X1)−Ψ(X2)), respectively, as test statistics. CIs and p-values
are determined through bootstrap. Currently, when using the median and there are tied
values, this is the only known method that performs well in simulations (Wilcox 2017).
Another function implemented in WRS2 is qcomhd for general quantile comparison across two
groups (Wilcox, Erceg-Hurn, Clark, and Carlson 2014) using the quantile estimator proposed
by Harrell and Davis (1982). The null hypothesis is simply H0: θq1 = θq2, where θq1 and
θq2 are the q-th quantiles in group 1 and 2, respectively. Confidence intervals for θ̂q1 − θ̂q2
and p-values are determined via a percentile bootstrap. This test provides a more detailed
understanding of where and how distributions differ. Let us apply this approach on the same
data as above. We keep the default setting which tests for differences in the 0.1, 0.25, 0.5,
0.75, and 0.95 quantiles. Note that the sample size is slightly small to apply this test4.

R> set.seed(123)
R> fitqt <- qcomhd(GoalsGame ~ League, data = SpainGer,
+ q = c(0.1, 0.25, 0.5, 0.75, 0.95), nboot = 500)
R> fitqt

Call:
qcomhd(formula = GoalsGame ~ League, data = SpainGer, q = c(0.1,

0.25, 0.5, 0.75, 0.95), nboot = 500)

Parameter table:
q n1 n2 est1 est2 est1-est.2 ci.low ci.up p.crit p.value

1 0.10 20 18 1.0313 0.9035 0.1278 -0.1765 0.3259 0.0100 0.232
2 0.25 20 18 1.1950 1.0892 0.1058 -0.2335 0.3132 0.0167 0.436
3 0.50 20 18 1.3109 1.4304 -0.1194 -0.4656 0.2571 0.0125 0.492
4 0.75 20 18 1.6220 1.8078 -0.1858 -0.5377 0.3983 0.0500 0.524
5 0.95 20 18 2.5160 2.2402 0.2758 -0.6529 0.8150 0.0250 0.556

The p-values are adjusted using Hochberg’s method5 (see p.crit for the critical values the
p-values in the last column should be compared to). Note that ties in the data are not
problematic for this particular test. Plots that illustrate the results of quantile difference
tests are implemented in the rogme package (Rousselet, Pernet, and Wilcox 2017).

3.2. Robust Tests for Two Dependent Groups

Yuen’s trimmed mean t-test in Eq. (5) can be generalized to paired sample settings as follows:
4It is suggested to have at least 20 observations in each group.
5A brief explanation of Hochberg’s method can be found in the Appendix.
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Figure 3: Individual weight trajectories of anorexic girls before and after treatment.

Ty = X̄t1 − X̄t2√
d1 + d2 + d12

(9)

Under the null (H0: µt1 = µt2), Ty is t-distributed with df = h − 1, where h is the effective
sample size. Details on the computation of this statistic can be found in the Appendix.
The corresponding R function is called yuend which also reports the explanatory measure
of effect size. The dataset we use for illustration is in the MASS package (Venables and
Ripley 2002) and presents data pairs involving weights of girls before and after treatment for
anorexia. We use a subset of 17 girls from the family treatment (FT) condition. Figure 3
presents the individual trajectories. We keep the default trimming level (20%) and get the
following test results.

R> library("MASS")
R> anorexiaFT <- subset(anorexia, subset = Treat == "FT")
R> with(anorexiaFT, yuend(Prewt, Postwt))

Call:
yuend(x = Prewt, y = Postwt)

Test statistic: -3.829 (df = 10), p-value = 0.00332

Trimmed mean difference: -8.56364
95 percent confidence interval:
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-13.5469 -3.5804

Explanatory measure of effect size: 0.6

The output suggests that overall the treatment was successful. The explanatory measure of
effect size, constructed according to the same principles as outlined above, suggests a large
effect.
Quantile comparisons for paired samples (H0: θq1 = θq2) can be computed using Dqcomhd
(Wilcox and Erceg-Hurn 2012). As the independent sample version in qcomhd, it uses the
quantile estimator proposed by Harrell and Davis (1982), and bootstrapping to determine the
CI for θ̂q1 − θ̂q2 and the p-values (corrected for multiple testing).

R> set.seed(123)
R> with(anorexiaFT, Dqcomhd(Prewt, Postwt, q = c(0.25, 0.5, 0.75)))

Call:
Dqcomhd(x = Prewt, y = Postwt, q = c(0.25, 0.5, 0.75))

Parameter table:
q n1 n2 est1 est2 est1-est.2 ci.low ci.up p.crit p.value

1 0.25 17 17 79.9588 84.5667 -4.6079 -12.3789 2.4284 0.0500 0.270
2 0.50 17 17 83.1703 92.7727 -9.6024 -11.8158 -4.7773 0.0250 0.004
3 0.75 17 17 86.3380 95.8962 -9.5583 -11.9286 -6.9418 0.0167 0.000

We obtain significant weight decrease effects for the second and the third weight quartiles,
but not for the first quartile.

3.3. Comparing Two Discrete Distributions

Having two discrete variables X and Y (small sample space), sometimes it is of interest to test
whether the distributions differ at each realization x and y (H0: P (X = x) = P (Y = y)). The
function binband provides such an implementation allowing for both the method proposed by
Storer and Kim (1990) and the one by Kulinskaya, Morgenthaler, and Staudte (2010). The
test statistic is given in the Appendix.
Let us look at a simple artificial example involving responses on a five-point rating scale item
across two groups of participants with group sizes n1 and n2. The binband function compares
the two distributions at each possible value (here 1, 2, . . . , 5) in the joint sample space.

R> g1 <- c(2, 4, 4, 2, 2, 2, 4, 3, 2, 4, 2, 3, 2, 4, 3, 2, 2, 3, 5, 5, 2, 2)
R> g2 <- c(5, 1, 4, 4, 2, 3, 3, 1, 1, 1, 1, 2, 2, 1, 1, 5, 3, 5)
R> binband(g1, g2, KMS = TRUE)

Call:
binband(x = g1, y = g2, KMS = TRUE)

Parameter table:
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Value p1.est p2.est p1-p2 ci.low ci.up p.value p.crit
1 1 0.0000 0.3889 -0.3889 -0.6266 -0.1194 0.004 0.0100
2 2 0.5000 0.1667 0.3333 0.0201 0.6115 0.037 0.0125
3 3 0.1818 0.1667 0.0152 -0.2337 0.2565 0.930 0.0500
4 4 0.2273 0.1111 0.1162 -0.1353 0.3504 0.390 0.0167
5 5 0.0909 0.1667 -0.0758 -0.2969 0.1458 0.510 0.0250

The CIs are determined using the Kulinskaya-Morgenthaler-Staudte method (KMS = TRUE).
The function uses Hochberg’s multiple comparison adjustment to determine critical p-values
with the goal of controlling the probability of one or more Type I errors. The results suggest
that the distributions differ significantly at (x, y) = 1 only (p ≤ pcrit).

4. One-Way Robust Testing Strategies
Often it is said that F -tests are quite robust against normality violations. As Field and
Wilcox (2017, p. 37) recommend, such statements should be banned because based on many
papers published during the past fifty years, it is well established that this statement is not
correct (especially when dealing with heavy-tailed distributions, unequal sample sizes, and
distributions differing in skewness). In this section we present various robust one-way ANOVA
strategies, followed by higher order models in the next section.

4.1. One-Way Trimmed Means Comparisons

The first robust ANOVA alternative presented here is a one-way comparison of J trimmed
group means (H0 : µt1 = µt2 = · · · = µtJ), allowing for heteroscedasticity. Technical details
on this F -distributed Welch-type test statistic (Welch 1951) can be found in the Appendix.
In WRS2 this approach is implemented via the t1way function, here applied to the weight dif-
ferences in the anorexia data from above (post-treatment weight minus pre-treatment weight,
resulting in metric variable Wdiff). There are two different types of treatment in the data
(family treatment FT and cognitive behavioral treatment CBT) as well as one control group,
specified in the factor Treat. Figure 4 shows the corresponding boxplots with superimposed
1D scatterplots.
The robust one-way ANOVA based on trimmed means (20% trimming level) can be computed
as follows:

R> anorexia$Wdiff <- anorexia$Postwt - anorexia$Prewt
R> t1way(Wdiff ~ Treat, data = anorexia)

Call:
t1way(formula = Wdiff ~ Treat, data = anorexia)

Test statistic: F = 5.6286
Degrees of freedom 1: 2
Degrees of freedom 2: 24.89
p-value: 0.00962
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Figure 4: Boxplots with superimposed jittered 1D scatterplots for weight differences across
control and two treatment conditions.

Explanatory measure of effect size: 0.5
Bootstrap CI: [0.13; 0.77]

There is a significant overall effect in weight differences across the treatments. The explana-
tory measure of effect size ξ follows the same logic as outlined in Eq. (7). The difference
compared to the two-sample version is that Eq. (8) generalizes to

σ2(Ŷ ) = 1
J − 1

J∑
j=1

(Ȳj − Ȳ )2. (10)

The same rules of thumb apply as in the two-sample case. In this example we obtain a large
effect.
Post hoc tests on trimmed means use the linear contrast expression

Ψ̂ =
J∑

j=1
cjX̄tj . (11)

In WRS2 the constants are specified in a way such that all pairwise post hoc tests are carried
out. For instance, for comparing the first two trimmed means c1 = 1 and c2 = −1, whereas
the remaining c’s are 0.
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R> lincon(Wdiff ~ Treat, data = anorexia)

Call:
lincon(formula = Wdiff ~ Treat, data = anorexia)

psihat ci.lower ci.upper p.value
CBT vs. Cont 2.96250 -3.03709 8.96209 0.22201
CBT vs. FT -6.10909 -12.33490 0.11672 0.03885
Cont vs. FT -9.07159 -16.08255 -2.06064 0.00880

The function reports the Ψ̂ value according to Eq. (11) denoting pairwise trimmed mean
differences. The 95% CIs and the p-values are adjusted for multiple testing in the sense that
the simultaneous probability coverage of the CIs is 1− α and the family-wise error rate is α.
Details on this procedure can be found in Wilcox (1986). A bootstrap version of t1way is
implemented in t1waybt with corresponding bootstrap post hocs in mcppb20.
Note that in order to perform linear contrasts, there is no need to first obtain a significant om-
nibus ANOVA. In many experimental situations, researchers have specific predictions about
certain contrasts which can be directly tested (i.e., without computing an omnibus test first).

4.2. One-Way Quantile Comparisons

In this section we focus on testing H0 : θ1 = . . . = θJ , where the θ’s represent a particular
quantile in group j. Let us start with testing for equality of medians across J groups. The
test statistic FM , given in the Appendix, follows the same concept as the one for trimmed
means above; the only difference is that it uses an alternative estimate for the standard error.
Using our anorexia dataset, it can be computed as follows:

R> set.seed(123)
R> med1way(Wdiff ~ Treat, data = anorexia)

Call:
med1way(formula = Wdiff ~ Treat, data = anorexia)

Test statistic F: 4.5708
Critical value: 2.8398
p-value: 0.008

A few remarks regarding this test statistic. First, it has been found that by evaluating the
test statistic using the df as quoted in the Appendix (i.e., ν1 = J − 1 and ν2 =∞) can result
in the actual level being less than the nominal level, (i.e., around 0.02-0.025 when testing at
the 0.05 level and n is small). A better strategy, as provided by this implementation, is to
simulate the critical value and computing the p-value accordingly. In order to make the result
reproducible, above we set a seed.
Second, if there are too many ties in the data, the standard error becomes inaccurate. In such
situations, the Qanova function provides a good alternative, which allows for general quantile
testing across J groups, not only the median. Similar to qcomhd, the quantile ANOVA
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implemented in Qanova uses the Harrel-Davis estimator for the quantiles. It tests the global
hypothesis:

H0 : θq1 − θq2 = θq2 − θq3 = . . . = θq(J−1) − θqJ .

The p-value is determined using a bootstrap (see Wilcox 2017, p. 378–379 for details). In case
multiple quantiles are tested at the same time, the p-values are corrected using Hochberg’s
method.

R> set.seed(123)
R> fitqa <- Qanova(Wdiff ~ Treat, data = anorexia,
+ q = c(0.25, 0.5, 0.75))
R> fitqa

Call:
Qanova(formula = Wdiff ~ Treat, data = anorexia, q = c(0.25,

0.5, 0.75))

p.value p.adj
q = 0.25 0.0050 0.0100
q = 0.5 0.0017 0.0050
q = 0.75 0.0417 0.0417

It reports the unadjusted and adjusted p-values, to be compared to the α-level. We find
significant overall differences at each of the quartiles.

5. Robust Two-Way and Three-Way Comparisons
This section elaborates on higher order ANOVA designs including post hoc tests. Note that
all WRS2 robust ANOVA functions allow the user to fit the full model (i.e., including all
possible interactions) only. For more parsimonious models and specific post hoc contrasts, it
is suggested to use the corresponding WRS functions from Wilcox and Schönbrodt (2017).

5.1. Robust Two-Way ANOVA Strategies

Let us start with a two-way factorial ANOVA design involving J categories for the first
factor, and K categories for the second factor. The test statistic for the one-way trimmed
mean comparisons, as implemented in t1way, can be generalized to two-way designs; details
are given in the Appendix. The hypothesis to be tested are the usual two-way ANOVA
hypotheses using the trimmed means. Let µt be the grand trimmed mean (population), µtjk

the mean in factor level combination jk, µtj· the trimmed factor level means of the first
factor, and µt·k the trimmed factor level means for the second factor. Let αj = µtj· − µt,
βk = µt·k − µt, and (αβ)jk = µtjk − µtj· − µt·k + µt. Using this notation, the null hypotheses
are:

• First factor: H0 : ∑J
j=1 α

2
j = 0.

• Second factor: H0 : ∑K
k=1 β

2
k = 0.
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• Interaction: H0 : ∑J
j=1

∑K
k=1(αβ)2

jk = 0.

Such a robust two-way ANOVA can be carried out using the function t2way. To illustrate, we
use the beer goggles dataset by Field, Miles, and Field (2012) who studied the effects of alcohol
on mate selection in night clubs. The hypothesis is that after alcohol had been consumed,
subjective perceptions of physical attractiveness would become more inaccurate (beer goggles
effect). In this study we have the factors gender (24 male and 24 female students) and the
amount of alcohol consumed (none, 2 pints, 4 pints). At the end of the evening the researcher
took a photograph of the person the participant was chatting up. The attractiveness of the
person on the photo was then evaluated by independent judges on a scale from 0-100 (response
variable).
Figure 5 shows the interaction plots using the trimmed mean (20% trimming level) as location
measure. The two-way ANOVA on the trimmed means can be fitted as follows.

R> goggles$alcohol <- relevel(goggles$alcohol, ref = "None")
R> t2way(attractiveness ~ gender*alcohol, data = goggles)

Call:
t2way(formula = attractiveness ~ gender * alcohol, data = goggles)

value p.value
gender 1.6667 0.209
alcohol 48.2845 0.001
gender:alcohol 26.2572 0.001

Not surprisingly, based on what we see in Figure 5, the interaction between gender and alcohol
is significant.
Post hoc tests can be applied using the mcp2atm function, which, internally calls the lincon
function described above.

R> postgoggle <- mcp2atm(attractiveness ~ gender*alcohol, data = goggles)
R> postgoggle$contrasts

gender1 alcohol1 alcohol2 alcohol3 gender1:alcohol1
Female_None 1 1 1 0 1
Female_2 Pints 1 -1 0 1 -1
Female_4 Pints 1 0 -1 -1 0
Male_None -1 1 1 0 -1
Male_2 Pints -1 -1 0 1 1
Male_4 Pints -1 0 -1 -1 0

gender1:alcohol2 gender1:alcohol3
Female_None 1 0
Female_2 Pints 0 1
Female_4 Pints -1 -1
Male_None -1 0
Male_2 Pints 0 -1
Male_4 Pints 1 1
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Figure 5: Trimmed means interaction plots for beer goggles dataset.

The second line prints the contrast matrix which illustrates what effects are actually being
tested. The results are the following:

R> postgoggle

Call:
mcp2atm(formula = attractiveness ~ gender * alcohol, data = goggles)

psihat ci.lower ci.upper p-value
gender1 10.00000 -6.00223 26.00223 0.20922
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alcohol1 -3.33333 -20.49551 13.82885 0.61070
alcohol2 35.83333 19.32755 52.33911 0.00003
alcohol3 39.16667 22.46796 55.86537 0.00001
gender1:alcohol1 -3.33333 -20.49551 13.82885 0.61070
gender1:alcohol2 -29.16667 -45.67245 -12.66089 0.00025
gender1:alcohol3 -25.83333 -42.53204 -9.13463 0.00080

Let us focus on the interaction first by starting at the bottom. The last effect tells us that
the difference attractiveness ratings for 4 pints vs. 2 pints differs significantly in men and
women. Similary, the second to last effect tells us that this significant gender difference also
applies to 4 pints vs. none. However, males and females do not behave differently if we look
at 2 pints vs. none (no significant effect; see third line from the bottom). Note that the 95%
CIs and the p-values are adjusted for multiple testing.
Other options for robust two-way ANOVAs are median comparisons using med2way, and
general M -estimator comparisons using pbad2way. For both functions post hoc comparisons
can be computed using mcp2a (the estimator argument needs to be specified correspondingly)
which uses precentile bootstrap for CIs and p-values. Using the beer goggles dataset, the
function calls for median and modified one-step estimators (MOM) are the following.

R> set.seed(123)
R> med2way(attractiveness ~ gender*alcohol, data = goggles)
R> mcp2a(attractiveness ~ gender*alcohol, data = goggles, est = "median")
R> pbad2way(attractiveness ~ gender*alcohol, data = goggles, est = "mom")
R> mcp2a(attractiveness ~ gender*alcohol, data = goggles, est = "mom")

We omit showing the output here; the results are consistent with the trimmed mean compar-
isons above. Formal details on the median test are given in the Appendix; elaborations on
M -estimator comparisons are given in Wilcox (2017, p. 385–388).

5.2. Robust Three-Way ANOVA Strategies

Having three-way designs, WRS2 provides the function t3way for robust ANOVA based on
trimmed means. The test statistics are determined according to the same principles as in
t2way (see Appendix). Again, the critical values are adjusted such that no df of the χ2-
distributed test statistics are reported (see Wilcox 2017, p. 341–346, for details).
The dataset we use to illustrate this approach is from Seligman, Nolen-Hoeksema, Thornton,
and Thornton (1990). At a swimming team practice, 58 participants were asked to swim
their best event as far as possible, but in each case the time reported was falsified to indicate
poorer than expected performance (i.e., each swimmer was disappointed). 30 minutes later
the athletes did the same performance again. The authors predicted that on the second
trial more pessimistic swimmers would do worse than on their first trial, whereas optimistic
swimmers would do better. The response is ratio = Time1/Time2. A ratio larger than 1
means that a swimmer performed better in trial 2. Figure 6 shows two separate interaction
plots for male and female swimmers, using the 20% trimmed means.
A three-way robust ANOVA on the trimmed means using t3way can be computed as follows:

R> t3way(Ratio ~ Optim*Sex*Event, data = swimming)
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Figure 6: Interaction plot for the trimmed means of the time ratio response for males and
females separately.

Call:
t3way(formula = Ratio ~ Optim * Sex * Event, data = swimming)

value p.value
Optim 7.1799150 0.016
Sex 2.2297985 0.160
Event 0.3599633 0.845
Optim:Sex 6.3298070 0.023
Optim:Event 1.1363057 0.595
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Sex:Event 3.9105283 0.192
Optim:Sex:Event 1.2273516 0.572

The crucial effect for interpretation is the significant Optim:Sex two-way interaction. We
could produce corresponding two-way interaction plots and see that, independently from the
swimming style, for the females it does not matter whether someone is an optimist or a
pessimist, the time ratio does not change drastically. For the males, there is a substantial
difference in the time ratio for optimists and pessimists.

6. Repeated Measurement and Mixed ANOVA Designs

6.1. Paired Samples/Repeated Measurement Designs

In this section we consider paired samples/repeated measurement designs for more than two
dependent groups/time points. The WRS2 package provides an implementation of a robust
heteroscedastic repeated measurement ANOVA based on the trimmed means. The formulas
for the test statistic and the df computations are given in the Appendix.
In WRS2, the function to compute a robust repeated measurements ANOVA is rmanova with
corresponding post hoc tests in rmmcp. The data need to be in long format and balanced
across the groups. Each of these functions takes three arguments: a vector with the responses
(argument: y), a factor for the groups (e.g., time points; argument: groups), and a factor for
the blocks (typically a subject ID; argument: blocks).
Once more we use the hangover dataset from above, where hangover symptoms were measured
for two independent groups, with each subject consuming alcohol and being measured on three
different occasions. One group consisted of sons of alcoholics and the other was a control
group. A representation of the dataset is given in Figure 7.
Here we focus on a single between subjects factor only: control group. In the next section
we consider the full dataset with the corresponding between-within subjects design. After
subsetting the data accordingly, a robust repeated measurement ANOVA using the rmanova
function can be fitted as follows:

R> hangoverC <- subset(hangover, subset = group == "control")
R> with(hangoverC, rmanova(y = symptoms, groups = time, block = id))

Call:
rmanova(y = symptoms, groups = time, blocks = id)

Test statistic: F = 2.6883
Degrees of freedom 1: 2
Degrees of freedom 2: 22
p-value: 0.09026

Post hoc tests (linear contrasts) can be performed as follows:

R> with(hangoverC, rmmcp(y = symptoms, groups = time, block = id))
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Figure 7: 20% trimmed means of the number of hangover symptoms across three time points.

Call:
rmmcp(y = symptoms, groups = time, blocks = id)

psihat ci.lower ci.upper p.value p.crit sig
1 vs. 2 -2.66667 -7.47192 2.13858 0.14588 0.0169 FALSE
1 vs. 3 -1.00000 -3.17265 1.17265 0.22085 0.0250 FALSE
2 vs. 3 0.50000 -2.57826 3.57826 0.65583 0.0500 FALSE

The rmmcp function uses Hochberg’s approach to control for the family-wise error (FWE).
The bootstrap version of rmanova is rmanovab with bootstrap post hocs in pairdepb.

6.2. Mixed Designs

Let us extend the ANOVA setting above towards mixed designs. That is, we have within-
subjects effects (e.g., due to repeated measurements) and between-subjects effects (group
comparisons). The main function in WRS2 for computing a between-within subjects ANOVA
on the trimmed means is bwtrim. For generalM -estimators, the package offers the bootstrap
based functions sppba, sppbb, and sppbi for the between-subjects effect, the within-subjects
effect, and the interaction effect, respectively. Each of these functions requires the full model
specification through the formula interface as well as an id argument that accounts for the
within-subject structure.
We use the hangover data from above and fit a between-within subjects ANOVA on the 20%
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trimmed means:

R> bwtrim(symptoms ~ group*time, id = id, data = hangover)

Call:
bwtrim(formula = symptoms ~ group * time, id = id, data = hangover)

value df1 df2 p.value
group 6.6087 1 14.4847 0.0218
time 4.4931 2 15.4173 0.0290
group:time 0.5663 2 15.4173 0.5790

We get a non-significant interaction; both main effects are significant.
We can also perform post hoc comparisons on the single effects. WRS2 implements a boot-
strap based approach for one-step M estimators, modified one-step estimators (MOM), and
medians. To illustrate the hypotheses being tested, we use a different dataset with a slightly
more complex design (in terms of the number of factor levels). The study by McGrath (2016)
looked at the effects of two forms of written corrective feedback on lexico-grammatical ac-
curacy (errorRatio) in the academic writing of English as a foreign language university
students. It had a 3 × 4 within-by-between design with three groups (two treatment and
one control; group) measured over four occasions (pre-test, treatment, post-test, delayed
post-test; essay).
It helps to introduce the following notations. We have j = 1, . . . , J between subjects groups
(in our example J = 3) and k = 1, . . . ,K within subjects groups (e.g., time points; in
our example K = 4). Let Yijk be the response of participant i, belonging to group j on
measurement occasion k.
Ignoring the group levels j for the moment, Yijk can be simplified to Yik. For two occasions k
and k′ we can compute the difference score Dikk′ = Yik − Yik′ . Let θkk′ be some M -estimator
associated with Dikk′ . In the special case of two measurement occasions (i.e., K = 2), we can
compute a single difference. In our example with K = 4 occasions we can compute

(4
2
)

= 6
such M -estimators. The null hypothesis is:

H0 : θ1,2 = θ1,3 = θ1,4 = θ2,3 = θ2,4 = θ3,4

Thus, it is tested whether the “typical” difference score (as measured by an M -estimator)
between any two levels of measurement occasions is 0 (while ignoring the between-subjects
groups). For the essays dataset we get:

R> set.seed(123)
R> sppbb(errorRatio ~ group*essay, id, data = essays)

Call:
sppbb(formula = errorRatio ~ group * essay, id = id, data = essays)

Test statistics:
Estimate
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essay1-essay2 -0.083077
essay1-essay3 0.068214
essay1-essay4 0.003929
essay2-essay3 0.092500
essay2-essay4 -0.033333
essay3-essay4 -0.065769

Test whether the corrresponding population parameters are the same:
p-value: 0.41

The p-value suggests that we cannot reject the H0 of equal difference scores.
In terms of comparisons related to the between-subjects we can think of two principles. The
first one is to perform pairwise group comparisons within each measurement occasion (K = 4).
In our case this leads to 4×

(3
2
)
parameters (here, the first index relates to j and the second

index to k). We can establish the following K null hypotheses:

H
(1)
0 : θ1,1 = θ2,1 = θ3,1

H
(2)
0 : θ1,2 = θ2,2 = θ3,2

H
(3)
0 : θ1,3 = θ2,3 = θ3,3

H
(4)
0 : θ1,4 = θ2,4 = θ3,4.

We aggregate these hypotheses into a single H0 which tests whether these K null hypotheses
are simultaneously true.

H0 : θ1,1 − θ2,1 = θ1,1 − θ3,1 = θ2,1 − θ3,1 =
θ1,2 − θ2,2 = θ1,2 − θ3,2 = θ2,2 − θ3,2 =
θ1,3 − θ2,3 = θ1,3 − θ3,3 = θ2,3 − θ3,3 =
θ1,4 − θ2,4 = θ1,4 − θ3,4 = θ2,4 − θ3,4 = 0.

In WRS2 this hypothesis can be tested as follows:

R> set.seed(123)
R> sppba(errorRatio ~ group*essay, id, data = essays, avg = FALSE)

Call:
sppba(formula = errorRatio ~ group * essay, id = id, data = essays,

avg = FALSE)

Test statistics:
Estimate

essay1 Control-Indirect 0.17664
essay1 Control-Direct 0.10189
essay1 Indirect-Direct -0.07475
essay2 Control-Indirect 0.23150
essay2 Control-Direct 0.25464
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essay2 Indirect-Direct 0.02314
essay3 Control-Indirect 0.05614
essay3 Control-Direct 0.18000
essay3 Indirect-Direct 0.12386
essay4 Control-Indirect 0.43300
essay4 Control-Direct -0.11489
essay4 Indirect-Direct -0.54789

Test whether the corrresponding population parameters are the same:
p-value: 0.474

Again, we cannot reject H0.
Using this principle, many tests have to be carried out. An alternative that seems more
satisfactory in terms of Type I errors is to use the average across measurement occasions,
that is

θ̄j· =
1
K

K∑
k=1

θjk. (12)

Correspondingly, in our example a null hypothesis can be formulated as

H0 : θ̄1· = θ̄2· = θ̄3·

and computed as follows by using the default avg = TRUE:

R> set.seed(123)
R> sppba(errorRatio ~ group*essay, id, data = essays)

Call:
sppba(formula = errorRatio ~ group * essay, id = id, data = essays)

Test statistics:
Estimate

Control-Indirect 0.2243
Control-Direct 0.1054
Indirect-Direct -0.1189

Test whether the corrresponding population parameters are the same:
p-value: 0.476

Finally, let us elaborate on the sppbi function which performs tests on the interactions.
In the sppbb call six parameters were tested and we ignored the between-subjects group
structure. Now we do not further ignore the group structure and compute M -estimators
based on measurement occasion differences for each group separately. In the notation below,
the group index is on the right hand side of the pipe symbol, the differences in measurement
occasions on the left hand side. The null hypothesis is a follows:

H0 : θ1,2|1 − θ1,3|1 = θ1,4|1 − θ2,3|1 = θ2,4|1 − θ3,4|1 =
θ1,2|2 − θ1,3|2 = θ1,4|2 − θ2,3|2 = θ2,4|2 − θ3,4|2 =
θ1,2|3 − θ1,3|3 = θ1,4|3 − θ2,3|3 = θ2,4|3 − θ3,4|3 = 0.
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The WRS2 function call to test this hypothesis is:

R> set.seed(123)
R> sppbi(errorRatio ~ group*essay, id, data = essays)

Call:
sppbi(formula = errorRatio ~ group * essay, id = id, data = essays)

Test statistics:
Estimate

essay1-essay2 Control-Indirect -0.14667
essay1-essay2 Control-Direct 0.12083
essay1-essay2 Indirect-Direct 0.26750
essay1-essay3 Control-Indirect -0.11778
essay1-essay3 Control-Direct -0.02222
essay1-essay3 Indirect-Direct 0.09556
essay1-essay4 Control-Indirect -0.23600
essay1-essay4 Control-Direct 0.21678
essay1-essay4 Indirect-Direct 0.45278
essay2-essay3 Control-Indirect 0.19293
essay2-essay3 Control-Direct -0.07889
essay2-essay3 Indirect-Direct -0.27182
essay2-essay4 Control-Indirect 0.10571
essay2-essay4 Control-Direct 0.26905
essay2-essay4 Indirect-Direct 0.16333
essay3-essay4 Control-Indirect -0.20221
essay3-essay4 Control-Direct 0.10643
essay3-essay4 Indirect-Direct 0.30864

Test whether the corrresponding population parameters are the same:
p-value: 0.682

Again, we cannot reject H0.

7. Robust nonparametric ANCOVA

7.1. Running interval smoothers

In this section we introduce a robust ANCOVA version which uses smoothing internally.
When dealing with regression, there are situations the usual linear model appears to suffice.
But it is well established that parametric regression models can be highly unsatisfactory. In
general, a smoother is a function that approximates the true regression line via a technique
that deals with curvature in a reasonably flexible manner. Smoothing functions typically have
a smoothing parameter by means of which the user can steer the degree of smoothing. If the
parameter is too small, the smoothing function might overfit the data. If the parameter is
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too large, we might disregard important patterns. The general strategy is to find the smallest
parameter so that the plot looks reasonably smooth.
A popular regression smoother is LOWESS (locally weighted scatterplot smoothing) regres-
sion which belongs to the family of nonparametric regression models and can be fitted using
the lowess function. The smoothers presented here involve robust location measures from
above and are called running interval smoothers which work as follows.
We have pairs of observations (Xi, Yi). The strategy behind an interval smoother is to
compute the γ-trimmed mean using all of the Yi values for which the corresponding Xi’s are
close to a value of interest x (Wilcox 2017). Let MAD be the median absolute deviation,
that is, MAD = median|Xi − X̃|. Let MADN = MAD/z0.75, where z0.75 represents the 0.75
quantile of the standard normal distribution. The point x is said to be close to Xi if

|Xi − x| ≤ f ×MADN.

Here, f as a constant called the smoothing parameter. As f increases, the neighborhood of
x gets larger. Let

N(Xi) = {j : |Xj − xi| ≤ f ×MADN},

such that N(Xi) indexes all the Xj values that are close to x. Let θ̂i be a robust location
parameter of interest. A running interval smoother computes n θ̂i values based on the corre-
sponding Y -value for which Xj is close to Xi. That is, the smoother defines an interval and
runs across all the X-values. Within a regression context, these estimates represent the fitted
values. Then we can plot the (Xi, θ̂i) tuples into the (Xi, Yi) scatterplot which gives us the
nonparametric regression fit. The smoothness of this function depends on f .
The WRS2 package provides smoothers for trimmed means (runmean), general M -estimators
(rungen), and bagging versions of general M -estimators (runmbo), recommended for small
datasets.
Let us look at a data example taken from Wright and London (2009) where we have measure-
ments for the length of a chile and its heat (scored on a scale from 0-11). We study various f
values and various robust location measures θ̂i. The left panel in Figure 8 displays smoothers
involving different robust location measures. The right panel shows a trimmed mean inter-
val smoothing with varying smoothing parameter f . We see that, at least in this dataset,
there are no striking differences between various smoothers (see functions runmean, rungen,
and runmbo) among the various location measures. However, the choice of the smoothing
parameter f affects the function heavily.

7.2. Robust ANCOVA

ANCOVA involves a factorial design and metric covariates that were not part of the exper-
imental manipulation. It assumes homogeneity of regression slopes across the groups when
regressing the dependent variable on the covariate. In addition, normality is assumed as
well as two types of homoscedasticity. Violating any of these assumptions can have a serious
negative impact on the classic ANCOVA method. The robust ANCOVA function in WRS2
does not assume homoscedasticity nor homogeneity of regression slopes. In fact, it does not
make any parametric assumption on the regressions at all and uses running interval smooth-
ing (trimmed means) for each subgroup. Both nonparametric curves can be compared for
subgroup differences at various points of interest along the x-continuum.
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Figure 8: Top panel: smoothers with various robust location measures. Bottom panel:
trimmed mean smoother with varying smoothing parameter f .

The WRS2 function ancova fits a robust ANCOVA. In its current implementation it is lim-
ited to one factor with two categories and one covariate only. A bootstrap version of it is
implemented as well (ancboot). Both functions perform the running interval smoothing on
the trimmed means. Yuen’s tests on trimmed mean differences are applied at specified de-
sign points. It the design point argument (pts) is not specified, the routine automatically
computes five points (for details see Wilcox 2017, p. 695). It is suggested that group sizes
around the design point subject to Yuen’s test should be at least 12. Regarding the multiple
testing problem, the CIs are adjusted to control the probability of at least one Type I error.
The p-values are not adjusted.
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The dataset we use to demonstrate robust ANCOVA is from Gelman and Hill (2007). It is
based on data involving an educational TV show for children called “The Electric Company”.
In each of four grades, the classes were randomized into treated groups and control groups.
The kids in the treatment group were exposed to the TV show, those in the control group
not. At the beginning and at the end of the school year, students in all the classes were
given a reading test. The average test scores per class (pre-test and post-test) were recorded.
In this analysis we use the pretest score as the covariate and are interested in possible dif-
ferences between treatment and control group with respect to the post-test scores. We are
interested in comparisons at six particular design points. We set the smoothing parameters
to a considerably small value.

R> comppts <- c(18, 70, 80, 90, 100, 110)
R> fitanc <- ancova(Posttest ~ Pretest + Group, fr1 = 0.3, fr2 = 0.3,
+ data = electric, pts = comppts)
R> fitanc

Call:
ancova(formula = Posttest ~ Pretest + Group, data = electric,

fr1 = 0.3, fr2 = 0.3, pts = comppts)

n1 n2 diff se lower CI upper CI statistic p-value
Pretest = 18 21 20 -11.1128 4.2694 -23.3621 1.1364 2.6029 0.0163
Pretest = 70 20 21 -3.2186 1.9607 -8.8236 2.3864 1.6416 0.1143
Pretest = 80 24 23 -2.8146 1.7505 -7.7819 2.1528 1.6079 0.1203
Pretest = 90 24 22 -5.0670 1.3127 -8.7722 -1.3617 3.8599 0.0006
Pretest = 100 28 30 -1.8444 0.9937 -4.6214 0.9325 1.8561 0.0729
Pretest = 110 24 22 -1.2491 0.8167 -3.5572 1.0590 1.5294 0.1380

Figure 9 shows the results of the robust ANCOVA fit. The vertical gray lines mark the
design points. By taking into account the multiple testing nature of the problem, we get
only one significant group difference, for a pre-test value of x = 90. For illustration, this plot
also includes the linear regression fits for both subgroups (this is what a standard ANCOVA
would do).

8. Robust mediation analysis
In this section we focus on a simple robust mediator model, involving a response Y , a predictor
X, and a mediator M , and consisting of the following set of regressions:

Yi = β01 + β11Xi + εi1,

Mi = β02 + β12Xi + εi2,

Yi = β03 + β13Xi + β23Mi + εi3.

The amount of mediation is reflected by the indirect effect β12β23 (also called the mediating
effect). The state-of-the-art approach to test for mediation (H0: β12β23 = 0) is to apply a
bootstrap approach as proposed by Preacher and Hayes (2004).
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Figure 9: Robust ANCOVA fit on TV show data across treatment and control group. The
nonparametric regression lines for both subgroups are shown as well as the OLS fit (dashed
lines). The vertical lines show the design points our comparisons are based on.

In terms of a robust mediator model version, instead of OLS a robust estimation routine needs
be applied to estimate the regression equations above (e.g., anM -estimator as implemented in
the rlm function can be used). For testing the mediating effect, Zu and Yuan (2010) proposed
a robust approach which is implemented in WRS2 via the ZYmediate function. For technical
details we refer to Zu and Yuan (2010).
The example we use for illustration is taken from Howell (2012), and based on data by
Leerkes and Crockenberg (2002). In this dataset (n = 92), the relationship between how girls
were raised by there own mother (MatCare) and their later feelings of maternal self-efficacy
(Efficacy), that is, our belief in our ability to succeed in specific situations, is studied. The
mediating variable is self-esteem (Esteem). All variables are scored on a continuous scale.
In the first part we fit a standard mediator model with bootstrap-based testing of the medi-
ating effect using the mediation package (Tingley, Yamamoto, Hirose, Keele, and Imai 2014).

R> library("mediation")
R> fit.mx <- lm(Esteem ~ MatCare, data = Leerkes)
R> fit.yxm <- lm(Efficacy ~ MatCare + Esteem, data = Leerkes)
R> set.seed(123)
R> fitmed <- mediation::mediate(fit.mx, fit.yxm, treat = "MatCare",
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+ mediator = "Esteem", sims = 999, boot = TRUE, boot.ci.type = "bca")
R> summary(fitmed)

Causal Mediation Analysis

Nonparametric Bootstrap Confidence Intervals with the BCa Method

Estimate 95% CI Lower 95% CI Upper p-value
ACME 0.0531 0.0179 0.10 0.006 **
ADE 0.0565 -0.0201 0.13 0.120
Total Effect 0.1096 0.0439 0.18 0.002 **
Prop. Mediated 0.4843 0.2122 1.89 0.008 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sample Size Used: 92

Simulations: 999

In this output the ACME (average causal mediation effect) represents the indirect effect of
MatCare on Efficacy, including the 95% bootstrap CI. It suggests that there is a significant
mediator effect.
Now we fit this mediation model in a robust way with ZYmediate from WRS2 which uses
bootstrap for the CI of the mediation effect as well.

R> set.seed(123)
R> with(Leerkes, ZYmediate(MatCare, Efficacy, Esteem, nboot = 2000))

Call:
ZYmediate(x = MatCare, y = Efficacy, med = Esteem, nboot = 2000)

Mediated effect: 0.0513
Confidence interval: 0.016 0.0979
p-value: 0.001

For the robust regression setting we get similar results as with OLS. The bootstrap based
robust mediation test suggests again a significant mediator effect.
Note that robust moderator models can be fitted in a similar fashion as ordinary moderator
models. Moderator models are often computed on the base of centered versions of predictor
and moderator variable, including a corresponding interaction term (see, e.g., Howell 2012).
In R, a basic moderator model can be fitted using lm. A robust version of it can be achieved
by replacing the lm call by an rlm call from the MASS package.
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9. Discussion
This article introduced the WRS2 package for computing basic robust statistical methods in a
user-friendly manner. Such robust models and tests should be used when certain distributional
assumptions, as required by classical statistical methods, cannot be justified. The main focus
of the WRS2 package is on simple ANOVA (and related) strategies. For more complex
designs, we suggest to consider the following packages. The robustlmm package (Koller 2016)
implements robust mixed-effects models. For instance, if researchers have to deal with more
complex between-within subjects settings that go beyond of what the bwtrim function offers,
robustlmm with its rlmer function is highly attractive. For complex mediator-moderator
structures, or robust path models with or without latent variables in general, lavaan (Rosseel
2012) offers a variety of robust estimators. Some applications are shown in Field and Wilcox
(2017).

References

Algina J, Keselman HJ, Penfield RD (2005). “An Alternative to Cohen’s Standardized Mean
Difference Effect Size: A Robust Parameter and Confidence Interval in the Two Independent
Groups Case.” Psychological Methods, 10, 317–328.

Cohen J (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd edition. Academic
Press, New York.

Dana E (1990). Salience of the Self and Salience of Standards: Attempts to Match Self to
Standard. Ph.D. thesis, Department of Psychology, University of Southern California, Los
Angeles, CA.

Field AP, Miles J, Field Z (2012). Discovering Statistics Using R. Sage Publications, London,
UK.

Field AP, Wilcox RR (2017). “Robust statistical methods: A primer for clinical psychology
and experimental psychopathology researchers.” Behaviour Research and Therapy, 98, 19–
38.

Gelman A, Hill J (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambridge University Press, New York, NY.

Harrell FE, Davis CE (1982). “A New Distribution-Free Quantile Estimator.” Biometrika,
69, 635–640.

Howell DC (2012). Statistical Methods for Psychology. 8th edition. Wadsworth, Belmont, CA.

Huber PJ (1981). Robust Statistics. John Wiley & Sons, New York.

Koller M (2016). “robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects
Models.” Journal of Statistical Software, 75(6), 1–24.

Kulinskaya E, Morgenthaler S, Staudte R (2010). “Variance Stabilizing the Difference of Two
Binomial Proportions.” The American Statistician, 64, 350–356.



34 The WRS2 Package

Leerkes EM, Crockenberg SC (2002). “The Development of Maternal Self-Efficacy and Its
Impact on Maternal Behavior.” Infancy, 3, 227–247.

Mair P, Wilcox RR (2020). “Robust Statistical Methods in R Using the WRS2 Package.”
Behavior Research Methods, 52, 464–488.

McGrath D (2016). The Effects of Comprehensive Direct and Indirect Written Corrective
Feedback on Accuracy in English as a Foreign Language Students’ Writing. Master’s thesis,
Macquarie University, Sydney, Australia.

Preacher KJ, Hayes AF (2004). “SPSS and SAS Procedures for Estimating Indirect Effects
in Simple Mediation Models.” Behavior Research Methods, Instruments, and Computers,
36, 717–731.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rosseel Y (2012). “lavaan: An R Package for Structural Equation Modeling.” Journal of
Statistical Software, 48(2), 1–36.

Rousselet GA, Pernet CR, Wilcox RR (2017). “Beyond differences in means: robust graphical
methods to compare two groups in neuroscience.” European Journal of Neuroscience, 46,
1738–1748.

Seligman MEP, Nolen-Hoeksema S, Thornton N, Thornton CM (1990). “Explanatory Style
as a Mechanism of Disappointing Athletic Performance.” Psychological Science, 1, 143–146.

Storer BE, Kim C (1990). “Exact Properties of Some Exact Test Statistics for Comparing
Two Binomial Proportions.” Journal of the American Statistical Association, 85, 146–155.

Tingley D, Yamamoto T, Hirose K, Keele L, Imai K (2014). “mediation: R package for causal
mediation analysis.” Journal of Statistical Software, 59(5), 1–38.

Venables WN, Ripley BD (2002). Modern Applied Statistics With S. 4th edition. Springer-
Verlag, New York.

Welch BL (1938). “The Significance of the Difference Between Two Means When the Popu-
lation Variances are Unequal.” Biometrika, 29, 350–362.

Welch BL (1951). “On the Comparison of Several Mean Values: An Alternative Approach.”
Biometrika, 38, 330–336.

Wilcox RR (1986). “Improved simultaneous confidence intervals for linear contrasts and
regression parameters.” Communications in Statistics - Simulation and Computation, 15,
917–932.

Wilcox RR (2017). Introduction to Robust Estimation & Hypothesis Testing. 4th edition.
Elsevier, Amsterdam, The Netherlands.

Wilcox RR, Erceg-Hurn D (2012). “Comparing two dependent groups via quantiles.” Journal
of Applied Statistics, 39, 2655–2664.

https://www.R-project.org/


Patrick Mair, Rand Wilcox 35

Wilcox RR, Erceg-Hurn D, Clark F, Carlson M (2014). “Comparing two independent groups
via the lower and upper quantiles.” Journal of Statistical Computation and Simulation, 84,
1543–1551.

Wilcox RR, Schönbrodt F (2017). A Package of R. R. Wilcox’ Robust Statistics Functions.
R package version 0.34, URL https://github.com/nicebread/WRS/tree/master/pkg.

Wilcox RR, Tian T (2011). “Measuring Effect Size: A Robust Heteroscedastic Approach for
Two or More Groups.” Journal of Applied Statistics, 38, 1359–1368.

Wright DB, London K (2009). Modern Regression Techniques Using R. Sage Publications,
London, UK.

Yuen KK (1974). “The Two Sample Trimmed t for Unequal Population Variances.”
Biometrika, 61, 165–170.

Zu J, Yuan KH (2010). “Local Influence and Robust Procedures for Mediation Analysis.”
Multivariate Behavioral Research, 45, 1–44.

Appendix
In this Appendix section we give some technical details on various test statistics using in the
text. This part is largely taken from various chapters in Wilcox (2017).

Trimmed/Winsorized mean: LetW1, . . . ,Wn be the Winsorized random sample based on
X1, . . . , Xn, obtained from replacing the most extreme values (based on Winsorizing level γ)
by its neighbors. The Winsorized mean is

X̄w = 1
n

n∑
i=1

Wi

The Winsorized variance is
S2

w = 1
n− 1

n∑
i=1

(Wi − X̄w)

Using this expression, the standard error of the trimmed mean can be written as

se(X̄t) = Sw

(1− 2γ)
√
n

Yuen’s test on trimmed means (yuen): Let n1 and n2 denote the number of observations
in each group, and h1 and h2 the number of observations left after trimming. The standard
error in the denominator of Eq. (5) is

√
d1 + d2 =

√
(n1 − 1)S2

w1
h1(h1 − 1) + (n2 − 1)S2

w2
h2(h2 − 1) .

The df of the t-distribution the test statistic approximates under the null are

νy = (d1 + d2)2

d2
1

h1−1 + d2
2

h2−1

.

https://github.com/nicebread/WRS/tree/master/pkg
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The CI is (X̄t1 − X̄t2)± t
√
d1 + d2 where t is the 1− α/2 quantile of the t-distribution (with

corresponding df).

Robust Cohen’s d version (yuen.effect.ci): The denominator in the effect size expres-
sion in Eq. (6) is

S∗w = (n1 − 1)S2
w1 + (n2 − 1)S2

w2
n1 + n2 − 2

For unequal Winsorized variances Eq. (6) can be replaced by

δt1 = 0.642X̄t1 − X̄t2
Sw1

δt2 = 0.642X̄t1 − X̄t2
Sw2

.

Yuen’s trimmed means test for dependent samples (yuend): Let Xij denote the ob-
served values in group j (here j = 1, 2; n observations per group) with trimmed mean X̄tj ,
and Yij be the Winsorized observations with Winsorized means Ȳj . Let g denote the number
of observations Winsorized/trimmed. The effective sample size is h = n− 2g. We define the
variance term

dj = 1
h(h− 1)

n∑
i=1

(Yij − Ȳj)2,

for groups j = 1, 2, and the covariance term

d12 = 1
h(h− 1)

n∑
i=1

(Yi1 − Ȳ1)(Yi2 − Ȳ2).

The t-distributed test statistic (df = h− 1) is given in Eq. (9).

Comparing two discrete distributions (binband): The Stoner-Kim method for compar-
ing two distributions (group sizes n1 and n2; number of successes r1 and r2) defines

axy =

1 if
∣∣∣ x

n1
− y

n2

∣∣∣ ≥ ∣∣∣ r1
n1
− r2

n2

∣∣∣ ,
0 otherwise.

The test statistic implemented in binband is

T =
n1∑

x=0

n2∑
y=0

axyB(x;n1, p)B(y;n2, p)

with B(·) as the probability mass function of the binomial distribution with p = (r1+r2)/(n1+
n2). For the CI of the differences in binomial proportions it is referred to Kulinskaya et al.
(2010).

One-way test trimmed means (t1way): For j = 1, . . . , J groups it uses

dj =
(nj − 1)S2

wj

hj(hj − 1)
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and subsequently computes wj = 1/dj , U = ∑
j wj , and X̃ = 1

U

∑
j wjX̄tj . It follows that

A = 1
J − 1

∑
j

wj

(
X̄tj − X̃

)2
,

B = 2(J − 2)
J2 − 1

∑
j

(1− wj/U)2

hj − 1 .

Based on these components the test statistic as used in t1way can be formulated as

Ft = A

1 +B
,

which is F -distributed with df

ν1 = J − 1,

ν2 =

 3
J2 − 1

∑
j

(1− wj/U)2

hj − 1

−1

.

One-way test medians (med1way): It follows the same testing strategy as the one for the
trimmed means. The starting point is the McKean-Schrader estimate of the squared standard
error for the sample median Mj in group j:

S2
j =

(nj − 1)S2
wj

hj − 1 .

Subsequently, wj = 1/S2
j , U = ∑

j wj , and M̃ = 1
U

∑
j wjMj . As above,

A = 1
J − 1

∑
j

wj

(
Mj − M̃

)2
,

B = 2(J − 2)
J2 − 1

∑
j

(1− wj/U)2

nj − 1 .

Based on these components the test statistic as used in med1way can be formulated as

FM = A

1 +B
,

which, under the null, is F -distributed with df ν1 = J − 1 and ν2 =∞.

Two-way test trimmed means (t2way): For a J×K two-way ANOVA design with factors
A and B, let P = JK the total number of cells. The starting point is to construct two contrast
matrices, one of dimension (J−1)×J for factor A, and one of dimension K−1×K for factor
B. In our 2× 3 example we get (see Wilcox 2017, p. 335 for a general construction principle):

CJ =
(
1 −1

)
,



38 The WRS2 Package

and
CK =

(
1 −1 0
0 1 −1

)
.

Now we define two unit vectors of length J and K, i.e., 1J and 1K . Using these vectors we
blow up the contrast matrices using the Kronecker product in order to get a final contrast
matrix encoding the main effects for A (dimension (J − 1) × P ), the main effects for B
(dimension (K − 1)× P ), and the interaction effects (dimension (K − 1)× p):

C(A) = CJ ⊗ 1′K =
(
1 1 1 −1 −1 −1

)
C(B) = 1′J ⊗CK =

(
1 −1 0 1 −1 0
0 1 −1 0 1 −1

)

C(A×B) = CJ ⊗CK =
(

1 −1 0 −1 1 0
0 1 −1 0 −1 1

)

In the remainder of this section let C be a placeholder for either C(A), C(B), or C(A×B). Let
V be a P ×P diagonal matrix with the squared standard errors of the sample trimmed means
on the diagonal. That is,

vpp =
(np − 1)S2

wp

hp(hp − 1) .

We also define X̄′t = (X̄t11, X̄t12, . . . , X̄t1K , X̄t21, X̄t22, . . . , X̄t2K , . . . , X̄tJ1, X̄tJ2, . . . , X̄tJK) as
the vector of length p of the sample trimmed means. Based on these matrices we can now
define the χ2-distributed test statistics (main effects for A and B, interaction effect):

Q = X̄′tC(CVC′)−1CX̄t

The df’s are J − 1, K − 1, and (J − 1)(K − 1), respectively, depending on which effect we
study in C. However, the t2way function adjusts the critical value c, especially necessary for
small sizes. Therefore it does not report any df’s. The adjusted critical value is

c∗ = c+ c

2k

(
H

(
1 + 3c

k + 2

))
,

where k is the rank of C, H = ∑
p(r2

pp/(hp − 1)), and R = VC(CVC)−1C. If Q ≥ c∗, reject
H0.

Two-way test medians (med2way): For the j-th level of factor A and the k-th level of factor
B, let njk be the number of observations, Mjk be the sample median with squared standard
error S2

jk (McKean-Schrader estimate, see above). We define Rj = ∑
k Mjk, Wk = ∑

j Mjk,
and djk = S2

jk. We focus on the main effects first. We need

ν̂j =

(∑K
k=1 djk

)2

∑K
k=1 d

2
jk/(njk − 1)

,

ω̂k =

(∑J
j=1 djk

)2

∑J
j=1 d

2
jk/(njk − 1)

.
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Let rj = 1/∑k djk and wk = 1/∑j djk with sums rs = ∑
j rj and ws = ∑

k rk. Further,
R̂ = (∑j rjRj)/rs and Ŵ = (∑k wkWk)/ws. We compute

Ba =
J∑

j=1

(1− rj/rs)2

ν̂j

Bb =
K∑

k=1

(1− wj/ws)2

ω̂k
,

which allows us to compute the test statistics for the main effects:

V (A) =
∑J

j=1 rj(Rj − R̂)2

(J − 1)
(
1 + 2(J−2)Ba

J2−1

)
V (B) =

∑K
k=1wk(Wk − Ŵ )2

(K − 1)
(
1 + 2(K−2)Bb

K2−1

)
Both statistics are F -distributed with the following df: ν1 = J − 1 and ν2 =∞ for V (A), and
ν1 = K − 1 and ν2 =∞ for V (B).
For the A × B interaction we need Djk = 1/djk, D·k = ∑

j Djk, Dj· = ∑
k Djk, and D·· =∑

j

∑
k Djk. Based on

M̃jk =
J∑

l=1
DlkMlk/D·k +

K∑
m=1

DjmMjm/Dj· −
J∑

l=1

K∑
m=1

DlmMlm/D··

we define the test statistic

V (A×B) =
J∑

j=1

K∑
k=1

Djk(Mjk − M̃jk)2.

This statistic is χ2-distributed with df ν = (J − 1)(K − 1).

One-way repeated measures ANOVA (rmanova): Let Xij denote the observed values at
time (or group) j with trimmed means X̄tj and X̄t = ∑

j X̄tj/J , and Yij be the Winsorized
observations with Winsorized means Ȳi·, Ȳ·j , and Y··. Let h = n− 2g be the effective sample
size based on the trimming amount. We compute

Qc = (n− 2g)
J∑

j=1
(X̄tj − X̄t)2,

and

Qe =
J∑

j=1

n∑
i=1

(Yij − Ȳi· − Ȳ·j + Y··)2.

Let Rc = Qc/(J + 1) and Re = Qe/((h− 1)(J − 1)). The test statistic is

F = Rc/Re.
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For the df we define
vjk = 1

n− 1

n∑
i=1

(Yij − Ȳ·j)(Yik − Ȳ·k).

Let v̄·· =
∑

j

∑
k vjk/J

2, v̄d = ∑
j vjj/J , and v̄j· =

∑
k vjk/J . Further,

A = J2(v̄d − v̄··)2/(J − 1),

B =
J∑

j=1

J∑
k=1

v2
jk − 2J

J∑
j=1

v̄2
j· + J2v̄2

··,

and
ε̃ = n(J − 1)ε̂− 2

(J − 1)(n− 1− (J − 1)ε̂)
with ε̂ = A/B. Subsequently, the df can be expressed as

ν1 = (J − 1)ε̃,
ν2 = (J − 1)(h− 1)ε̃.

Between-within subjects ANOVA on the trimmed means (bwtrim): The test statistic
is constructed according to the same principles as in t2way. The main difference is that for
each factor level j of factor A we estimate

Vj = (nj − 1)Sj

hj(hj − 1) ,

where Sj is an estimate for the K ×K Winsorized covariance matrix. The Vj matrices are
collected in the block diagonal matrix V. Let C be the contrast matrix (rank k) of the effect
we want to study. The test statistic is

Q = X̄′tC(CVC′)−1CX̄t.

This statistic needs to be modified as follows in order to be F -distributed. Let Qj be a
JK × JK a block diagonal matrix. We compute

A = 1
2

J∑
j=1

(tr((VC′(CVC′)−1CQj)2) + (tr(VC′(CVC′)−1CQj))2)/(hj − 1),

and
c = k + 2A− 6A

k + 2 .

Under H0, Q/c is F -distributed with df ν1 = k and ν2 = k(k + 2)/(3A).

Hochberg’s method for controlling the FWE: Let p[1], . . . , p[C] be the p-values associated
with C tests, in descending order. Let α be the significance level. The procedure starts with
rejecting all hypotheses if p[k] ≤ α/k for k = 1. If p[1] > α, set k := k + 1. Again, apply
p[k] ≤ α/k. If p[k] > α/k, increment k. Repeat until either all hypotheses under consideration
are rejected or all C hypotheses have been tested.
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