
A comparison of nlsr::nlxb with nls and minpack::nlsLM

John C. Nash

2021-04-17

R has several tools for estimating nonlinear models and minimizing sums of squares functions. Sometimes
we talk of nonlinear regression and at other times of minimizing a sum of squares function. Many
workers conflate these two tasks. Here some of the differences are highlighted by comparing the tools from
the package nlsr (Nash and Murdoch (2019)), particularly function nlxb() with those from base-R nls()
and the nlsLM function of package minpack.lm (Elzhov et al. (2012)).

Principal differences
The main differences in the tools relate to the following features:

• the way in which derivative information is computed for the Jacobian of the modelling function
• the use of a Marquardt stabilization for solution of the linearized least squares problem at each iteration
• details of the criterion used to terminate the iteration
• the structure of the output of the tools
• how models are predicted for new data.

Derivative information

nlsr::nlxb() attempts to use symbolic and algorithmic tools to obtain the derivatives of the model expression
that are needed for the Jacobian matrix that is used in creating a linearized sub-problem at each iteration of
an attempted solution of the minimization of the sum of squared residuals. nls() and minpack.lm::nlsLM()
use a very simple forward-difference approximation for the partial derivatives. For the i’th partial derivative
of the modelling function with respect to parameter xx, they use (in C)

delta = (xx == 0) ? eps : xx*eps;

and

REAL(gradient)[start + k] = rDir[i] * (REAL(ans_del)[k] - REAL(ans)[k])/delta;

where

double eps = sqrt(DOUBLE_EPS), *rDir;

and where DOUBLE_EPS in Constants.h in the R source code refers to DBL_EPSILON in float.h in most C
compilers, e.g.,

#define DBL_EPSILON 2.2204460492503131e-16

Thus delta is of the order of 1.490116e-08.

Forward difference approximations are less accurate than central differences, and both are subject to numerical
error when the modelling function is “flat”, so that there is a large amount of digit cancellation in the
subtraction necessary to compute the derivative approximation.

minpack.lm::nlsLM uses the same derivatives as far as I can determine. The loss of information compared
to the analytic or algorithmic derivatives of nlsr::nlxb() is important in that it can lead to Jacobian
matrices that are computationally singular, where nls() will stop with “singular gradient”. (It is actually the

1

Jacobian which is singular here, and I will stay with that terminology.) minpack.lm::nlsLM() may fail to
get started if the initial Jacobian is singular, but is less susceptible in general, as described in the sub-section
on Marquardt stabilization which follows.

Consequences of different derivative computations While readers might expect that the precise
derivative information of nlsr::nlxb() would mean a faster solution, this is quite often not the case.
Approximate derivatives may allow faster approach to the solution by “ironing out” wrinkles in the function
surface. In my opinion, the main advantage of precise derivative information is in testing that we actually
have arrived at a solution.

There are even some cases where the approximation may be helpful, though users may not realize the potential
danger. Thanks to Karl Schilling for an example of modelling with the function

a * (x ˆ b)

where x is our data and we wish to estimate a and b. Now the partial derivative of this function w.r.t. b is
partialderiv <- D(expression(a * (x ˆ b)),"b")
print(partialderiv)

a * (x^b * log(x))

The danger here is that we may have data values x = 0, in which case the derivative is not defined,
though the model can still be evaluated. Thus nlsr::nlxb() will not compute a solution, while nls() and
minpack.lm::nlsLM() will generally proceed. A workaround is to provide a very small value instead of zero
for the data, though I find this inelegant. Another approach is to drop the offending element of the data,
though this risks altering the model estimated. A proper treatment might be to develop the limit of the
derivative as the data value goes to zero, but finding general software that can detect and deal with this is a
large project.

Marquardt stabilization

All three of the R functions under consideration try to minimize a sum of squares. If the model is provided in
the form

y ~ (some expression)

then the residuals are computed by evaluating the difference between (some expression) and y. My own
preference, and that of K F Gauss, is to use (some expression) - y. This is to avoid having to be concerned
with the negative sign – the derivative of the residual defined in this way is the same as the derivative of the
modelling function, and we avoid the chance of a sign error. The Jacobian matrix is made up of elements
where element i, j is the partial derivative of residual i w.r.t. parameter j.

nls() attempts to minimize a sum of squared residuals by a Gauss-Newton method. If we compute a Jacobian
matrix J and a vector of residuals r from a vector of parameters x, then we can define a linearized problem

JTJδ = −JT r

This leads to an iteration where, from a set of starting parameters x0, we compute

xi+1 = xi + δ

This is commonly modified to use a step factor step

xi+1 = xi + step ∗ δ

2

It is in the mechanisms to choose the size of step and to decide when to terminate the iteration that
Gauss-Newton methods differ. Indeed, though I have tried several times, I find the very convoluted code
behind nls() very difficult to decipher. Unfortunately, its authors have (at 2018 as far as I am aware) all
ceased to maintain the code.

Both nlsr::nlxb() and minpack.lm::nlsLM use a Levenberg-Marquardt stabilization of the iteration.
(Marquardt (1963), Levenberg (1944)), solving

(JTJ + λD)δ = −JT r

where D is some diagonal matrix and lambda is a number of modest size initially. Clearly for λ = 0 we
have a Gauss-Newton method. Typically, the sum of squares of the residuals calculated at the “new” set of
parameters is used as a criterion for keeping those parameter values. If so, the size of λ is reduced. If not, we
increase the size of λ and compute a new δ. Note that a new J , the expensive step in each iteration, is NOT
required.

As for Gauss-Newton methods, the details of how to start, adjust and terminate the iteration lead to many
variants, increased by different possibilities for specifying D. See Nash (1979). There are also a number of
ways to solve the stabilized Gauss-Newton equations, some of which do not require the explicit JTJ matrix.

Criterion used to terminate the iteration

nls() and nlsr use a form of the relative offset convergence criterion, Bates and Watts (1981). minpack.lm
uses a somewhat different and more complicated set of tests. Unfortunately, the relative offset criterion as
implemented in nls() is unsuited to problems where the residuals can be zero. There are ways to work
around the difficulties, and nlsr has used one approach. See An illustrative nonlinear regression problem
below.

Output of the modelling functions

nls() and nlsLM() return the same solution structure. Let us examine this for one of our example results
(we will choose one that does NOT have small residuals, so that all the functions “work”).
str(nlsy0t0ax)

List of 6
$ m :List of 16
..$ resid :function ()
..$ fitted :function ()
..$ formula :function ()
..$ deviance :function ()
..$ lhs :function ()
..$ gradient :function ()
..$ conv :function ()
..$ incr :function ()
..$ setVarying:function (vary = rep_len(TRUE, length(useParams)))
..$ setPars :function (newPars)
..$ getPars :function ()
..$ getAllPars:function ()
..$ getEnv :function ()
..$ trace :function ()
..$ Rmat :function ()
..$ predict :function (newdata = list(), qr = FALSE)
..- attr(*, "class")= chr "nlsModel"
$ convInfo :List of 5
..$ isConv : logi TRUE

3

..$ finIter : int 6
..$ finTol : num 4.75e-10
..$ stopCode : int 0
..$ stopMessage: chr "converged"
$ data : symbol edta
$ call : language nls(formula = y1 ~ a * (t0a^b), data = edta, start = start1, control = list(maxiter = 10000, tol = 1e-05, mi| __truncated__ ...
$ dataClasses: Named chr "numeric"
..- attr(*, "names")= chr "t0a"
$ control :List of 5
..$ maxiter : num 10000
..$ tol : num 1e-05
..$ minFactor: num 0.000977
..$ printEval: logi FALSE
..$ warnOnly : logi FALSE
- attr(*, "class")= chr "nls"

The minpack.lm::nlsLM output has the same structure, which could be revealed by the R command
str(nlsLMy1t0a). Note that this structure has a lot of special functions in the sub-list m. By contrast, the
nlsr() output is much less flamboyant. There are, in fact, no functions as part of the structure.
str(nlsry1t0a)

List of 11
$ resid : num [1:20] 4.00e-05 -2.03e-09 -1.70e-09 -1.41e-09 -1.16e-09 ...
..- attr(*, "gradient")= num [1:20, 1:2] 0.00001 1 1.18921 1.31607 1.41421 ...
.. ..- attr(*, "dimnames")=List of 2
..$: NULL
..$: chr [1:2] "a" "b"
$ jacobian : num [1:20, 1:2] 0.00001 1 1.18921 1.31607 1.41421 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:2] "a" "b"
$ feval : num 8
$ jeval : num 7
$ coefficients: Named num [1:2] 4 0.25
..- attr(*, "names")= chr [1:2] "a" "b"
$ ssquares : num 1.6e-09
$ lower : num [1:2] -Inf -Inf
$ upper : num [1:2] Inf Inf
$ maskidx : int(0)
$ weights : NULL
$ formula :Class 'formula' language y1 ~ a * (t0a^b)
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
- attr(*, "class")= chr "nlsr"

Which of these approaches is “better” can be debated. My preference is for the results of optimization
computations to be essentially data, including messages, though some tools within some of my packages will
return functions for specific reasons, e.g., to return a function from an expression. However, I prefer to use
specified functions such as predict.nlsr() below to obtain predictions. I welcome comment and discussion,
as this is not, in my view, a closed topic.

Prediction

Let us predict our models at the mean of the data. Because nlxb() returns a different structure from that
found by nls() and nlsLM() the code for predict() for an object from nlsr is different. minpack.lm uses
predict.nls since the output structure of the modelling step is equivalent to that from nls().

4

nudta <- colMeans(edta)
predict(nlsy0t0ax, newdata=nudta)

[1] 7.0225
predict(nlsLMy1t0a, newdata=nudta)

[1] 7.0225
predict(nlsry1t0a, newdata=nudta)

[1] 7.0225
attr(,"class")
[1] "predict.nlsr"
attr(,"pkgname")
[1] "nlsr"

An illustrative nonlinear regression problem
So we can illustrate some of the issues, let us create some example data for a seemingly straightforward
computational problem.
Here we set up an example problem with data
Define independent variable
t0 <- 0:19
t0a<-t0
t0a[1]<-1e-20 # very small value
Drop first value in vectors
t0t<-t0[-1]
y1 <- 4 * (t0ˆ0.25)
y1t<-y1[-1]
n <- length(t0)
fuzz <- rnorm(n)
range <- max(y1)-min(y1)
add some "error" to the dependent variable
y1q <- y1 + 0.2*range*fuzz
edta <- data.frame(t0=t0, t0a=t0a, y1=y1, y1q=y1q)
edtat <- data.frame(t0t=t0t, y1t=y1t)

Let us try this example modelling y0 against t0. Note that this is a zero-residual problem, so nls() should
complain or fail, which it appears to do but by exceeding the iteration limit, which is not very communicative
of the underlying issue. The nls() documentation warns

"Warning

Do not use nls on artificial “zero-residual” data."

It goes on to recommend that users add “error” to the data to avoid such problems. I feel this is a very
unsatisfactory kludge. It is NOT due to a genuine mathematical issue, but due to the relative offset
convergence criterion used to terminate the method. In October 2020, I suggested a patch for nls() to R-core
that it seems will become part of base R eventually. This patch allows the user to specify a parameter,
tentatively named convTestAdd with a zero default value, in nls.control(). (This allows existing examples
using nsl() to function without change.) A small positive value for this control parameter avoids a zero
divided by zero issue in the relative offset convergence test in nls() used to terminate iterations. This
adjustment to the convergence test has been in nlsr since its creation.

Here is the output.

5

nls

cprint <- function(obj){
print object if it exists
sobj<-deparse(substitute(obj))
if (exists(sobj)) {

print(obj)
} else {

cat(sobj," does not exist\n")
}

return(NULL)
}
start1 <- c(a=1, b=1)
try(nlsy0t0 <- nls(formula=y1~a*(t0ˆb), start=start1, data=edta))

Error in nls(formula = y1 ~ a * (t0^b), start = start1, data = edta) :
number of iterations exceeded maximum of 50
cprint(nlsy0t0)

nlsy0t0 does not exist
Since this fails to converge, let us increase the maximum iterations
try(nlsy0t0x <- nls(formula=y1~a*(t0ˆb), start=start1, data=edta,

control=nls.control(maxiter=10000)))

Error in nls(formula = y1 ~ a * (t0^b), start = start1, data = edta, control = nls.control(maxiter = 10000)) :
number of iterations exceeded maximum of 10000
cprint(nlsy0t0x)

nlsy0t0x does not exist
try(nlsy0t0ax <- nls(formula=y1~a*(t0aˆb), start=start1, data=edta,

control=nls.control(maxiter=10000)))
cprint(nlsy0t0ax)

Nonlinear regression model
model: y1 ~ a * (t0a^b)
data: edta
a b
4.00 0.25
residual sum-of-squares: 1.6e-09
##
Number of iterations to convergence: 6
Achieved convergence tolerance: 4.75e-10
try(nlsy0t0t <- nls(formula=y1t~a*(t0tˆb), start=start1, data=edtat))

Error in nls(formula = y1t ~ a * (t0t^b), start = start1, data = edtat) :
number of iterations exceeded maximum of 50
cprint(nlsy0t0t)

nlsy0t0t does not exist

6

nlsr

library(nlsr)
nlsry1t0 <- try(nlxb(formula=y1~a*(t0ˆb), start=start1, data=edta))

Error in model2rjfun(formula, pnum, data = data) : Jacobian contains NaN
cprint(nlsry1t0)

[1] "Error in model2rjfun(formula, pnum, data = data) : Jacobian contains NaN\n"
attr(,"class")
[1] "try-error"
attr(,"condition")
<simpleError in model2rjfun(formula, pnum, data = data): Jacobian contains NaN>
nlsry1t0a <- nlxb(formula=y1~a*(t0aˆb), start=start1, data=edta)
cprint(nlsry1t0a)

nlsr object: x
residual sumsquares = 1.6e-09 on 20 observations
after 7 Jacobian and 8 function evaluations
name coeff SE tstat pval gradient JSingval
a 4 4.811e-06 831443 1.02e-96 -1.548e-14 72.97
b 0.25 5.011e-07 498907 1.003e-92 -1.16e-13 1.95
nlsry1t0t <- nlxb(formula=y1t~a*(t0tˆb), start=start1, data=edtat)
cprint(nlsry1t0t)

nlsr object: x
residual sumsquares = 2.1496e-29 on 19 observations
after 7 Jacobian and 8 function evaluations
name coeff SE tstat pval gradient JSingval
a 4 5.738e-16 6.971e+15 2.53e-260 -3.387e-14 72.97
b 0.25 5.977e-17 4.183e+15 1.493e-256 -3.182e-13 1.95

minpack.lm

library(minpack.lm)
nlsLMy1t0 <- nlsLM(formula=y1~a*(t0ˆb), start=start1, data=edta)
nlsLMy1t0

Nonlinear regression model
model: y1 ~ a * (t0^b)
data: edta
a b
4.00 0.25
residual sum-of-squares: 0
##
Number of iterations to convergence: 7
Achieved convergence tolerance: 1.49e-08
nlsLMy1t0a <- nlsLM(formula=y1~a*(t0aˆb), start=start1, data=edta)
nlsLMy1t0a

Nonlinear regression model
model: y1 ~ a * (t0a^b)
data: edta

7

a b
4.00 0.25
residual sum-of-squares: 1.6e-09
##
Number of iterations to convergence: 7
Achieved convergence tolerance: 1.49e-08
nlsLMy1t0t <- nlsLM(formula=y1t~a*(t0tˆb), start=start1, data=edtat)
nlsLMy1t0t

Nonlinear regression model
model: y1t ~ a * (t0t^b)
data: edtat
a b
4.00 0.25
residual sum-of-squares: 0
##
Number of iterations to convergence: 7
Achieved convergence tolerance: 1.49e-08

We have seemingly found a workaround for our difficulty, but I caution that initially I found very unsatisfactory
results when I set the “very small value” to 1.0e-7. The correct approach is clearly to understand what is
going on. Getting computers to provide that understanding is a serious challenge.

Problems that are NOT regressions

Some nonlinear least squares problems are NOT nonlinear regressions. That is, we do not have a formula
y ~ (some function) to define the problem. This is another reason to use the residual in the form (some
function) - y In many cases of interest we have no y.

The Brown and Dennis test problem (Moré, Garbow, and Hillstrom (1981), problem 16) is of this form.
Suppose we have m observations, then we create a scaled index t which is the “data” for the function. To run
the nonlinear least squares functions that use a formula, we do, however, need a “y” variable. Clearly adding
zero to the residual will not change the problem, so we set the data for “y” as all zeros. Note that nls() and
nlsLM() need some extra iterations to find the solution to this somewhat nasty problem.
m <- 20
t <- seq(1, m) / 5
y <- rep(0,m)
library(nlsr)
library(minpack.lm)

bddata <- data.frame(t=t, y=y)
bdform <- y ~ ((x1 + t * x2 - exp(t))ˆ2 + (x3 + x4 * sin(t) - cos(t))ˆ2)
prm0 <- c(x1=25, x2=5, x3=-5, x4=-1)
fbd <-model2ssgrfun(bdform, prm0, bddata)
cat("initial sumsquares=",as.numeric(crossprod(fbd(prm0))),"\n")

initial sumsquares= 6.2832e+13
nlsrbd <- nlxb(bdform, start=prm0, data=bddata, trace=FALSE)
nlsrbd

nlsr object: x
residual sumsquares = 85822 on 20 observations
after 3056 Jacobian and 4279 function evaluations
name coeff SE tstat pval gradient JSingval
x1 -11.5944 4.017 -2.886 0.01075 0.02637 176

8

x2 13.2036 1.231 10.73 1.025e-08 -0.07207 28.1
x3 -0.403442 28.08 -0.01437 0.9887 -0.002117 3.917
x4 0.236777 39.79 0.005951 0.9953 -0.001648 1.624
nlsbd10k <- nls(bdform, start=prm0, data=bddata, trace=FALSE,

control=nls.control(maxiter=10000))
nlsbd10k

Nonlinear regression model
model: y ~ ((x1 + t * x2 - exp(t))^2 + (x3 + x4 * sin(t) - cos(t))^2)
data: bddata
x1 x2 x3 x4
-11.594 13.204 -0.403 0.237
residual sum-of-squares: 85822
##
Number of iterations to convergence: 855
Achieved convergence tolerance: 9.6e-06
nlsLMbd10k <- nlsLM(bdform, start=prm0, data=bddata, trace=FALSE,

control=nls.lm.control(maxiter=10000, maxfev=10000))

Warning in nls.lm(par = start, fn = FCT, jac = jac, control = control, lower =
lower, : resetting `maxiter' to 1024!
nlsLMbd10k

Nonlinear regression model
model: y ~ ((x1 + t * x2 - exp(t))^2 + (x3 + x4 * sin(t) - cos(t))^2)
data: bddata
x1 x2 x3 x4
-11.592 13.203 -0.404 0.237
residual sum-of-squares: 85822
##
Number of iterations to convergence: 242
Achieved convergence tolerance: 1.49e-08

Let us try predicting the “residual” for some new data.
ndata <- data.frame(t=c(5,6), y=c(0,0))
predict(nlsLMbd10k, newdata=ndata)

[1] 8835.3 112766.9
now nls
predict(nlsbd10k, newdata=ndata)

[1] 8834.9 112764.7
now nlsr
predict(nlsrbd, newdata=ndata)

[1] 8834.9 112764.7
attr(,"class")
[1] "predict.nlsr"
attr(,"pkgname")
[1] "nlsr"

We could, of course, try setting up a different formula, since the “residuals” can be computed in any way such
that their absolute value is the same. Therefore we could try moving the exponential part of the function for

9

each equation to the left hand side as in bdf2 below. However, we discover that the parsing of the model
formula for nls() and nlsLM() fails for this formulation, while nlsr::nlxb() proceeds as usual.
bdf2 <- (x1 + t * x2 - exp(t))ˆ2 ~ - (x3 + x4 * sin(t) - cos(t))ˆ2

nlsbd2 <- try(nls(bdf2, start=prm0, data=bddata, trace=FALSE))

Error in eval(formula[[2L]], data, env) : object 'x1' not found
nlsbd2

[1] "Error in eval(formula[[2L]], data, env) : object 'x1' not found\n"
attr(,"class")
[1] "try-error"
attr(,"condition")
<simpleError in eval(formula[[2L]], data, env): object 'x1' not found>
nlsLMbd2 <- try(nlsLM(bdf2, start=prm0, data=bddata, trace=FALSE,

control=nls.lm.control(maxiter=10000, maxfev=10000)))

Error in eval(formula[[2L]], data, env) : object 'x1' not found
nlsLMbd2

[1] "Error in eval(formula[[2L]], data, env) : object 'x1' not found\n"
attr(,"class")
[1] "try-error"
attr(,"condition")
<simpleError in eval(formula[[2L]], data, env): object 'x1' not found>
nlsrbd2 <- nlxb(bdf2, start=prm0, data=bddata, trace=FALSE)
##summary(nlsrbd2)
nlsrbd2

nlsr object: x
residual sumsquares = 85822 on 20 observations
after 3056 Jacobian and 4279 function evaluations
name coeff SE tstat pval gradient JSingval
x1 -11.5944 4.017 -2.886 0.01075 0.02637 176
x2 13.2036 1.231 10.73 1.025e-08 -0.07207 28.1
x3 -0.403442 28.08 -0.01437 0.9887 -0.002117 3.917
x4 0.236777 39.79 0.005951 0.9953 -0.001648 1.624

We could try “prediction” again for nlxb(). The answers are, of course, NOT appropriate, as the
predict.nlsr() function ONLY evaluates the right hand side of the formula. We are mis-applying
the function here. It would be good to have checks on the formula to detect and warn in such cases, and I
welcome collaboration to do this.
ndata <- data.frame(t=c(5,6), y=c(0,0))
predict(nlsrbd2, newdata=ndata)

[1] -0.83568 -2.04425
attr(,"class")
[1] "predict.nlsr"
attr(,"pkgname")
[1] "nlsr"

10

A check on the Brown and Dennis calculation via function minimization

We can attack the Brown and Dennis problem by applying nonlinear function minimization programs to the
sum of squared “residuals” as a function of the parameters. The code below does this. We omit the output
for space reasons.
#' Brown and Dennis Function
#'
#' Test function 16 from the More', Garbow and Hillstrom paper.
#'
#' The objective function is the sum of \code{m} functions, each of \code{n}
#' parameters.
#'
#' \itemize{
#' \item Dimensions: Number of parameters \code{n = 4}, number of summand
#' functions \code{m >= n}.
#' \item Minima: \code{f = 85822.2} if \code{m = 20}.
#' }
#'
#' @param m Number of summand functions in the objective function. Should be
#' equal to or greater than 4.
#' @return A list containing:
#' \itemize{
#' \item \code{fn} Objective function which calculates the value given input
#' parameter vector.
#' \item \code{gr} Gradient function which calculates the gradient vector
#' given input parameter vector.
#' \item \code{fg} A function which, given the parameter vector, calculates
#' both the objective value and gradient, returning a list with members
#' \code{fn} and \code{gr}, respectively.
#' \item \code{x0} Standard starting point.
#' }
#' @references
#' More', J. J., Garbow, B. S., & Hillstrom, K. E. (1981).
#' Testing unconstrained optimization software.
#' \emph{ACM Transactions on Mathematical Software (TOMS)}, \emph{7}(1), 17-41.
#' \url{https://doi.org/10.1145/355934.355936}
#'
#' Brown, K. M., & Dennis, J. E. (1971).
#' \emph{New computational algorithms for minimizing a sum of squares of
#' nonlinear functions} (Report No. 71-6).
#' New Haven, CT: Department of Computer Science, Yale University.
#'
#' @examples
#' # Use 10 summand functions
#' fun <- brown_den(m = 10)
#' # Optimize using the standard starting point
#' x0 <- fun$x0
#' res_x0 <- stats::optim(par = x0, fn = fun$fn, gr = fun$gr, method =
#' "L-BFGS-B")
#' # Use your own starting point
#' res <- stats::optim(c(0.1, 0.2, 0.3, 0.4), funfn, fungr, method =
#' "L-BFGS-B")
#'
#' # Use 20 summand functions

11

#' fun20 <- brown_den(m = 20)
#' res <- stats::optim(fun20$x0, fun20$fn, fun20$gr, method = "L-BFGS-B")
#' @export
#`
brown_den <- function(m = 20) {
list(
fn = function(par) {

x1 <- par[1]
x2 <- par[2]
x3 <- par[3]
x4 <- par[4]

ti <- (1:m) * 0.2
l <- x1 + ti * x2 - exp(ti)
r <- x3 + x4 * sin(ti) - cos(ti)
f <- l * l + r * r
sum(f * f)

},
gr = function(par) {
x1 <- par[1]
x2 <- par[2]
x3 <- par[3]
x4 <- par[4]

ti <- (1:m) * 0.2
sinti <- sin(ti)
l <- x1 + ti * x2 - exp(ti)
r <- x3 + x4 * sinti - cos(ti)
f <- l * l + r * r
lf4 <- 4 * l * f
rf4 <- 4 * r * f
c(

sum(lf4),
sum(lf4 * ti),
sum(rf4),
sum(rf4 * sinti)

)
},
fg = function(par) {
x1 <- par[1]
x2 <- par[2]
x3 <- par[3]
x4 <- par[4]

ti <- (1:m) * 0.2
sinti <- sin(ti)
l <- x1 + ti * x2 - exp(ti)
r <- x3 + x4 * sinti - cos(ti)
f <- l * l + r * r
lf4 <- 4 * l * f
rf4 <- 4 * r * f

fsum <- sum(f * f)

12

grad <- c(
sum(lf4),
sum(lf4 * ti),
sum(rf4),
sum(rf4 * sinti)

)

list(
fn = fsum,
gr = grad

)
},
x0 = c(25, 5, -5, 1)

)
}
mbd <- brown_den(m=20)
mbd
mbd$fg(mbd$x0)
bdsolnm <- optim(mbd$x0, mbd$fn, control=list(trace=0))
bdsolnm
bdsolbfgs <- optim(mbd$x0, mbd$fn, method="BFGS", control=list(trace=0))
bdsolbfgs

library(optimx)
methlist <- c("Nelder-Mead","BFGS","Rvmmin","L-BFGS-B","Rcgmin","ucminf")

solo <- opm(mbd$x0, mbd$fn, mbd$gr, method=methlist, control=list(trace=0))
summary(solo, order=value)

A failure above is generally because a package in the 'methlist' is not installed.

References
Bates, Douglas M., and Donald G. Watts. 1981. “A Relative Off Set Orthogonality Convergence Criterion

for Nonlinear Least Squares.” Technometrics 23 (2): 179–83.

Elzhov, Timur V., Katharine M. Mullen, Andrej-Nikolai Spiess, and Ben Bolker. 2012. Minpack.lm: R
Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in Minpack, Plus Support
for Bounds. R Project for Statistical Computing. http://CRAN.R-project.org/package=minpack.lm.

Levenberg, Kenneth. 1944. “A Method for the Solution of Certain Non-Linear Problems in Least Squares.”
Quarterly of Applied Mathematics 2: 164–68.

Marquardt, Donald W. 1963. “An Algorithm for Least-Squares Estimation of Nonlinear Parameters.” SIAM
Journal on Applied Mathematics 11 (2): 431–41.

Moré, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom. 1981. “Testing Unconstrained Optimization
Software.” J-Toms 7 (1): 17–41.

Nash, J. C. 1979. Compact Numerical Methods for Computers : Linear Algebra and Function Minimisation.
Book. Hilger, Bristol :

Nash, John C, and Duncan Murdoch. 2019. Nlsr: Functions for Nonlinear Least Squares Solutions.

13

http://CRAN.R-project.org/package=minpack.lm

	Principal differences
	Derivative information
	Marquardt stabilization
	Criterion used to terminate the iteration
	Output of the modelling functions
	Prediction

	An illustrative nonlinear regression problem
	nls
	nlsr
	minpack.lm
	Problems that are NOT regressions
	A check on the Brown and Dennis calculation via function minimization

	References

