qfa - An R package for Quantitative Fitness
Analysis

Conor Lawless

February 21, 2020

1 Introduction

Quantitative Fitness Analysis (QFA) is an experimental and computational
workflow for comparing fitnesses of microbial cultures grown in parallel on solid
agar surfaces. QFA can be applied to focused observations of single cultures but
is most useful for genome-wide genetic interaction or drug screens investigating
up to thousands of independent cultures. The central experimental method is
the inoculation of independent, dilute liquid microbial cultures onto solid agar
plates which are incubated and regularly photographed. Photographs from each
time-point are analyzed, producing quantitative cell density estimates, which are
used to construct growth curves, allowing quantitative fitness measures to be
derived. Culture fitnesses can be compared to quantify and rank genetic in-
teraction strengths or drug sensitivities. The effect on culture fitness of any
treatments added into substrate agar (e.g. small molecules, antibiotics or nutri-
ents) or applied to plates externally (e.g. UV irradiation, temperature) can be
quantified by QFA.

Detailed descriptions of how to carry out QFA experiments are available in open
access articles, particularly in Banks et al. (2012) and Addinall et al. (2011).
The purpose of this document is to describe some of the computational methods
available in the gfa R package for summarising experimentally observed growth
curves during QFA, and to demonstrate the computational component of QFA
using some small, example datasets.

2 QFA data

The raw experimental data generated by QFA consists of timeseries photographs
of cultures growing on agar plates. The first step in the computational com-
ponent of the QFA workflow is to convert these photographic observations into
cell density estimates for cultures in each position on each plate analysed. The
Colonyzer image analysis tool (Lawless et al. (2010)) is designed for this task
and can be downloaded from its website. Once all the images have been success-
fully analysed, the next step is to attach some metadata and arrange observed
cell densities into timecourses. We use the gfa R package to associate culture
locations with genotypes and to construct growth curves (cell density estimates
over time) for each culture.

http://dx.doi.org/10.3791/4018
http://dx.doi.org/10.1371/journal.pgen.1001362
http://dx.doi.org/10.1186/1471-2105-11-287
http://research.ncl.ac.uk/colonyzer/

3 Installing the gfa package

The gfa package source code is available for download from R-Forge. It should
be possible to install the latest version using the R package management system
on a wide range of operating systems by executing the following command within
an R environment:

install.packages("qfa",repos="http://r-forge.r-project.org")
Once installed, the package can be loaded ready for use with
library(qfa)

Please note that this installation method will typically only work using the latest
version of R (which can be freely downloaded from the R |website). Alternatively,
instructions for accessing the source code for the package from are available here.
It is generally advisable to keep your R installation up-to-date.

4 Function documentation

The following command will provide an overview of functions available within
the gfa package together with brief descriptions of what they do and links to
detailed descriptions indicating input arguments and output:

help(package="qgfa")
The current document can be accessed at any time with:
vignette("qfa")

Documentation for specific functions can be obtained using the usual R mech-
anisms. For example, help on the function colonyzer.read can be obtained
with:

?colonyzer.read

There is a short demo script comparing QFA of cdci13-1 and ura3A at 27°C
to infer which genes interact with the telomere cap. Note that the curve-fitting
functions can throw up many warning messages which can be ignored. These
occur when attempting to fit the model to missing cultures. This demo only
contains data from the yeast deletion collection describing one plate out of a
possible 15. This demo also only uses one replicate plate out of a possible eight
for each screen in order to save analysis time. To repeat the analysis with all
available replicates, uncomment the appropriate lines in the demo script. Note
that the full analysis takes approximately 30 mins. The demo can be loaded
with:

demo ("telomereCap")

To help you build your own QFA script, you can use the contents of the demo
script as a starting point. To see the contents of the demo script, use the
following function from the gfa package:

showDemo ("telomereCap")

http://r-forge.r-project.org/projects/qfa
http://www.r-project.org/
http://r-forge.r-project.org/scm/?group_id=880

5 General overview

This R package consists of a wide range of functions, which can be grouped
according to their purpose.

5.1 Reading and formatting data

colonyzer.read This function reads in image analysis output from Colonyzer,
together with files containing experimental metadata and it associates cell den-
sity estimates with culture type (e.g. genotype) and treatment (e.g. temper-
ature, drug concentration) for each culture. All data are bound together into
a data.frame object, with rows representing unique observations of individual
cultures.

5.2 Summarizing observed growth curves
5.2.1 Generalised Logistic Growth Model: the Glogist function

The original QFA analysis presented in Addinall et al. (2011)| involved fitting
the logistic model to experimentally observed growth curves. During subsequent
screens using automated incubators and automated imagers where we capture
images much more frequently and cultures grow in environments with different
degrees of humidity control, we have found that in many cases observed growth
curves do not fit the logistic model perfectly. In particular we have found ex-
amples of asymmetric growth curves (rate at which growth slows as population
approaches saturation is not mirrored by rate at which population grows in ex-
ponential phase). Such asymmetric curves are not totally consistent with the
fully symmetric output from the logistic model. In this package we use the
more flexible generalised logistic differential equation, which has an additional
shape parameter v to account for asymmetrical growth curves. Importantly, the
original logistic model can be recovered from the generalised model by setting

v=1
== (%)) o

The generalised logistic model has an analytical solution:

K

(o e (3’
go
K Culture carrying capacity (AU). Same units as (normalised) cell density
observed in growth curve.

H
~~

[\
~

g(t7907rv K7 V) =

r Culture growth rate parameter (per day).

go Inoculum denisty (AU). Same units as (normalised) cell density observed in
growth curve.

v Shape parameter. Recover logistic model with v = 1.

t Time since inoculation (d).

http://dx.doi.org/10.1371/journal.pgen.1001362

5.2.2 Smoothing or interpolation: the loapproxfun function

This package also provides a model-free alternative for summarising experimen-
tally observed growth curves. The loapproxfun function is a function closure.
Given a timeseries dataset (growth curve data) it returns an appropriate ap-
proximating function. If a loess smoothing span parameter appropriate for the
data capture frequency (frequency of photographs) is specified, the approximat-
ing function will be a smoothed version of the data in the range of observations.
For all points before the first observation, the approximating function takes the
value of the first smoothed version of the data. Simiarly, beyond the final ob-
servation, the function returns the smoothed version of the data at the final
timepoint. If an inappropriate span parameter is passed to this function it will
return a linear interpolation approximating function instead. This can be more
robust where the loess smoother would add spurious curves to datasets with
sparse observations (e.g. data captured manually 2 or 3 times per day).

5.2.3 Summarizing growth curves: the gqfa.fit function

This function fits the generalised logistic model (represented by the Glogist
function) to sets of observed timecourses by default (though this can be disabled
if model-based fitnesses are not of interest), returning the model parameter val-
ues (listed above) which best fit the data. These parameters can be used to
construct model-based fitnesses later (see below). At the same time qfa.fit
also summarizes data with the loapproxfun function. Storing the coefficients
from the loapproxfun function is impractical and so these are used directly to
generate model-free fitness measures: a Single Time Point (nSTP) fitness surro-
gate, Area Under the growth Curve (nAUC), a numerical estimate of intrinsic
growth rate (nr) and the maximum rate of change of population size observed
during the experiment (maxslp). The “n” indicates “numerical” or model-free,
and is used to differentiate from equivalent measures of fitness which can be de-
rived from the generalised logistic growth curves. nSTP returns the cell density
estimate for a time after inoculation specified by the STP argument to qfa.fit
(the default is a value well after culture growth is complete). nr is the maxi-
mum slope of the smoothed growth curve observed on the log scale. nAUC is
the integral under the smoothed (or interpolated) curve from inoculation until
a time AUCLim after inoculation. Again, AUCLim is an argument to qfa.fit and
its default value is set to 5 days.

5.2.4 Generating fitnesses from the generalised logistic model: the
makeFitness function

This function generates several fitnesses based on the generalised logistic model
parameters estimated using the qfa.fit function:

M DR Maximum Doubling Rate is the generalised logistic version of the M DR
fitness measure presented by |Addinall et al. (2011).

%

MDR = (3)
. v—1
or (1~ st

http://dx.doi.org/10.1371/journal.pgen.1001362

M DP Maximum Doubling Potential is the generalised logistic version of the
M DP fitness measure presented by |Addinall et al. (2011).

log(X)
log(2)

MDR x MDP The generalised logistic version of the M DR x MDP fitness
measure presented by |Addinall et al. (2011).

MDP = (4)

AUC' Area Under the Growth curve described by the generalised logistic model.
This is essentially the integral under the modelled growth curve (above the
inoculum density) from inoculation to an arbitary later timepoint.

AUCLim
AUC = / g(t, go,r, K,v),dz — ggoAUC Lim (5)
0

DT Time required for culture to reach twice its current cell density. Setting
t=t0 recovers maximum doubling time (i.e. doubling time at inoculation,
assuming no lag effect).

2ueurt K V_2Vel-l’7't
(&) - —vrt

(((%)u_‘reurt_l)%) —Qu evrt

vr

log

DT = (6)

5.3 Inferring genetic interaction strengths

Addinall et al. (2011) present methods for statistical epistasis analysis based
on linear error models. For appropriately designed experiments, these functions
can be used to compare sets of query mutation observations with expected ob-
servations, given observations of control mutation fitnesses and the expected
effect of the query mutation, given genome wide observations. Effectively, we
use genome-wide observations to construct a linear predictor of query mutation
fitness given control mutation fitness, and test for the significance of devia-
tions from this prediction. Mutation fitnesses come from multiple, replicate
observations which can be summarised by mean or median fitness and signifi-
cance of deviations can correspondingly be estimated by Student’s t-test or the
Mann-Whitney test after correction for multiple comparisons. Generally, analy-
sis based on mean/t-test is preferred to that using median/Mann-Whitney test,
since the latter has greater statistical power, however, in the case where it has
not been possible to perform adequate quality control on the source data (e.g.
there are occasional contaminants, or missing cultures, resulting in statistical
outliers) the former may be preferable.

Genetic interaction strengths and the statistical significance of observed strengths
can be generated using the qfa.epi function, once logistic model fits have been
carried out, as above.

5.4 Auxiliary functions

Together with the functions for carrying out the raw analysis above, we provide
several functions for visualising the data, the fit of the logistic model to the data

http://dx.doi.org/10.1371/journal.pgen.1001362
http://dx.doi.org/10.1371/journal.pgen.1001362
http://dx.doi.org/10.1371/journal.pgen.1001362

and the visualisation of evidence for epistatic interaction. These visualisation
tools are important for tracking bugs and increasing user confidence in the
validity of the sophisticated QFA workflows.

QFA experiments are often used to compare the fitnesses of independent micro-
bial strains under two different environmental conditions (e.g. query and control
conditions), or in two different genetic backgrounds, to search for evidence for
drug interactions or genetic interactions for example. Such comparisons become
difficult to visualise by static scatterplot for genome-wide QFA due to the sheer
number of strains examined, simply because simultaneous, legible labelling of
4,000 genes on a single plot is not practical.

The gfa.epiplot function generates static, vector graphics scatterplots for
comparing fitness summaries derived from a pair of QFA experiments. Plots
produced by the gfa.epiplot function static plots were used to demonstrate
genetic interactions in |Addinall et al. (2011). [Figure 2| from that paper is an
example, where text labels for several hundred interesting genes obscure each
other.

A dynamic, interactive version of these plots, which labels and highlights user-
specified genes, instead of attempting to label all points at once, can be gen-
erated (under Windows and OSX) using the iRVis function. This is likely
preferable to the static equivalent for most users. The datasets from |Addinall
et al. (2011)| are included in a demo version of this function: iRVisDemo ().
Interacting with this dynamic plotting tool is more fully documented here.

http://dx.doi.org/10.1371/journal.pgen.1001362
http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1001362
http://dx.doi.org/10.1371/journal.pgen.1001362
http://dx.doi.org/10.1371/journal.pgen.1001362
http://qfa.r-forge.r-project.org/visTool

	Introduction
	QFA data
	Installing the qfa package
	Function documentation
	General overview
	Reading and formatting data
	Summarizing observed growth curves
	Generalised Logistic Growth Model: the Glogist function
	Smoothing or interpolation: the loapproxfun function
	Summarizing growth curves: the qfa.fit function
	Generating fitnesses from the generalised logistic model: the makeFitness function

	Inferring genetic interaction strengths
	Auxiliary functions

