
Distributed Storage and Lists

Stefan Theußl

Abstract

Distributed lists are list-type objects where elements (i.e., arbitrary R objects) are
stored in serialized form on a distributed storage. The latter is often used in high per-
formance computing environments to process large quantities of data. First proposed
by Google, data located in such an environment is most efficiently processed using the
MapReduce programming model. The R package DSL provides an environment for cre-
ating and handling of distributed lists. The package allows to make use of different types
of storage backends, in particular the Hadoop Distributed File System. Furthermore, it
offers functionality to operate on such lists efficiently using the MapReduce programming
model.

Keywords: R, lists, MapReduce.

1. Introduction

Distributed lists are list-type objects using a distributed storage to store their elements. Typ-
ically, distributed lists are advantageous in environments where large quantities of data need
to be processed at once since all data is stored out of the main memory which is often limited.
Usually, a “distributed file system” (DFS) can serve as a container to hold the data on a
distributed storage. Such a container can hold arbitrary objects by serializing them to files.

A recurrent function when computing on lists in R (R Development Core Team 2011) is
lapply() and variants thereof. Conceptually, this is similar to a “Map” function from func-
tional programming where a given (R) function is applied to each element of a vector (or
in this case a list). Furthermore, another typical type of function often applied to lists is
a function which combines contained elements. In functional programming this is called
“Reduce” but variants thereof also exists in other areas (e.g., in the MPI standard, see
http://www.mpi-forum.org/docs/mpi22-report/node103.htm#Node103).

First proposed by Google the Map and Reduce functions are often sufficient to express
many tasks for analyzing large data sets. They implement a framework which follows
closely the MapReduce programming model (see Dean and Ghemawat 2004, and http:

//en.wikipedia.org/wiki/MapReduce). Note however, that as pointed out e.g., in Lämmel
(2007) Map and Reduce operations in the MapReduce programming model do not necessarily
follow the definition from functional programming. It rather aims to support computation
(i.e., map and reduction operations) on large data sets on clusters of workstations in a dis-
tributed manner. Provided each mapping operation is independent of the others, all maps can
be performed in parallel. Hadoop (http://hadoop.apache.org/) is an open source variant
of this framework.

Package DSL is an extension package for R for creating and handling list-type objects whose

http://www.mpi-forum.org/docs/mpi22-report/node103.htm#Node103
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://hadoop.apache.org/

2 DSL

elements are stored using a distributed storage backend. For operating on such distributed
lists efficiently the package offers methods and functions from the MapReduce programming
model. In particular, DSL allows to make use of the Hadoop Distributed File System (HDFS,
see Borthakur 2010) and Hadoop Streaming (MapReduce) for storing and distributed pro-
cessing of data. In Section 2, we describe the underlying data structures, and the MapReduce
functionality. Examples are discussed in Section 3. Section 4 concludes the paper.

2. Design and Implementation

2.1. Data Structures

Distributed Storage

The S3 class "DStorage" defines a virtual storage where files are kept on a file system which
possibly spans over several workstations. Data is distributed automatically among these
nodes when using such a file system. Objects of class "DStorage" “know” how to use the
corresponding file system by supplied accessor and modifier methods. The following file
systems are supported to be used as distributed storage (DS):

"LFS": the local file system. This type uses functions and methods from the packages base
and utils delivered with the R distribution to handle files.

"HDFS": the Hadoop distributed file system. Functions and Methods from package
hive (Theußl and Feinerer 2011) are used to interact with the HDFS.

Essentially, such a class needs methods for reading and writing to the distributed storage (DS).
Note however that files are typically organized according to a published standard. Thus, one
should not write or modify arbitrary files or directories on such a file system. To account for
this, class "DStorage" specifies a directory base_dir which can be modified freely but avoids
that read/write operations can escape from that directory. The following (DSL-internal)
methods are available for objects of class "DStorage".

• DS_dir_create()

• DS_get()

• DS_list_directory()

• DS_put()

• DS_read_lines()

• DS_unlink()

• DS_write_lines()

Stefan Theussl 3

Depending on the type of storage suitable functions from different packages will be
used to interact with the corresponding file system. Whereas DS_dir_create(),
DS_list_directory(), DS_read_lines(), DS_unlink(), and DS_write_lines() mimic the
behavior of corresponding functions of package base (dir.create(), dir(), readLines,
unlink(), and writeLines(), respectively), functions DS_get() and DS_put() can be used
to read/write R objects from/to disk.

The main reason of having such a virtual storage class in R is that it allows for easy extension of
memory space in the R working environment. E.g., this storage can be used to store arbitrary
(serialized) R objects. These objects are only loaded to the current working environment (i.e.,
into RAM) when they are needed for computation. However, it is in most cases not a good
idea to place many small files on such a file system due to efficiency reasons. Putting several
serialized R objects into files of a certain maximum size (e.g., line by line as key/value pairs)
circumvents this issue. Indeed, frameworks like Hadoop benefit from such a setup (see Section
Data Organization in Borthakur 2010). Thus, a constructor function must take the following
arguments:

type: the file system type,

base_dir: the directory under which chunks of serialized objects are to be stored,

chunksize: the maximal size of a single chunk.

E.g., a DS of type "LFS" using the system-wide or a user-defined temporary directory as the
base directory (base_dir) and a chunk size of 10MB can be instanciated using the function
DStorage():

> ds <- DStorage(type = "LFS", base_dir = tempdir(),

+ chunksize = 10 * 1024^2)

Further methods to class "DStorage" are a corresponding print() and a summary() method.

> ds

DStorage.

- Type: LFS

- Base directory on storage: /tmp/RtmplVh6i1

- Current chunk size [bytes]: 10485760

> summary(ds)

DStorage.

- Type: LFS

- Base directory on storage: /tmp/RtmplVh6i1

- Current chunk size [bytes]: 10485760

- Registered methods:

dir_create, fetch_last_line, get, list_directory

put, read_lines, unlink, write_lines

4 DSL

Distributed Lists

Distributed lists are defined in R by the S3 class "DList". Objects of this class behave similar
to standard R lists but use a distributed storage of class "DStorage" to store their elements.
Distributed lists can be easily constructed using the function DList() or can be coerced using
the generic function as.DList(). Available methods support coercion of R lists and character
vectors representing paths to data repositories as well as coercion of "DList" objects to lists.

> dl <- DList(letters = letters, numbers = 0:9)

> l <- as.list(letters)

> names(l) <- LETTERS

> dl2 <- as.DList(l)

> identical(as.list(dl2), l)

[1] TRUE

> dl3 <- as.DList(system.file("examples", package = "DSL"))

Note that the above example uses a default storage type, namely "LFS" using a temporary
directory generated with tempdir() as the base directory. In order to set a user defined
storage the DStorage argument to the DList() constructor is used.

> dl <- DList(letters = letters, numbers = 0:9, DStorage = ds)

Conceptually we want a distributed list to support a set of intuitive operations, like accessing
each element (stored somewhere on a DFS) in a direct way, displaying the distributed list and
each individual element, obtaining information about basic properties (e.g., the length of the
list), or applying some operation on a range of elements. These requirements are formalized
via a set of interfaces which must be implemented by the "DList" class:

Display Since elements of the list are not directly available the print and summary methods
should provide other useful information about the distributed list (like the number of
list elements).

Length The length() function must return the number of list elements.

Names Named list must be supported.

Subset The [[operator must be implemented so that individual elements of the distributed
list can be retrieved.

MapReduce Map and Reduce operations as well as variants of lapply (which are concep-
tually similar to Map) can be used to express most of the computation on "DList"

objects.

> #dl

> summary(dl)

Stefan Theussl 5

Length Class Mode

letters 26 -none- character

numbers 10 -none- numeric

> names(dl2)

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N"

[15] "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

> length(dl3)

[1] 2

> dl3[[1]]

[1] "/tmp/RtmpE2nOPv/Rinst50f84db6135c/DSL/examples/file01"

MapReduce is discussed in more detail in the next section.

2.2. Methods on Distributed Lists

The MapReduce programming model as defined by Dean and Ghemawat (2004) is as follows.
The computation takes a set of input key/value pairs, and produces a set of output key/value
pairs. The user expresses the computation as two functions: Map and Reduce. The Map
function takes an input pair and produces a set of intermediate key/value pairs. The Reduce
function accepts an intermediate key and a set of values for that key (possibly grouped by the
MapReduce library). It merges these values together to form a possibly smaller set of values.
Typically, just zero or one output value is produced per reduce invocation. Furthermore, data
is usually stored on a (distributed) file system which is recognized by the MapReduce library.
This allows such a framework to handle lists of values (here objects of class "DList") that
are too large to fit in main memory (i.e., RAM).

DGather: this collective operation is similar to an MPI GATHER (http://www.mpi-forum.
org/docs/mpi22-report/node95.htm#Node95). However, instead of collecting results
from processes running in parallel, DGather() collects the contents of chunks holding
the elements of a "DList". By default a named list of length the number of chunks is
to be returned. Its elements are character vectors of values from key/value pairs stored
in chunks read line by line from the corresponding chunk. Alternatively, DGather() can
be used to retrieve the keys only.

DLapply: is an (l)apply-type function which is used to iteratively apply a function to a set of
input values. In case of DLapply() input values are elements of "DList" objects (i.e.,
the value of a key/value pair). A distributed list of the same length is to be returned.

DMap: is similar to DLapply() above but always takes both the key and the value from a
key/value pair as input. Thus, keys can also be modified. Indeed, the returned object
can differ in length from the original as opposed to when using DLapply.

http://www.mpi-forum.org/docs/mpi22-report/node95.htm#Node95
http://www.mpi-forum.org/docs/mpi22-report/node95.htm#Node95

6 DSL

DReduce: this collective operation takes a set of (intermediate) key/value pairs and combines
values with the same associated key using a given directive (the reduce function). By
default values are concatinated using the c() operator.

> dl <- DList(line1 = "This is the first line.",

+ line2 = "Now, the second line.")

> res <- DLapply(dl, function(x) unlist(strsplit(x, " ")))

> as.list(res)

$line1

[1] "This" "is" "the" "first" "line."

$line2

[1] "Now," "the" "second" "line."

> foo <- function(keypair)

+ list(key = paste("next_", keypair$key, sep = ""), value =

+ gsub("first", "mapped", keypair$value))

> dlm <- DMap(x = dl, MAP = foo)

> ## retrieve keys

> unlist(DGather(dlm, keys = TRUE, names = FALSE))

[1] "next_line1" "next_line2"

> ## retrieve values

> as.list(dlm)

$line1

[1] "This is the mapped line."

$line2

[1] "Now, the second line."

Further methods on "DList" objects are prefixed with DL_. Currently, only methods for
interacting with the underlying "DStorage" are available.

DL_storage: accesses the storage of "DList" objects. Returns objects of class "DStorage".

DL_storage<-: replaces the storage in "DList" objects. Data is automatically transferred to
the new storage.

> l <- list(line1 = "This is the first line.",

+ line2 = "Now, the second line.")

> dl <- as.DList(l)

> DL_storage(dl)

> ds <- DStorage("HDFS", tempdir())

> DL_storage(dl) <- ds

> as.list(dl)

Stefan Theussl 7

3. Examples

3.1. Word Count

This examples demonstrates how Dmap() and DReduce() can be used to count words based
on text files located somewhere on a given file system. The following two files contained in
the example directory of the package will be used.

> ## simple wordcount based on two files:

> dir(system.file("examples", package = "DSL"))

[1] "file01" "file02"

We use a temporary directory as the base directory of a new "DStorage" object. By setting
the maximum chunk size to 1 Byte we force the name of each file being placed in a separate
chunk. Then we store the absolute path to the text files as elements of a "DList" object.

> ## first force 1 chunk per file (set max chunk size to 1 byte):

> ds <- DStorage("LFS", tempdir(), chunksize = 1L)

> ## make "DList", i.e., read file contents and store in chunks

> dl <- as.DList(system.file("examples", package = "DSL"),

+ DStorage = ds)

Data is read into chunks (one per original file) by using a simple call of DMap() on the
distributed list.

> ## read files

> dl <- DMap(dl, function(keypair){

+ list(key = keypair$key,

+ value = tryCatch(readLines(keypair$value),

+ error = function(x) NA))

+ })

The contents of the files is split into words using the following call.

> ## split into terms

> splitwords <- function(keypair){

+ keys <- unlist(strsplit(keypair$value, " "))

+ mapply(function(key, value) list(key = key, value = value),

+ keys, rep(1L, length(keys)),

+ SIMPLIFY = FALSE, USE.NAMES = FALSE)

+ }

> res <- DMap(dl, splitwords)

> as.list(res)

$Hello

[1] 1

8 DSL

$World

[1] 1

$Bye

[1] 1

$World

[1] 1

$Hello

[1] 1

$DSL

[1] 1

$Bye

[1] 1

$DSL

[1] 1

Eventually, collected intermediate results are summed.

> ## now aggregate by term

> res <- DReduce(res, sum)

> as.list(res)

$Hello

[1] 2

$World

[1] 2

$DSL

[1] 2

$Bye

[1] 2

4. Conclusion and Outlook

Package DSL was designed to allow for handling of large data sets not fitting into main
memory. The main data structure is the class "DList" which is a list-type object storing
its elements on a virtual storage of class "DStorage". The package currently provides basic
data structures for creating and handling "DList" and "DStorage" objects, and facilities

Stefan Theussl 9

for computing on these, including map and reduction methods based on the MapReduce
paradigm.

Possible future extensions include:

• "DStorage" interface to NoSQL database systems,

• better integration of the parallel package. Currently only the multicore version of lapply
is used for "LFS" type "DStorage".

Acknowledgments

We are grateful to Christian Buchta for providing efficient C code for collecting partial results
in DReduce().

References

Borthakur D (2010). “HDFS Architecture.”Document on Hadoop Wiki. URL http://hadoop.apache.

org/common/docs/r0.20.2/hdfs_design.html.

Dean J, Ghemawat S (2004). “MapReduce: Simplified Data Processing on Large Clusters.” In Proceed-
ings of the Sixth Symposium on Operating System Design and Implementation, pp. 137–150. URL
http://labs.google.com/papers/mapreduce.html.

Lämmel R (2007). “Google’s MapReduce Programming Model—Revisited.” Science of Computer
Programming, 68(3), 208–237.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.

R-project.org.

Theußl S, Feinerer I (2011). hive: Hadoop InteractiVE. R package version 0.1-13, URL http://CRAN.

R-project.org/package=hive.

Affiliation:

Stefan Theußl
E-mail: Stefan.Theussl@R-project.org

http://hadoop.apache.org/common/docs/r0.20.2/hdfs_design.html
http://hadoop.apache.org/common/docs/r0.20.2/hdfs_design.html
http://labs.google.com/papers/mapreduce.html
http://www.R-project.org
http://www.R-project.org
http://CRAN.R-project.org/package=hive
http://CRAN.R-project.org/package=hive
mailto:Stefan.Theussl@R-project.org

	Introduction
	Design and Implementation
	Data Structures
	Distributed Storage
	Distributed Lists

	Methods on Distributed Lists

	Examples
	Word Count

	Conclusion and Outlook

