
CloneSeeker

Mark Zucker Kevin R. Coombes

November, 2018

Contents

1 Introduction 1

2 Simulated Tumor Containing Multiple Clones 1
2.1 Simulating Tumor Data . 3

3 Seeking Clones 5
3.1 Seeking Clones from Copy Number Data . 7
3.2 Sequencing Data . 8
3.3 Both Sequencing and SNP Array Data . 8

1 Introduction

Tumors often consist of multiple distinct subpopulations or clones. Information about the number
of clones present in a tumor can be inferred using either mutation allele frequency data, from
sequencing studies, or from copy number varants (CNVs), derived either from sequencing or
from SNP array data. The CloneSeeker package can be applied to SNP array data, sequencing
data, or both, from tumor cells from a cancer patient. CloneSeeker can determine the number
of clones, the distribution of cells among clones, and the copy number variations and mutations
(depending on the available data sources) that occur in each clone. The presence of multiple
detectable clones is called “clonal heterogeneity” in the literature.

Clonal heterogeneity likely plays an important role in the clinical course of a cancer. It is
possible, for example, that the tumor cells that will eventually become the refractory cancer after
treatment are present as a minor subclone in the tumor early on.

First, we load the CloneSeeker package:

> library(CloneSeeker)

2 Simulated Tumor Containing Multiple Clones

In order to illustrate the algorithms, we are going to simulate data where we know the true
structure. Specifically, we will simulate copy number and mutation data for a tumor with three
clones. We start with an object that represents the Tumor at a somewhat abstract level.

1

> set.seed(21303) # for reproducibility

> simTumor <- Tumor(c(5, 3, 2), rounds = 100,

+ nu = 10, pcnv = 0.8, norm.contam = FALSE)

The first argument to the Tumor constructor is a vector that specifies the relative proportions of
cells belonging to each clone; the length of the vector determines the number of clones. These
values are automatically converted to fractions that add up to one:

> simTumor@psi

An object of class "WeightVector"

Slot "psi":

[1] 0.5 0.3 0.2

The second argument, rounds, specifies the number of generations through which the tumor
clones are evolved. The idea is that new abnormalities, either in the form of mutations or
copy number variants (CNVs), are acquired at each evolutionary step from some parent cell.
The parameter nu is the expected number of new mutations and the parameter pcnv is the
probability of a new CNV at each step. The final parameter, norm.contam, is a logical indicator
of whether the tumor sample is assumed to include a subset of cells that represent non-cancerous
“normal contamination”.

The resulting simulated tumor contains descriptions of each individual clone. In the current
implementation, these are stored as a list of clones.

> class(simTumor@clones)

[1] "list"

> length(simTumor@clones)

[1] 3

Individual clones contain descriptions of both CNVs and mutations.

> oneClone <- simTumor@clones[[1]]

> class(oneClone)

[1] "list"

> length(oneClone)

[1] 2

> names(oneClone)

[1] "cn" "seq"

The copy number data includes the chromosome, with start and end positions, the number
of copies of the A and B alleles, an arbitrary “segment” identifier, and (as a residual from the
simulated evolutionary history), a “parent” identifier.

2

> dim(oneClone$cn)

[1] 320 7

> summary(oneClone$cn)

chr start end A

Min. : 1.000 Min. : 1 Min. : 512228 Min. :0.0000

1st Qu.: 4.000 1st Qu.: 41806795 1st Qu.: 58350286 1st Qu.:1.0000

Median : 9.000 Median :117639946 Median :139678132 Median :1.0000

Mean : 9.756 Mean :114603107 Mean :133296903 Mean :0.9969

3rd Qu.:15.000 3rd Qu.:181197780 3rd Qu.:208210950 3rd Qu.:1.0000

Max. :24.000 Max. :248891168 Max. :249250621 Max. :1.0000

B seg parent.index

Min. :1.000 Min. : 1.00 Min. :2

1st Qu.:1.000 1st Qu.: 80.75 1st Qu.:2

Median :1.000 Median :160.50 Median :2

Mean :1.003 Mean :160.50 Mean :2

3rd Qu.:1.000 3rd Qu.:240.25 3rd Qu.:2

Max. :2.000 Max. :320.00 Max. :2

The mutation data has a chromosomal location, arbitrary segment and mutation identifiers, the
number of mutated and wild type copies for each mutation, and the affected allele.

> dim(oneClone$seq)

[1] 13 7

> oneClone$seq

chr start seg mut.id mutated.copies allele normal.copies

1 1 31289374 7 180 1 B 1

2 2 138387098 38 181 1 A 1

3 3 47508817 57 1 1 B 1

4 5 49397981 100 2 1 A 1

5 5 107243459 102 3 1 A 1

6 5 141225198 105 4 1 B 1

7 6 165607219 122 5 1 B 1

8 7 123361439 135 6 1 B 1

9 12 27339877 201 182 1 B 1

10 15 60248345 241 7 1 B 1

11 18 9110856 267 183 1 A 1

12 22 15038326 295 8 1 B 1

13 24 40007975 317 184 1 A 1

2.1 Simulating Tumor Data

Now that we have the tumor in place, we can simulate data arising from a sudy of that tumor.

3

> simData <- generateTumorData(simTumor,

+ snps.seq = 10000,

+ snps.cgh = 600000,

+ mu = 70,

+ sigma.reads = 25,

+ sigma0.lrr = 0.15,

+ sigma0.baf = 0.03,

+ density.sigma = 0.1)

For a description of the many parameters to the generateTumorData function, see the man
page. The first two arguments are size parameters. The first, snp.seq, determines the number
of germline variants to simulate; in the absence of separate copy number data, these are used to
provide a crude estimate. The second, snps.cgh, represents the number of SNP locations on the
simulated SNP chip from which copy number segments are derived. The remaining parameters
control the simulated read depth and variabilty.

As with individual clones, the simulated data is structured as a list with separate data frames
for the CNVs and mutations.

> class(simData)

[1] "list"

> length(simData)

[1] 2

> names(simData)

[1] "cn.data" "seq.data"

The simulated copy number data includes chromosomal locations along with estimated log R
ratios (LRR), B allele frequencies (BAF), separate intensity values for the two parental alleles (X
and Y), and the number of SNPs in each segment (markers).

> cnDat <- simData$cn.data

> dim(cnDat)

[1] 320 7

> summary(cnDat)

chr seg LRR BAF

Min. : 1.000 Min. : 1.00 Min. :-0.1268032 Min. :0.4355

1st Qu.: 4.000 1st Qu.: 80.75 1st Qu.:-0.0024181 1st Qu.:0.4996

Median : 9.000 Median :160.50 Median :-0.0003218 Median :0.5000

Mean : 9.756 Mean :160.50 Mean : 0.0003409 Mean :0.5010

3rd Qu.:15.000 3rd Qu.:240.25 3rd Qu.: 0.0027016 3rd Qu.:0.5005

Max. :24.000 Max. :320.00 Max. : 0.1739851 Max. :0.6678

X Y markers

4

Min. :0.9716 Min. :0.4962 Min. : 843

1st Qu.:0.9948 1st Qu.:0.9942 1st Qu.:1611

Median :0.9991 Median :0.9997 Median :1876

Mean :1.0035 Mean :0.9990 Mean :1875

3rd Qu.:1.0061 3rd Qu.:1.0059 3rd Qu.:2136

Max. :1.9881 Max. :1.2891 Max. :3006

The simulated sequencing data, in addition to chromosomal locations, has read counts for
the number of reference alleles, alternate (meaning varianmt or mutated) alleles, total counts,
the variant allele frequency (VAF), and a status indicator of whether the variant is believed to be
germline or somatic.

> dim(simData$seq.data)

[1] 10026 8

> seqDat <- simData$seq.data

> somatic <- seqDat[seqDat$status=='somatic',]
> dim(seqDat)

[1] 10026 8

> summary(seqDat)

chr seg mut.id refCounts

Min. : 1.000 Min. : 1.0 Min. : 1.00 Min. : 24.00

1st Qu.: 4.000 1st Qu.: 80.0 1st Qu.: 7.25 1st Qu.: 60.00

Median : 9.000 Median :160.0 Median : 20.50 Median : 70.00

Mean : 9.681 Mean :159.6 Mean :260.38 Mean : 69.94

3rd Qu.:14.000 3rd Qu.:237.0 3rd Qu.:183.75 3rd Qu.: 79.00

Max. :24.000 Max. :320.0 Max. :951.00 Max. :166.00

NA's :10000

varCounts VAF totalCounts status

Min. : 13.0 Min. :0.09783 Min. : 53.0 Length:10026

1st Qu.: 60.0 1st Qu.:0.46988 1st Qu.:123.0 Class :character

Median : 70.0 Median :0.50000 Median :140.0 Mode :character

Mean : 69.8 Mean :0.49972 Mean :139.7

3rd Qu.: 79.0 3rd Qu.:0.52991 3rd Qu.:156.0

Max. :125.0 Max. :0.74336 Max. :238.0

> table(seqDat$status)

germline somatic

10000 26

3 Seeking Clones

To run CloneSeeker, we will need a starting set of ψ vectors as inputs, where ψ records the
fraction of cells belonging to each clone. For each ψ vector, the algorithm will compute the most

5

probable copy number state for each clone at each segment. The maximum posterior probability
is computed for each input ψ vector, and these probabilities are used to resample new potential
ψ vectors. We usually start by considering every possible decomposition of the tumor into five
clones, where the fraction assigned to each clone is a multiple of 1/20 = 0.05. We can generate
this initial matrix of ψ vectors as follows:

> psis <- generateSimplex(20, 5)

> dim(psis)

[1] 192 5

> head(psis)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.00 0.00 0.00 0 0

[2,] 0.95 0.05 0.00 0 0

[3,] 0.90 0.10 0.00 0 0

[4,] 0.90 0.05 0.05 0 0

[5,] 0.85 0.15 0.00 0 0

[6,] 0.85 0.10 0.05 0 0

> tail(psis)

[,1] [,2] [,3] [,4] [,5]

[187,] 0.25 0.25 0.25 0.20 0.05

[188,] 0.25 0.25 0.25 0.15 0.10

[189,] 0.25 0.25 0.20 0.20 0.10

[190,] 0.25 0.25 0.20 0.15 0.15

[191,] 0.25 0.20 0.20 0.20 0.15

[192,] 0.20 0.20 0.20 0.20 0.20

For SNP array data, we also need, as input, a set of possible clonal segment copy number
states. If none exists the function will automatically generate one. The version used here
considers all possible copy number states from 0 to 5 copies, but it imposes a strong prior belief
that two different clones cannot both gain and lose the same segment.

> cnmodels <- expand.grid(rep(list(0:5),5))

> include <- sapply(1:nrow(cnmodels), function(i) {

+ length(which(cnmodels[i,] >= 1))==5 | length(which(cnmodels[i,] <= 1)) == 5

+ })

> cnmodels <- cnmodels[include,]

Now we will define the other algorithm parameters:

> pars <- list(sigma0 = 1, # SNP-wise standard deviation

+ ktheta = 0.3, # geometric prior parameter on number of clones

+ theta = 0.9, # geometric prior parameter on copy number changes

+ mtheta = 0.9, # gemoetric prior parameter on point mutations

6

+ alpha = 0.5, # parameter for a symmetric Dirichlet prior on psi

+ thresh = 0.04, # smallest possible detectble clone

+ cutoff = 100, # filter out copy number segments supported by fewer SNPs

+ Q = 100, # number of new psi vectors resamples at each iteration

+ iters = 4) # number of iterations

3.1 Seeking Clones from Copy Number Data

The seekClones function can estimate the clonal architecture from copy number data, or from
mutation and variant data, or jointly from both kinds of data. In this section, we will run the
algorithm using only the copy number data. To do that, we set the varData argument to NULL.

> resCN <- seekClones(cndata = cnDat, vardata = NULL,

+ cnmodels = cnmodels, psiset = psis, pars = pars)

Here are the results of the “CNV only” analysis of this sample:

> resCN$psi

[1] 0.5 0.3 0.2 0.0 0.0

> simTumor@psi

An object of class "WeightVector"

Slot "psi":

[1] 0.5 0.3 0.2

In this case, CloneSeeker accurately estimates not only the number of clones but also the clonal
fractions. Let’s look at the clonal copy number assignments as well:

> trueCN_Assignments <- t(sapply(1:nrow(resCN$filtered.data$cndata.filt),

+ function(i) {

+ index <- rownames(simTumor@clones[[1]]$cn) ==

+ rownames(resCN$filtered.data$cndata.filt)[i]

+ sapply(1:length(simTumor@clones),function(j){

+ simTumor@clones[[j]]cnA[index] + simTumor@clones[[j]]cnB[index]

+ })

+ }))

> inferredCN_Assignments <- (resCN$A+resCN$B)[,1:length(simTumor@clones)]

> colnames(inferredCN_Assignments) <- colnames(trueCN_Assignments) <-

+ paste("C", 1:3)

> data.frame(Truth = trueCN_Assignments,

+ Infer = inferredCN_Assignments)

Truth.C.1 Truth.C.2 Truth.C.3 Infer.C.1 Infer.C.2 Infer.C.3

22 2 2 2 2 2 2

24 2 2 2 2 3 2

128 2 2 2 2 2 2

7

170 2 2 2 1 2 2

226 2 2 2 2 1 2

244 2 2 2 3 2 2

248 2 2 2 1 2 2

297 2 2 2 2 3 2

315 2 2 2 2 1 2

Although not perfect, the algorithm managed to correctly estimate most of the segment-wise
allelic copy numbers of different clones.

3.2 Sequencing Data

Now, let’s illustrate the use of CloneSeeker in analyzing mutation data (by which we mean
variant data such as one would find in a .vcf file) to seek clones. This time, we run the
CloneSeeker algorithm with the cndata argument set to NULL.

> resMut <- seekClones(cndata = NULL, vardata = seqDat,

+ cnmodels = cnmodels, psiset = psis, pars = pars)

Here the results aren’t as good; at least one of the actual clones has been split into separate
pieces.

> resMut$psi

[1] 0.53443247 0.19437358 0.10946443 0.10387835 0.05785117

> simTumor@psi

An object of class "WeightVector"

Slot "psi":

[1] 0.5 0.3 0.2

3.3 Both Sequencing and SNP Array Data

Finally, we illustrate running CloneSeeker on a sample for which there is both SNP array and
mutation data.

> resBoth <- seekClones(cndata = cnDat, vardata = somatic,

+ cnmodels = cnmodels, psiset = psis, pars = pars)

And we can look at the inferred allocation of tumor fraction to clones:

> resBoth$psi

[1] 0.45 0.30 0.15 0.05 0.05

> simTumor@psi

An object of class "WeightVector"

Slot "psi":

[1] 0.5 0.3 0.2

8

Surprisingly, the results here are similar to the overaggressive results obtained using just the
sequencing data rather than the simpler and correct results obtained when using just the copy
number data.

In conclusion, CloneSeeker can be applied effectively to cases where one has SNP array data,
(processed) sequencing data, or both.

9

