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1 Introduction

R package gradientForest [Ellis et al., 2012] develops flexible non-parametric functions to
quantify multi-species compositional turnover along environmental gradients. The flexibility
comes from the method’s origins in Random Forests [Breiman, 2001]; specifically R package
randomForest [Liaw and Wiener, 2002]. This document provides an example to demonstrate
the use of gradientForest for ecological analysis of biodiversity survey data. A multi-regional
application is provided by [Pitcher et al., 2012]. The document assumes some familiarity both
with R and with community analysis. The example has some analogues with constrained ordina-
tion methods and with Generalized Dissimilarity Modelling [Ferrier et al., 2007], which are both
complementary. Package randomForest includes functions for plotting non-linear responses in
compositional along environmental gradients, and for using these responses to transform envi-
ronmental data layers to biological scales. The transformed multi-dimensional biological space
can be represented as a biplot and can be mapped in geographic space.

This example demonstrates typical scripts for a gradient forest analysis and provides in the
package a sites-by-species (row-by-columns) matrix and a matching sites-by-environment (row-
by-columns) dataframe. The number of rows and their order must match between these two
data objects. The data should not include NAs. It is assumed that users will be familiar with
the data-processing steps necessary to produce such data objects.

1



2 Gradient Forest basics

2.1 Data

The example data provided in package gradientForest are real species data from a cross-
shelf survey in the far northern Great Barrier Reef of northeast Australia [Poiner et al., 1998,
Burridge et al., 2006]. Of > 1, 000 species observed, a subset of 110 are included from 197 of
the sites sampled. The environmental data include 28 predictors, either measured at each site
or attributed to each site by interpolation [Pitcher et al., 2002].

> require(gradientForest)

> # load the site by species matrix, object=Sp_mat

> # includes transformed biomass of 110 species at 197 sites

> load("GZ.sps.mat.Rdata")

> dim(Sp_mat)

[1] 197 110

> # load the site physical data, object=Phys_site

> # includes 28 predictors at 197 sites

> load("GZ.phys.site.Rdata")

> dim(Phys_site)

[1] 197 28

2.2 gradientForest analysis

The function gradientForest is a wrapper function that calls extendedForest, a modified
version of randomForest, and collates its output across all the species in the data matrix.
The key modification in extendedForest extracts the numerous tree split values along each
predictor gradient and their associated fit improvement, for each predictor in each tree, for the
forests and returns that information to gradientForest.

Like randomForest, extendedForest assesses the importance of each variable for predic-
tion accuracy; information that is further collated and processed by gradientForest. Often,
predictor variables are correlated however. The standard approach in random forests assesses
marginal importance of predictor by randomly permuting each predictor in turn, across all sites
in the dataset, and calculating the degradation prediction performance of each tree. Package
extendedForest can account for correlated predictors by implementing conditional permutation
[Ellis et al., 2012], following the strategy outlined by Strobl et al. [2008]. In conditional per-
mutation, the predictor to be assessed is permuted only within blocks of the dataset defined
by splits in the given tree on any other predictors correlated above a certain threshold (e.g.
r = 0.5) and up to a maximum number of splits set by the maxLevel option (if required).

> nSites <- dim(Sp_mat)[1]

> nSpecs <- dim(Sp_mat)[2]

> # set depth of conditional permutation

> lev <- floor(log2(nSites*0.368/2))

> lev

[1] 5



The gradientForest may take several minutes to run. Other options that can be set include
the number of trees typically 500, whether the splits should be compact into bins (advising
to prevent memory problems for large datasets) and the number of bins, and the correlation
threshold for conditional permutation. The summary shows the number of species with positive
R2 ie. those species that could be predicted to any extent by the available predictor. The
returned object is a list containing the data, predictor importances, species R2’s and other
information described in the html help pages under Value.

> gf <- gradientForest(cbind(Phys_site,Sp_mat), predictor.vars=colnames(Phys_site), response.vars=colnames(Sp_mat), ntree=500, transform = NULL, compact=T, nbin = 201, maxLevel=lev, corr.threshold=0.5)

> gf

A forest of 300 regression trees for each of 89 species

Call:

gradientForest(data = cbind(Phys_site, Sp_mat), predictor.vars = colnames(Phys_site),

response.vars = colnames(Sp_mat), ntree = 300, transform = NULL,

maxLevel = lev, corr.threshold = 0.5, compact = T, nbin = 101)

Important variables:

[1] BSTRESS MUD S_AV SAND CHLA_AV

> names(gf)

[1] "X" "Y" "result"

[4] "overall.imp" "overall.imp2" "ntree"

[7] "imp.rsq" "species.pos.rsq" "ranForest.type"

[10] "res" "res.u" "dens"

[13] "call"

2.3 gradientForest plots

Several types of plots are available for the gradientForest object. The first is the predictor
overall importance plot. This show the mean accuracy importance and the mean importance
weighted by species R2. in this example, both are conditional importance. Seabed stress and
sediment mud fraction are clearly the most important variables across these 89 species.

> plot(gf,plot.type="O")
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The predictor gradient plots are best presented in order of importance; in this example the
top 25 predictors are presented in 5 by 5 panels.

> # get a sorted list of the top 1:n most important predictors

> most_important <- names(importance(gf))[1:25]

> par(mgp=c(2, 0.75, 0))

The second plot is the splits density plot (plot.type="S"), which shows binned split impor-
tance and location on each gradient (spikes), kernel density of splits (black lines), of observations
(red lines) and of splits standardised by observations density (blue lines). Each distribution in-
tegrates to predictor importance. These show where important changes in the abundance of
multiple species are occurring along the gradient; they indicate a composition change rate.
Many of the usual plot options can be set in the call.

> plot(gf, plot.type="S", imp.vars=most_important, leg.posn="topright", cex.legend=0.4, cex.axis=0.6, cex.lab=0.7, line.ylab=0.9, par.args=list(mgp=c(1.5, 0.5, 0), mar=c(3.1,1.5,0.1,1)))
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The third plot is the species cumulative plot (plot.type="C", show.overall=F), which
for each species shows cumulative importance distributions of splits improvement scaled by
R2 weighted importance, and standardised by density of observations. These show cumulative
change in abundance of individual species, where changes occur on the gradient, and the species
changing most on each gradient. Again many of the usual plot options can be set in the call; in
this example the legend identifies the top 5 most responsive species for each predictor

> plot(gf, plot.type="C", imp.vars=most_important, show.overall=F, legend=T, leg.posn="topleft", leg.nspecies=5, cex.lab=0.7, cex.legend=0.4, cex.axis=0.6, line.ylab=0.9, par.args=list(mgp=c(1.5, 0.5, 0), mar=c(2.5,1.0,0.1,0.5), omi=c(0,0.3,0,0)))
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The fourth plot is the predictor cumulative plot (plot.type="C", show.species=F), which
for each predictor shows cumulative importance distributions of splits improvement scaled by
R2 weighted importance, and standardised by density of observations, averaged over all species.
These show cumulative change in overall composition of the community, where changes occur on
the gradient. Again many of the usual plot options can be set in the call; in this example com-

mon.scale=T ensures that plots for all predictors have the same y-scale as the most important
predictor.

> plot(gf, plot.type="C", imp.vars=most_important, show.species=F, common.scale=T, cex.axis=0.6, cex.lab=0.7, line.ylab=0.9, par.args=list(mgp=c(1.5, 0.5, 0), mar=c(2.5,1.0,0.1,0.5), omi=c(0,0.3,0,0)))
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The fifth plot shows the R2 measure of the fit of the random forest model for each species,
ordered in various ways.

> plot(gf, plot.type="P", show.names=F, horizontal=F, cex.axis=1, cex.labels=0.7, line=2.5)
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Several other alternative formats of the R2 fit performance plot are available, e.g.:

> plot(gf, plot.type="P", show.names=T, horizontal=F, cex.axis=1, cex.labels=0.7, line=2.5)

> plot(gf, plot.type="P", show.names=F, horizontal=T, cex.axis=1, cex.labels=0.6, line=2.5)

> plot(gf, plot.type="P", show.names=T, horizontal=T, cex.axis=1, cex.labels=0.6, line=2.5)

3 Gradient Forest predictions

In addition to examining compositional change along environmental gradients, the predictor
cumulative functions can also be used to transform grid data layers of environmental variables
to a common biological importance scale. This transformation of the multi-dimensional en-
vironment space is to a biological space in which coordinate position represents composition
associated with the predictors. These inferred compositional patterns can be mapped in bio-
logical space and geographic space in a manner analogous to ordination, but takes into account
the non-linear and sometimes threshold changes that occur along gradients.



3.1 Transforming predictors

The example provided includes gridded environmental variables for a roughly 10,000 km2 area
of the far northern Great Barrier Reef where the biological surveys were conducted. The data
include North and East coordinates plus 28 predictors at 8,682 grid cells. The grid data must
include the same predictors with the same names as sites included in the gradientForest call.

> load("GZ.phys.grid.Rdata")

> dim(Phys_grid)

[1] 8682 30

> names(Phys_grid)

[1] "NORTH" "EAST" "BATHY" "SLOPE" "ASPECT"

[6] "BSTRESS" "CRBNT" "GRAVEL" "SAND" "MUD"

[11] "NO3_AV" "NO3_SR" "PO4_AV" "PO4_SR" "O2_AV"

[16] "O2_SR" "S_AV" "S_SR" "T_AV" "T_SR"

[21] "Si_AV" "Si_SR" "CHLA_AV" "CHLA_SR" "K490_AV"

[26] "K490_SR" "SST_AV" "SST_SR" "BIR_AV" "BIR_SR"

The grid variables are transformed using the gradientForest predict function.

> imp.vars <- names(importance(gf))

> Trns_grid <- cbind(Phys_grid[,c("EAST","NORTH")], predict(gf,Phys_grid[,imp.vars]))

It is useful to also transform the site environmental predictors, which are available from
gf$X.

> Trns_site <- predict(gf)

3.2 Biplot of the biological space

The multi-dimensional biological space can most effectively be represented by taking the prin-
ciple components of the transformed grid and presenting the first two dimensions in a biplot.
It must be acknowledged that while most variation in patterns is captured by the first dimen-
sions, additional compositional pattern contained in the higher dimensions is not shown. A user
defined RGB colour palette is set up based on the first 3 dimensions.

> PCs <- prcomp(Trns_grid[,imp.vars])

> # ensure BSTRESS points to upper right quadrant

> sgn <- sign(PCs$rotation["BSTRESS",])

> PCs$rotation <- sweep(PCs$rotation,2,sgn,"*")

> PCs$x <- sweep(PCs$x,2,sgn,"*")

> # set up a colour palette for the mapping

> a1 <- PCs$x[,1]

> a2 <- PCs$x[,2]

> a3 <- PCs$x[,3]

> r <- a1+a2

> g <- -a2

> b <- a3+a2-a1

> r <- (r-min(r)) / (max(r)-min(r)) * 255

> g <- (g-min(g)) / (max(g)-min(g)) * 255

> b <- (b-min(b)) / (max(b)-min(b)) * 255



The environmental variables may be shown as vectors, perhaps limited to the most important
predictors — in this example, variables to show as vectors are selected.

> nvs <- dim(PCs$rotation)[1] # number of variables

> # choose predictor vectors to show

> vec <- c("BSTRESS", "MUD", "SST_AV", "T_AV", "CHLA_AV", "SAND", "CRBNT", "GRAVEL")

> lv <- length(vec)

> vind <- rownames(PCs$rotation) %in% vec

> # choose a scaling factor to plot the vectors over the grid

> scal <- 40

> xrng <- range(PCs$x[,1], PCs$rotation[,1]/scal)*1.1

> yrng <- range(PCs$x[,2], PCs$rotation[,2]/scal)*1.1

> plot((PCs$x[,1:2]), xlim=xrng, ylim=yrng, pch=".", cex=4, col=rgb(r,g,b, max = 255), asp=1)

> # plot the other predictors with "+"

> points(PCs$rotation[! vind,1:2]/scal, pch="+")

> # plot the chosen predictors as arrows

> arrows(rep(0,lv), rep(0,lv), PCs$rotation[vec,1]/scal, PCs$rotation[vec,2]/scal, length = 0.0625)

> jit <- 0.0015

> text(PCs$rotation[vec,1]/scal+jit*sign(PCs$rotation[vec,1]), PCs$rotation[vec,2]/scal+jit*sign(PCs$rotation[vec,2]), labels = vec)

Different coordinate positions in the biplot represent differing compositions, as associated
with the predictors. Further information may be added to the biplot including the location
of sites in biological space, the weight mean location of species, and selected species may be
identified interactively.
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> # first predict the PCs for the transformed site data

> PCsites <- predict(PCs,Trns_site[,imp.vars])

> # plot all the sites as points on the biplot

> points(PCsites[,1:2])

> # calc & plot the weighted mean locations of species (from gf$Y)

> SpsWtd <- sweep(gf$Y,2,apply(gf$Y,2,min),"-")

> SpsWtdPCs <- (t(SpsWtd) %*% (PCsites[,1:2]))/colSums(SpsWtd)

> points(SpsWtdPCs, col="red", pch="+")

> # interactively label some of the species, if desired

> #identify(SpsWtdPCs, labels = as.character(rownames(SpsWtdPCs)), col="blue")

If required, the abundance of any given species may be plotted on the biplot. For example
the first species from gf$Y = A1010102, an alga from the family Caulerpaceae that appears to
prefer carbonate gravelly sand area with moderate bedstress and lower temperature.

> sp <- colnames(SpsWtd)[1]



> points(PCsites[,1:2], col="blue", cex=SpsWtd[,sp]/2)

Alternatively, specifically named examples could be plotted: e.g. E4030373 a Fungiid coral;
M2020101 a Strombid mollusc; or S1010671 a Perophorid ascidian to name a few.

3.3 Mapping in geographic space

The biplot and the colour palette in the previous section can be used as a key to visualise com-
positional patterns mapped in geographic space. The following map plots predicted PC scores
in geographic coordinates, using the same colour palette as above, and represents continuous
changes in inferred compositional patterns associated with the predictors.

> plot(Trns_grid[,c("EAST","NORTH")],pch=".", cex=3, asp=1, col=rgb(r,g,b, max = 255))
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3.4 A clustered version

Some applications may require a hard clustered output, representing inferred assemblages, rather
than a continuous representation of biodiversity composition. The following example uses clara
to make 8 clusters. This is a fast claustering algorithm suitable for large data sets. The medoids
are labelled and the colour key takes the value for each medoid. Other clustering methods may
be used (for example, pam would take several minutes) as alternatives, and their various cluster
diagnostics may provide a guide to the appropriate numbers of clusters.

> require(cluster)

> ncl <- 8

> clPCs <- clara(PCs$x,ncl,sampsize=1000)

> # get the medoid colour palette

> medcolR <- r[clPCs$i.med]

> medcolG <- g[clPCs$i.med]

> medcolB <- b[clPCs$i.med]

> # re-plot the biplot -- coloured by cluster medoids

> plot((PCs$x[,1:2]), xlim=xrng, ylim=yrng,pch=".", cex=4, col=rgb(medcolR[clPCs$clustering], medcolG[clPCs$clustering], medcolB[clPCs$clustering], max = 255), asp=1)

> points(PCs$rotation[! vind,1:2]/scal, pch="+")

> arrows(rep(0,lv), rep(0,lv), PCs$rotation[vec,1]/scal, PCs$rotation[vec,2]/scal, length = 0.0625)

> text(PCs$rotation[vec,1]/scal+jit*sign(PCs$rotation[vec,1]), PCs$rotation[vec,2]/scal+jit*sign(PCs$rotation[vec,2]), labels = vec)

> # plot the cluster medoids with ID number

> text(clPCs$medoids[,1:2], labels = seq(1,ncl))

> legend("bottomleft",as.character(seq(1,ncl)), pch=15, cex=1,col=rgb(medcolR,medcolG,medcolB, max = 255))
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> # re-plot the map --- coloured by cluster medoids

> plot(Trns_grid[,c("EAST","NORTH")],pch=".", cex=3, asp=1, col=rgb(medcolR[clPCs$clustering], medcolG[clPCs$clustering], medcolB[clPCs$clustering], max = 255))

> points(Trns_grid[clPCs$i.med,c("EAST","NORTH")], pch=as.character(seq(1,ncl)))

> legend("bottomleft",as.character(seq(1,ncl)), pch=15, cex=1, col=rgb(medcolR,medcolG,medcolB, max = 255))
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4 Session information

The simulation and output in this document were generated in the following computing envi-
ronment.

• R version 3.5.1 Patched (2018-09-06 r75251), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Running under: Debian GNU/Linux buster/sid

• Matrix products: default



• BLAS: /srv/R/R-patched/build.18-09-07/lib/libRblas.so

• LAPACK: /srv/R/R-patched/build.18-09-07/lib/libRlapack.so

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: cluster 2.0.7-1, extendedForest 1.6.1, gradientForest 0.1-17

• Loaded via a namespace (and not attached): compiler 3.5.1, grid 3.5.1, lattice 0.20-35,
tools 3.5.1
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