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1 Introduction

The gradientForest package was developed to analyse large numbers of potential predictor
variables by integrating the individual results from random forest analyses over a number of
species. The random forests for each species were produced by the R package extendedForest

consisting of modifications that we made to the original randomForest package [Liaw and
Wiener, 2002]. One of the major modifications made to randomForest was to the method for
calculating variable importance when two or more predictor variables were correlated.

Many of the predictor variables used in ecological studies are either naturally (e.g., decreasing
temperatures with water depth) or functionally (e.g., benthic irradiance are calculated as a
function of bottom depth and light attenuation) correlated. While some of these predictors
may determine species distribution or abundance other collinear predictors may not.

The random subset approach for fitting predictor variables at each node could result in a
correlated but less influential predictor standing in for more highly influential predictors in the
early splits of an individual tree depending upon which predictor is selected in the subset. This
tendency can be lessened by increasing the subsample size of predictors for each node but the
trade-off would be an increase in correlation between trees in the forest with concurrent increase
in generalization error and a decrease in accuracy [Breiman, 2001; see also Grömping, 2009].

Strobl et al. [2008] have also demonstrated that the permutation method for estimating vari-
able importance exhibits a bias towards correlated predictor variables. The underlying reason
for this behaviour has to do with the structure of the null hypothesis, i.e., independence between
the response Y and the predictor Xj being permuted, implied by the importance measure. A
small value for the importance measure would suggest that Y and Xj are independent but also
assumes that Xj is independent of the other predictor variables Z in the model that were not
permuted (Z = X, . . . ,Xj−1, Xj+1, . . . , Xp). Correlation between Xj and Z will result in an
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apparent increase in importance reflecting the lack of independence between Xj and Z instead
of only reflecting the lack of independence between Xj and Y .

To remedy this situation, Strobl et al. [2008] proposed a conditional permutation approach
where the values for Xj in the OOB sample for each tree are permuted within partitions of the
values of the predictors in each tree that are correlated with Xj . Permutation importance is
calculated by passing the OOB samples reconfigured with this permutation grid through each
respective tree in the standard way.

In this document we present the results of a simulation study demonstrating the impact
of correlation between predictor variables on determining variable importance and how the
conditional permutation method implemented in extendedForest reduces this impact.

2 Methods

2.1 Conditional permutation

Our implementation of the method of Strobl et al. [2008] in extendedForest is based on the
following. For predictor Xj determine all predictors, X ′i (i = 1, . . . , k; i 6= j and k ≤ p − 1)
that are correlated with Xj above some threshold ρ∗. For tree t, find the first K split values,
s1, . . . , sK and indices vi, . . . , vK on the X ′i. For each observation l in the OOB sample designate
a grouping or partitioning label as,

gl =
K∑
i=1

2i−1I(X ′vi < si) (1)

where I(·) is the indicator function taking value 1 if its argument is true and 0 otherwise.
Permutation of Xj in the OOB sample is applied within the above groups and calculation

of the permutation importance measure proceeds as before. The grouping labels will take at
most 2K different values, although some combinations may be missing. K should be chosen
not so large that there are too few observations per partition. We used a rule-of-thumb K =
blog2(0.368N sites

a /2)c, which, if the sites were uniformly distributed among partitions, would
ensure at least two points per partition.

2.2 Simulation Study

We used the simulation study design in Strobl et al. [2008] to demonstrate the difference be-
tween determining variable importance by conditional and marginal permutation. The response
variable was set as a function of twelve predictor variables, i.e.,

yi = β1xi,1 + · · ·+ β12xi,12 + εi,

where εi ∼ N(0, 0.5). The coefficients for the predictor variables were set so that only six of the
twelve were influential.

Table 1: Regression coefficients for linear model used in simulation.

Predictor variables
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

βj 5 5 2 0 -5 -5 -2 0 0 0 0 0

The correlation structure was introduced by setting the predictor variables as a sample from
a multivariate normal distribution with a zero mean vector and covariance Σ. All predictors were



defined to have unit variance, σj,j = 1 and only the first four predictors were block-correlated
with σj,j′ = 0.9 (i 6= j′ ≤ 4). Off-diagonal elements were set to zero for the rest of the predictors.
The R code used to run the simulation follows.

> require(extendedForest)

> require(MASS)

> #Set up covariance matrix

>

> Cov <- matrix(0,12,12)

> Cov[1:4,1:4] <- 0.9

> diag(Cov)[] <- 1

> #Coefficients for linear model

>

> beta <- c(5,5,2,0,-5,-5,-2,0,0,0,0,0)

> # Set the maximum number of partitions to compute the importance

> # from conditional permutation distribution of each variable

> maxK<-c(0,2,4,6)

> # Set the number of records (or sites) and the number of simulations.

> nsites<- 100

> nsim <- 100

> imp <- array(0,dim=c(12,4,nsim))

> #Simulation

>

> set.seed(222)

> for (sim in 1:nsim) {

+ X <- mvrnorm(nsites, rep(0,12), Sigma=Cov)

+ Y <- X%*%beta + rnorm(nsites,0,0.5)

+ df <- cbind(Y=Y,as.data.frame(X))

+ for (lev in 1:4) {

+ RF <- randomForest(Y ~ .,df, maxLevel=maxK[lev], importance=TRUE, ntree=500, corr.threshold=0.5,mtry=8)

+ imp[,lev,sim] <- RF$importance[,1]

+ }

+ }

> dimnames(imp) <- list(rownames(RF$importance), as.character(maxK), NULL)

> imp <- as.data.frame.table(imp)

3 Results

Marginal permutation identifies variables 1 and 2 as most important, followed by variables 3 to
7. even though variable 4 had no influence on the response, its correlation to variables 1 to 3
resulted in this variable being ranked as more important than variables 5 to 7.

> require(lattice)

> names(imp) <- c("var","maxK","sim","importance")

> print(bwplot(var ~ importance | ifelse(maxK=="0", "Marginal", paste("Conditional: Level",maxK,sep="=")),imp, as.table=T))
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Marginal

Variable importance obtained for differing number of partitions for the permutation grid are
presented. Based on our rule-of-thumb the number of partitions should be set to 4 and there
appears to be little difference between the results for K = 4 and K = 6. In both these cases
the importance of variables 1 and 2 were very similar to those for variables 5 and 6 as expected
from the linear model. Further, variable 4 is now just slightly ahead of variable 7 in importance.
Apparently, this approach eliminates most but not all of effects of correlation. It is possible
that increasing the number of partitions may reduce the importance of variable 4 even more
(compare results from K = 4 and K = 6), however, at some point there will not be enough
observations at each partition to calculate importance.

4 Session information

The simulation and output in this document were generated in the following computing envi-
ronment.

• R version 3.5.1 Patched (2018-09-06 r75251), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Running under: Debian GNU/Linux buster/sid



• Matrix products: default

• BLAS: /srv/R/R-patched/build.18-09-07/lib/libRblas.so

• LAPACK: /srv/R/R-patched/build.18-09-07/lib/libRlapack.so

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: MASS 7.3-50, extendedForest 1.6.1, lattice 0.20-35

• Loaded via a namespace (and not attached): compiler 3.5.1, grid 3.5.1, tools 3.5.1

References

L. Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.
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