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Abstract

This introduction to the extended features of the R package betareg is a (slightly) mod-
ified version of Grün, Kosmidis, and Zeileis (2012), published in the Journal of Statistical
Software.

Beta regression – an increasingly popular approach for modeling rates and propor-
tions – is extended in various directions: (a) bias correction/reduction of the maximum
likelihood estimator, (b) beta regression tree models by means of recursive partitioning,
(c) latent class beta regression by means of finite mixture models. All three extensions
may be of importance for enhancing the beta regression toolbox in practice to provide
more reliable inference and capture both observed and unobserved/latent heterogeneity
in the data. Using the analogy of Smithson and Verkuilen (2006), these extensions make
beta regression not only “a better lemon squeezer” (compared to classical least squares re-
gression) but a full-fledged modern juicer offering lemon-based drinks: shaken and stirred
(bias correction and reduction), mixed (finite mixture model), or partitioned (tree model).
All three extensions are provided in the R package betareg (at least 2.4-0), building on
generic algorithms and implementations for bias correction/reduction, model-based recur-
sive partioning, and finite mixture models, respectively. Specifically, the new functions
betatree() and betamix() reuse the object-oriented flexible implementation from the R
packages partykit and flexmix, respectively.

Keywords: beta regression, bias correction, bias reduction, recursive partitioning, finite mix-
ture, R.

1. Introduction

A brief review of beta regression

Beta regression is a model for continuous response variables y which assume values in the
open unit interval (0, 1). Such response variables may stem from rates, proportions, concen-
trations, etc. A regression model where the mean as well as the precision is modeled through
covariates was introduced by Ferrari and Cribari-Neto (2004) along with the extensions by
Smithson and Verkuilen (2006) and Simas, Barreto-Souza, and Rocha (2010). This model is
also referred to as “double index regression model” because it contains two regression parts:
one for the mean and one for the precision. Ferrari and Cribari-Neto (2004) employed an
alternative parameterization of the beta distribution characterizing more easily the mean and
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the variance. In this parameterization the beta distribution has the density

f(y;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1−y)(1−µ)φ−1 , 0 < y < 1 , 0 < µ < 1 , φ > 0 , (1)

where Γ(·) is the gamma function. A beta-distributed variable Y then has mean E(Y ) = µ
and variance VAR(Y ) = µ(1− µ)/(1 + φ) so that φ can be seen as a precision parameter.

The double index beta regression model is specified in the following way. Given observations
on n independent beta-distributed random variables Yi (i = 1, . . . , n), the corresponding
parameters µi and φi are linked to linear predictors ηi and ζi as follows

g1(µi) = ηi = x>i β , (2)

g2(φi) = ζi = z>i γ , (3)

where xi and zi are p- and q-dimensional vectors of covariates observed along with Yi (i =
1, . . . , n), and β = (β1, . . . , βp)

>, γ = (γ1, . . . , γq)
> are the vectors of coefficients associated

with the means and the precisions, respectively. The functions g1(·) and g2(·) are monotonic
link functions, preferably with the property of mapping the range of µi (0, 1) and φi (0,∞),
respectively, to the real line. Suitable candidates for g1(·) are the logit, probit and generally
any inverse of a cumulative distribution function, and for g2(·) the log function. Another
common choice for g2(·) is the identity function which, however, can lead to invalid results
when some ζi < 0.

Typically, the coefficients β and γ are estimated by maximum likelihood (ML) and inference is
based on the usual central limit theorem with its associated asymptotic tests, e.g., likelihood
ratio, Wald, score/Lagrange multiplier (LM).

Implementation in R

The R package betareg (Cribari-Neto and Zeileis 2010) provides ML estimation of beta re-
gressions in its main model fitting function betareg(). The interface as well as the fitted
model objects are designed to be similar to those from glm(). The model specification is
via a formula plus data. Because two types of covariates need to be distinguished a two-
part formula is allowed based on functionality provided by the Formula package (Zeileis and
Croissant 2010). For example, y ~ x1 + x2 + x3 | z1 + z2 would assign the covariates x1,
x2, and x3 to the mean submodel (2) and z1 and z2 to the precision submodel (3), respec-
tively. Function betareg() internally uses function optim() as a general purpose optimizer
to maximize the log-likelihood. The fitted model has methods for several extractor functions,
e.g., coef(), vcov(), residuals(), logLik(). Base methods for the returned fitted model
are summary(), AIC(), confint(). Further methods are available for functions from lmtest
(Zeileis and Hothorn 2002) and car (Fox and Weisberg 2011), e.g., lrtest(), waldtest(),
coeftest(), and linearHypothesis(). Multiple testing is possible via package multcomp
(Hothorn, Bretz, and Westfall 2008) and structural change tests can be performed using
package strucchange (Zeileis, Leisch, Hornik, and Kleiber 2002).

Extensions

Although the betareg package as published by Cribari-Neto and Zeileis (2010) provides a
rather complete beta regression toolbox based on classical ML inference, further techniques
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may be required in practice. First, it has been shown that ML inference may be severely
biased in the context of beta regression (Kosmidis and Firth 2010), possibly leading to overly
optimistic inferences in the sense of underestimating the standard errors of the estimators.
Second, it is not always easy to capture all heterogeneity in the data through the two linear
predictors, especially when there are latent unobserved groups/clusters of observations.

To address the first issue of potentially biased inference, the results of Kosmidis and Firth
(2010) are extended to the case with mean and precision covariates and the corresponding
methods are implemented in the betareg() function starting from version 2.4-0 of betareg.
The software optionally allows for bias-corrected or bias-reduced estimation by adopting the
unifying iteration developed in Kosmidis and Firth (2010).

To address the second issue of heterogeneity between groups/clusters of observations, two
generic strategies, model-based recursive partitioning (Zeileis, Hothorn, and Hornik 2008)
and finite mixture models (see e.g., McLachlan and Peel 2000; Frühwirth-Schnatter 2006),
are applied to beta regressions. The idea for both techniques is to capture situations in which
the regression relationships vary across groups in the population. If one can identify variables
which are related to such groups, one may be able to include them directly in the regression
relationships. However, (a) this may lead to rather complex and hard to interpret models,
and (b) unnecessary complexity is introduced if the differences are only present in a subset of
the combined groups induced by several variables. Model-based recursive partitioning avoids
such drawbacks. Furthermore, if groups cannot be directly related to observed variables, the
heterogeneity can be accounted for by using finite mixture models. Therefore, extensions of
the betareg package are introduced where model heterogeneity is taken into account when
covariates that characterize the groups are available, and when the heterogeneity is due to
latent variables. The new function betatree() provides model-based recursive partitioning of
beta regressions leveraging tools from the partykit package (Hothorn and Zeileis 2015), and the
function betamix() provides beta regression mixture models (or latent class beta regression)
reusing the generic functionality from the flexmix package (Leisch and Grün 2012).

2. Bias correction and reduction in beta regressions

2.1. Preamble

Kosmidis and Firth (2010) show that bias correction (BC) or bias reduction (BR) of the
ML estimator in parametric models may be achieved via a unifying quasi Fisher scoring
algorithm. They illustrate the applicability of their algorithm in a beta regression setting
with a common precision parameter φ for all subjects, also revealing some errors in previous
literature for the reduction of bias in beta regression models – specifically mistakes in Ospina,
Cribari-Neto, and Vasconcellos (2006) and Simas et al. (2010) — that led to misleading
negative conclusions about the effect of BC/BR on inferences for beta regression models.
In Kosmidis and Firth (2010), it is shown that BC/BR for beta regression models can be
desirable because the ML estimator of φ may demonstrate substantial upward bias, which in
turn may lead to underestimation of asymptotic standard errors and hence over-optimistic
Wald-type inferences (e.g., confidence intervals with coverage far below the nominal levels).

The results in Kosmidis and Firth (2010) are extended here to cover not only the case of
constant φ but also a regression part for the precision parameters as shown in Equation 3.
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2.2. Generic framework

Denote by 0k a vector of k zeros and by S(θ) the vector of the log-likelihood derivatives for a
parametric model with parameter θ. Firth (1993) showed that the solution θ̃ of the equation

S(θ̃) +A(θ̃) = 0p+q , (4)

has smaller asymptotic bias than the ML estimator, if the t-th component of the vector A(θ)
has the form

At(θ) =
1

2
tr
[
{F (θ)}−1 {Pt(θ) +Qt(θ)}

]
(t = 1, . . . , p+ q) ,

with F (θ) the expected information matrix and

Pt(θ) = E{S(θ)S>(θ)St(θ)} (t = 1, . . . , p+ q) , (5)

Qt(θ) = −E {I(θ)St(θ)} (t = 1, . . . , p+ q) , (6)

where St(θ) denotes the t-th component of S(θ) (t = 1, . . . , p + q) and I(θ) is the observed
information matrix (minus the matrix of second derivatives of the log-likelihood with respect
to θ).

The quasi Fisher scoring iteration that has been developed in Kosmidis and Firth (2010)
attempts to solve Equation 4. Specifically, at the j-th step of the iterative procedure, the
current value θ(j) of the parameter vector is updated to θ(j+1) by

θ(j+1) = θ(j) +
{
F
(
θ(j)
)}−1

S
(
θ(j)
)
− b

(
θ(j)
)
, (7)

where b(θ) = −{F (θ)}−1A(θ) is the vector of the first term in the expansion of the bias of
the ML estimator.

If the summand b
(
θ(j)
)

is ignored, then iteration (7) becomes the usual Fisher scoring iteration

that can be used to solve the ML score equations S(θ̂) = 0p+q.

Furthermore, if the starting value θ(0) is the ML estimator θ̂, then θ(1) is the bias-corrected
estimator θ† of θ defined as

θ† = θ̂ − b(θ̂) ,

which also has smaller asymptotic bias compared to the ML estimator (Efron 1975).

Hence, the quasi Fisher scoring iteration provides a unified framework for implementing all
three types of estimators – ML, BR, and BC – by merely deciding whether the summand
b
(
θ(j)
)

is absent or present in the right hand side of (7), and whether more than one iteration
should be allowed in the latter case.

2.3. Bias correction and bias reduction for beta regressions

Denote the vector of the p+q model parameters in a beta regression model by θ = (β>, γ>)>,
and let X and Z be the n×p and n×q model matrices with i-th row xi and zi, respectively (i =
1, . . . , n). The ingredients required for setting the iteration described in Section 2.2 are closed-
form expressions for the vector of log-likelihood derivatives S(θ), the expected information
matrix F (θ) and the two higher-order joint null cumulants of log-likelihood derivatives Pt(θ)
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and Qt(θ) shown in (5) and (6). Based on these, all matrix multiplications and inversions can
be performed numerically during the iterative procedure.

The fact that all the aforementioned quantities depend on X and Z, and that S(θ) and I(θ)
depend additionally on the random variables Yi (i = 1, . . . , n) has been concealed here merely
for notational simplicity. The same convention is used for the derivations below, additionally
concealing the dependence on θ unless otherwise stated.

Up to an additive constant the log-likelihood for the beta regression model in (1) is `(θ) =∑n
i=1 `i(θ) with

`i(θ) = φiµi(Ti − Ui) + φiUi + log Γ(φi)− log Γ(φiµi)− log Γ(φi(1− µi)) (8)

where µi and φi are defined by inverting (2) and (3), respectively, and where Ti = log Yi and
Ui = log(1− Yi) are the sufficient statistics for the beta distribution with natural parameters
φiµi and φi(1− µi) (i = 1, . . . , n), respectively.

Direct differentiation of the log-likelihood function reveals that the vector of log-likelihood
derivatives has the form

S(θ) = ∇θ`(θ) =

[
X>ΦD1

(
T̄ − Ū

)
Z>D2

{
M
(
T̄ − Ū

)
+ Ū

} ] , (9)

with Φ = diag{φ1, . . . , φn}, M = diag{µ1, . . . , µn}, D1 = diag{d1,1, . . . , d1,n}, and D2 =
diag{d2,1, . . . , d2,n}, where d1,i = ∂µi/∂ηi and d2,i = ∂φi/∂ζi. Furthermore, T̄ = (T̄1, . . . , T̄n)>

and Ū = (Ū1, . . . , Ūn)> are the vectors of centered sufficient statistics, with

T̄i = Ti − E(Ti) ,

Ūi = Ui − E(Ui) ,

where E(Ti) = ψ(0)(φµi) − ψ(0)(φi) and E(Ui) = ψ(0)(φ(1 − µi)) + ψ(0)(φi), with ψ(r)(k) =
∂r+1 log Γ(k)/∂kr+1 the polygamma function of degree r (r = 0, 1, . . . ; i = 1, . . . , n).

Differentiating `(θ) one more time reveals that the observed information on θ is

I(θ) = F (θ)−
[
X>ΦD′1 diag{T̄ − Ū}X X>D1 diag{T̄ − Ū}D2Z
Z>D2 diag{T̄ − Ū}D1X Z>D′2

(
M diag

{
T̄ − Ū}+ diag{Ū

})
Z

]
, (10)

where

F (θ) =

[
X>D1ΦK2ΦD1X X>D1Φ (MK2 −Ψ1)D2Z

Z>D2 (MK2 −Ψ1) ΦD1X Z>D2

{
M2K2 + (1n − 2M)Ψ1 − Ω1

}
D2Z

]
, (11)

is the expected information on θ, because the second summand in the right hand side of
(10) depends linearly on the centered sufficient statistics and hence has expectation zero.
Here, 1n is the n × n identity matrix, D′1 = diag{d′1,1, . . . , d′1,n} with d′1,i = ∂2µi/∂η

2
i

and D′2 = diag{d′2,1, . . . , d′2,n} with d′2,i = ∂2φi/∂ζ
2
i (i = 1, . . . , n). Furthermore, K2 =

diag{κ2,1, . . . , κ2,n}, where κ2,i = VAR
(
T̄i − Ūi

)
= ψ(1)(φiµi)+ψ(1)(φi(1−µi)) for i = 1, . . . , n

and

Ψr = diag
{
ψ(r)(φ1(1− µ1)), . . . , ψ(r)(φn(1− µn))

}
,

Ωr = diag
{
ψ(r)(φ1), . . . , ψ

(r)(φn)
}

(r = 0, 1, . . .) .
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Some tedious but straightforward algebra, along with direct use of the results in Kosmidis
and Firth (2010) for the joint cumulants of T̄i and Ūi (i = 1, . . . , n), gives

Pt(θ) +Qt(θ) =

[
Vββ,t Vβγ,t
V >βγ,t Vγγ,t

]
(t = 1, . . . , p) , (12)

Pp+s(θ) +Qp+s(θ) =

[
Wββ,s Wβγ,s

W>βγ,s Wγγ,s

]
(s = 1, . . . , q) , (13)

where

Vββ,t = X>Φ2D1

(
ΦD2

1K3 +D′1K2

)
XD
t X ,

Vβγ,t = X>ΦD2
1D2 {Φ (MK3 + Ψ2) +K2)X

D
t Z ,

Vγγ,t = Z>ΦD1

{
D2

2

(
M2K3 + 2MΨ2 −Ψ2

)
+D′2 (MK2 −Ψ1)

}
XD
t Z

and

Wββ,s = X>ΦD2

{
ΦD2

1 (MK3 + Ψ2) +D′1 (MK2 −Ψ1)
}
ZD
s X ,

Wβγ,s = X>D1D
2
2

{
Φ
(
M2K3 + 2MΨ2 −Ψ2

)
+MK2 −Ψ1

}
ZD
s Z ,

Wγγ,s = Z>D3
2

{
M3K3 +

(
3M2 − 3M + 1n

)
Ψ2 − Ω2

}
ZD
s Z

+ Z>D2D
′
2

{
M2K2 + Ψ1 − 2MΨ1 − Ω1

}
ZD
s Z ,

where K3 = diag {κ3,1, . . . , κ3,n}, with κ3,i = E
{(
T̄i − Ūi

)3}
= ψ(2)(φiµi) − ψ(2)(φi(1 − µi))

(i = 1, . . . , n). Furthermore, CD
t denotes the diagonal matrix with non-zero components the

elements of the t-th column of a matrix C.

2.4. Implementation in betareg

Support for both bias correction and bias reduction has been added in the principal model
fitting function betareg() starting from betareg 2.4-0. The interface of betareg() is essen-
tially the same as described in Cribari-Neto and Zeileis (2010), with merely the addition of a
type argument that specifies the type of estimator that should be used.

betareg(formula, data, subset, na.action, weights, offset,

link = "logit", link.phi = NULL, type = c("ML", "BC", "BR"),

control = betareg.control(...), model = TRUE, y = TRUE, x = FALSE, ...)

The arguments in the first line (formula, data, . . . ) pertain to the data and model spec-
ification using a formula that potentially may have two parts pertaining to the mean and
the precision submodels, respectively. The arguments link and link.phi specify the link
functions g1(·) and g2(·), respectively. The argument type controls which of the maximum
likelihood (type = "ML"), bias-corrected (type = "BC"), or bias-reduced (type = "BR") es-
timates are computed. Finally, control is a list of control arguments and model, y, and x

control whether the respective data components are included in the fitted model object. For
more details on all arguments except type see Cribari-Neto and Zeileis (2010).

While the interface of betareg() is almost the same as in previous versions, the internal code
has been substantially enhanced. Specifically, the optimization via optim() is now (option-
ally) enhanced by an additional Fisher scoring iteration. As in previous versions, the initial
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optimization of the likelihood is carried out via optim(), by default with method = "BFGS",
using analytic gradients. In recent versions, this is followed by a Fisher scoring iteration
with both analytic gradients and expected information that either neglects or includes the
summand b

(
θ(j)
)

in iteration (7). Thus, the iteration is either used to further improve the
numerical maximization of the likelihood (for type = "ML" or type = "BC") or to carry out
the bias reduction (for type = "BR") as detailed in Section 2.2. To control the details of the
(quasi) Fisher scoring, betareg.control() takes two additional arguments fsmaxit = 200

and fstol = 1e-8 controlling the maximal number of iterations and convergence tolerance,
respectively. If the number of iterations is set to zero (fsmaxit = 0), no Fisher scoring is
carried out (allowed only for type = "ML" and "BC") and thus results from previous versions
of betareg can be exactly replicated.

3. Beta regression trees

Model-based recursive partitioning (MOB, Zeileis et al. 2008) builds on the more widely known
method of classification and regression trees (CART, Breiman, Friedman, Olshen, and Stone
1984). As for CART, the idea is to split the sample recursively with respect to available
variables (called “partitioning” variables in what follows) in order to capture differences in the
response variable. While CART tries to capture differences in the distribution of the response
variable (in particular with respect to location) directly, the aim of model-based recursive
partitioning is more broadly to capture differences in parameters describing the distribution of
the response. In particular, model-based recursive partitioning allows to incorporate regressor
variables in a parametric model for the response variable.

Here, we adapt the general MOB framework to the model-based partitioning of beta regres-
sions, called “beta regression trees” for short. The aim is to capture differences in the dis-
tribution that are not yet adequately described by the regressor variables through a forward
search. Basically, the approach proceeds by (a) fitting a beta regression model, (b) assessing
whether its parameters are stable across all partitioning variables, (c) splitting the sample
along the partitioning variable associated with the highest parameter instability, (d) repeating
these steps until some stopping criterion is met. Thus, interactions and nonlinearities can be
incorporated by locally maximizing the likelihood of a partitioned model. More precisely and
denoting cij the j-th partitioning variable (j = 1, . . . , l) for observation i, the steps of the
MOB algorithm adapted to beta regression are as follows.

1. Fit a beta regression model with parameters β and γ by maximizing the log-likelihood
for all observations yi in the current sample.

2. Assess whether the parameters β and γ are stable across each partitioning variable cij .

3. If there is significant parameter instability with respect to at least one of the partition-
ing variables cij , split the sample along the variable j∗ with the strongest association:
Choose the breakpoint with highest improvement in the fitted log-likelihood.

4. Repeat steps 1–3 recursively in the resulting subsamples until there is no significant
instability any more or the sample size is too small.

The MOB framework of Zeileis et al. (2008) is generic in that it requires only the specification
of a model with additive objective function for which a central limit theorem holds. Under
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the usual regularity conditions, the latter requirement is valid for beta regressions. The
main building blocks that the MOB algorithm requires are the contributions to the additive
objective function (in steps 1 and 3) and to the associated score function (in step 2). For
beta regressions, the objective is the log-likelihood `(θ) and its contributions `i(θ) are given
in (8). By (9) and using the notation in Section 2, the corresponding score (or gradient)
contributions have the form

Si(θ) =



µiφid1,i
(
T̄i − Ūi

)
xi1

...
µiφid1,i

(
T̄i − Ūi

)
xip

d2,i
{
µi
(
T̄i − Ūi

)
+ Ūi

}
zi1

...
d2,i

{
µi
(
T̄i − Ūi

)
+ Ūi

}
ziq


(i = 1, . . . , n) . (14)

The above contributions are employed for testing whether there are significant departures from
zero across the partitioning variables. More specifically, MOB uses generalized M-fluctuation
tests for parameter instability (Zeileis 2006a; Zeileis and Hornik 2007): fluctuations in numeric
variables are assessed with a supLM type test (Andrews 1993) and fluctuations in categorical
variables are assessed with a χ2-type test (Hjort and Koning 2002). For further details and
references, see Zeileis et al. (2008)1.

Beta regression trees are implemented in the betareg package in function betatree() taking
the following arguments:

betatree(formula, partition, data, subset, na.action, weights, offset,

link = "logit", link.phi = "log", control = betareg.control(), ...)

Essentially, almost all arguments work as for the basic betareg() function. The main differ-
ence is that a partition formula (without left hand side), such as ~ c1 + c2 + c3 has to be
provided to specify the vector of partitioning variables ci = (ci1, . . . , cil)

>. As an alternative,
partition may be omitted when formula has three parts on the right hand side, such as y ~

x1 + x2 | z1 | c1 + c2 + c3, specifying mean regressors xi, presicion regressors zi, and
partitioning variables ci, respectively. The formula y ~ c1 + c2 + c3 is short for y ~ 1 |

1 | c1 + c2 + c3.

The betatree() function takes all arguments and carries out all data preprocessing and then
calls the function mob() from the partykit package (Hothorn and Zeileis 2015). The latter
can perform all steps of the MOB algorithm in an object-oriented manner, provided that a
suitable model fitting function (optimizing the log-likelihood) is specified and that extractor
functions are available for the optimized log-likelihood (8) and the score function (9) at the
estimated parameters. For model fitting betareg.fit() is employed and for extractions the
logLik() and estfun() methods (see also Zeileis 2006b) are leveraged. To control the details
of the MOB algorithm – such as the significance level and the minimal subsample size in step 4
– the ... argument is passed to mob(). (Note that this is somewhat different from betareg()

where ... is passed to betareg.control().)

1An example of M-fluctuation tests for parameter instability (also known as structural change) in beta
regressions is also discussed in Zeileis (2006a) and replicated in Cribari-Neto and Zeileis (2010). However, this
uses a double-maximum type test statistic, not a supLM or χ2 statistic.
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4. Finite mixtures of beta regressions

Finite mixtures are suitable models if the data is assumed to be from different groups, but the
group memberships are not observed. If mixture models are fitted one aims at determining
the parameters of each group as well as the group sizes. Furthermore, the model can be
used to estimate from which group each observation is. In the case of finite mixtures of beta
regression models the latent groups can be assumed to differ in their mean and/or in their
precision. Furthermore, the group sizes can depend on further covariates.

The mixture model with K components which correspond to K groups is given by

h(y;x, z, c, θ) =
K∑
k=1

π(k; c, α)f(y; g−11 (x>βk), g
−1
2 (z>γk)), (15)

where h(·; ·) is the mixture density and f(y;µ, φ) is the density of the beta distribution using
the mean-precision parameterization shown in (1). Furthermore the component weights π(k; ·)
are nonnegative for all k and sum to one. In what follows the component weights are assumed
to be determined from a vector of covariates c by

π(k; c, α) =
exp{c>αk}∑K
u=1 exp{c>αu}

(16)

with α1 ≡ 0. Without covariates and just a constant (c = 1), this reduces to prior probabilities
that are fixed across all observations.

Smithson and Segale (2009) and Smithson, Merkle, and Verkuilen (2011) consider finite mix-
tures of beta regression models to analyze priming effects in judgments of imprecise proba-
bilities. Smithson and Segale (2009) fit mixture models where they investigate if priming has
an effect on the size of the latent groups, i.e., they include the information on priming as a
predictor variable c. Smithson et al. (2011) assume that for at least one component distri-
bution the location parameter is a-priori known due to so-called “anchors”. For example, for
partition priming, an anchor would be assumed at location 1/K if the respondents are primed
to believe that there are K possible events. The component distribution for this anchor can
be either assumed to follow a beta distribution with known parameters for the mean and the
precision or a uniform distribution with known support.

Package flexmix (Leisch 2004; Grün and Leisch 2008) implements a general framework for
estimating finite mixture models using the EM algorithm. The EM algorithm is an iterative
method for ML estimation in a missing data setting. The missing data for mixture models is
the information to which component an observation belongs. The EM algorithm exploits the
fact that the complete-data log-likelihood for the data and the missing information is easier
to maximize. In general for mixture models the posterior probabilities of an observation to
be from each component given the current parameter estimates are determined in the E-step.
The M-step then consists of maximizing the complete-data log-likelihood where the missing
component memberships are replaced by the current posterior probabilities. This implies
that different mixture models only require the implementation of a suitable M-step driver.
Function betareg.fit() provides functionality for weighted ML estimation of beta regression
models and hence allows the easy implementation of the M-step.

The function betamix() allows to fit finite mixtures of beta regression models using the
package betareg. It has the following arguments:
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betamix(formula, data, k, fixed, subset, na.action,

link = "logit", link.phi = "log", control = betareg.control(...),

FLXconcomitant = NULL, extra_components,

verbose = FALSE, ID, nstart = 3, FLXcontrol = list(), cluster = NULL,

which = "BIC", ...)

• Arguments formula, data, subset, na.action, link, link.phi and control are the
same as for betareg().

Additionally the formula can also consist of three parts on the right hand side when
specifying a concomitant variable model (see below for the FLXconcomitant argument).

• Arguments cluster, FLXconcomitant and FLXcontrol are the same as for function
flexmix() (in the latter two cases without prefix FLX).

Currently functionality to fit a multinomal logit model for the concomitant variable
model is provided by FLXPmultinom() with a formula interface for specifying the con-
comitant variables. To fit a multinomial logit model for the variables c1 and c2 use
FLXconcomitant = FLXPmultinom(~ c1 + c2). Alternatively, yielding equivalent out-
put, the main model formula can be specified via a three-part formula on the right hand
side, e.g., y ~ x | 1 | c1 + c2 (if there are no covariates for the precision model).

• Argument k, verbose, nstart and which are used to specify the repeated runs of the
EM algorithm using function stepFlexmix(), where k is the (vector of) number(s) of
mixture components, nstart the number of random starting values used, and which

determines which number of components is kept if k is a vector.

• Because the formula for specifying the beta regression model is already a two-part
formula, a potential grouping variable is specified via argument ID as opposed to when
using flexmix().

• Further arguments for the component specific model are fixed and extra_components.
The argument fixed can be used to specify the covariates for which parameters are
the same over components. This is done via a formula interface. The argument
extra_components is a list of "extraComponent" objects which specify the distribution
of the component that needs to be completely specified (via the type argument). The
parameter values of that distribution are specified through coef and delta.

extraComponent(type = c("uniform", "betareg"), coef, delta,

link = "logit", link.phi = "log")

5. Illustrative application

To illustrate the methods introduced above, we consider the analysis of reading accuracy data
for nondyslexic and dyslexic Australian children (Smithson and Verkuilen 2006). The data
consists of 44 observations of children with ages between eight years and five months and
twelve years and three months. For each child, the variables accuracy (the score on a reading
accuracy test), iq (the score on a nonverbal intelligent quotient test, converted to z score),
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Figure 1: Reading skills data from Smithson and Verkuilen (2006): Linearly transformed
reading accuracy by IQ score and dyslexia status (control, blue vs. dyslexic, red). Fitted curves
correspond to beta regression (solid) and OLS regression with logit-transformed dependent
variable (dashed).

and a binary variable on whether the child is dyslexic were recorded. The 19 dyslexic children
have a mean reading accuracy of 0.606 and a mean IQ score of −0.653. The 25 nondyslexic
children have a mean reading accuracy of 0.900 and a mean IQ score of 0.497.

Smithson and Verkuilen (2006) investigated whether dyslexic children have a different score
on the reading accuracy test when corrected for IQ score. Smithson and Verkuilen (2006)
fit a beta regression where the means are linked via the logistic link to main and interaction
effects for iq and dyslexic, and where the precision parameters are linked with a log-link to
main effects for the same variables. The fitted model and its comparison to the results of an
OLS regression using the logit-transformed accuracy as response are given in Cribari-Neto
and Zeileis (2010). Figure 1, shows a visualization of the fitted models to briefly highlight the
most important findings: In the control group (nondyslexic children), reading skill increases
clearly with the IQ score while the variance decreases. In the dyslexic group, reading skills
are generally lower and almost unaffected by IQ score.

In what follows, the data is reanalyzed using the methods from Sections 2–4. Initially, the
effect of bias to ML inference is assessed. Subsequently, it is illustrated how the differences
with respect to dyslexia could have been discovered in a data-driven way. While in the original
study dyslexia has, of course, been of prime interest in the model, the data set is used here to
illustrate how (a) the two dyslexia groups are automatically selected by recursive partitioning
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Maximum likelihood Bias correction Bias reduction

Mean (Intercept) 1.019 0.990 0.985
(0.145) (0.150) (0.150)

dyslexia −0.638 −0.610 −0.603
(0.145) (0.150) (0.150)

iq 0.690 0.700 0.707
(0.127) (0.133) (0.133)

dyslexia:iq −0.776 −0.786 −0.784
(0.127) (0.133) (0.133)

Precision (Intercept) 3.040 2.811 2.721
(0.258) (0.257) (0.256)

dyslexia 1.768 1.705 1.634
(0.258) (0.257) (0.256)

iq 1.437 1.370 1.281
(0.257) (0.257) (0.257)

dyslexia:iq −0.611 −0.668 −0.759
(0.257) (0.257) (0.257)

Log-likelihood 66.734 66.334 66.134

Table 1: Comparison of coefficients and standard errors (in parentheses) in the interaction
model for reading skills. The ML estimator from rs_ml, the BC estimator from rs_bc, and
the BR estimator from rs_br all give very similar results for the mean submodel. In the
precision submodel, main effects are slightly damped and the interaction effect is slightly
amplified when using BC/BR.

if dyslexia is just one of many covariables and how (b) mixture modeling recovers the dyslexia
groups if that covariable is not available at all.

5.1. Bias correction and reduction

To investigate whether the results of Smithson and Verkuilen (2006) may have been affected
by severe bias in the ML estimator, all three flavors of estimators are obtained and compared
for the model with interactions (both in the mean and precision submodels).

R> data("ReadingSkills", package = "betareg")

R> rs_f <- accuracy ~ dyslexia * iq | dyslexia * iq

R> rs_ml <- betareg(rs_f, data = ReadingSkills, type = "ML")

R> rs_bc <- betareg(rs_f, data = ReadingSkills, type = "BC")

R> rs_br <- betareg(rs_f, data = ReadingSkills, type = "BR")

The resulting coefficient estimates, standard errors, and log-likelihoods can be displayed using
the summary() method and are reported in Table 1. All three estimators give very similar
results for the mean submodel. In the precision submodel, main effects are slightly dampened
and the interaction effect is slightly amplified when using BC/BR. Figure 2 shows the scatter
plots of the logarithm of the estimated precision parameters based on the ML, BC, and BR
estimates. It is apparent that the logarithms of the estimated precision parameters based
on the bias-corrected and bias-reduced estimates are mildly shrunk towards zero. This is a
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Figure 2: Scatterplots of the logarithm of the estimated precision parameters log(φi) based
on the maximum likelihood, bias-corrected and bias-reduced estimates. The dashed black line
is the main diagonal, the solid red line is a scatterplot smoother.

similar but much milder effect compared to the one described in Kosmidis and Firth (2010).
The reason that the effect is milder in this particular example relates to the fact that bias for
the precision parameters is corrected/reduced on the log-scale where the ML estimator has a
more symmetric distribution than on the original scale.

To emphasize that BC/BR may potentially be crucial for empirical analyses, Appendix A
replicates the results of Kosmidis and Firth (2010) for a beta regression where substantial
upward bias was detected for the ML estimator of the precision parameter, which in turn
causes underestimated asymptotic standard errors; note the direct dependence of the expected
information matrix on the precision parameters in (11).
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For the reading accuracy data, the similarity of the results in Table 1 between the three
different estimation methods and Figure 2 is reassuring and illustrates that analysis based on
the ML estimator would not be influenced by bias-related issues. Furthermore, the effect of
BC/BR becomes even smaller when the model without interaction in the precision submodel
(as chosen by Smithson and Verkuilen 2006) is considered.

5.2. Beta regression tree

For illustrating the use of model-based recursive partitioning methods we assume the following
situation: A researcher wants to assess whether the relationship between reading accuracy

and nonverbal iq score is different for some subgroups in the data. Covariates potentially
describing these subgroups are available but no prior knowledge how exactly the subgroups
can be described by these covariates. For investigating the ability of the tree to select suitable
variables for partitioning, dyslexia is considered as a partitioning variable along with three
additional randomly generated noise variables. One noise variable is drawn from a standard
normal distribution, one from a uniform distribution and the third is a categorical variable
which takes two different values with equal probability.

R> suppressWarnings(RNGversion("3.5.0"))

R> set.seed(1071)

R> n <- nrow(ReadingSkills)

R> ReadingSkills$x1 <- rnorm(n)

R> ReadingSkills$x2 <- runif(n)

R> ReadingSkills$x3 <- factor(sample(0:1, n, replace = TRUE))

The model-based tree is fitted using betatree(). The first argument is a formula which
specifies the model to be partitioned: We have a beta regression where both the mean and
the precision of accuracy depend on iq. The second argument is a formula for the symbolic
description of the partitioning variables and both formulas are evaluated using data. Addi-
tional control arguments for the recursive partitioning method used in mob_control() can
be specified via the ... argument. In this case the minimum number of observations in a
node is given by minsize = 10.

R> rs_tree <- betatree(accuracy ~ iq | iq, ~ dyslexia + x1 + x2 + x3,

+ data = ReadingSkills, minsize = 10)

Alternatively the model could be specified using a three-part formula where the third part is
the symbolic description of the partitioning variables.

R> rs_tree <- betatree(accuracy ~ iq | iq | dyslexia + x1 + x2 + x3,

+ data = ReadingSkills, minsize = 10)

The returned object is of class "betatree" which inherits from "modelparty" and "party".
All methods for "modelparty"/"party" objects can be reused, e.g., the print() method and
the plot() method (see Figure 3).

R> plot(rs_tree)
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Figure 3: Partitioned beta regression model for the ReadingSkills data.

Figure 3 indicates that the data was only split into two subsamples. None of the three noise
variables was selected in order to perform a split, but only variable dyslexia. This indicates
that the relationship between the IQ score and the reading accuracy does not depend on the
noise variables as expected. By contrast, the relationship between these two variables differ
for dyslexic and nondyslexic children. The beta regressions fitted to each of the two groups of
children are illustrated in the two leaf nodes. Note that the fitted models use the IQ score as
predictor for the mean and the precision. Hence the results are equivalent to the ML results
from Table 1 (where sum contrasts are employed for dyslexia). Function coef() allows to
inspect the parameters of the fitted models, by default in the terminal nodes (nodes 2 and 3).

R> coef(rs_tree)

(Intercept) iq (phi)_(Intercept) (phi)_iq

2 1.65653 1.465708 1.2726 2.04786

3 0.38093 -0.086228 4.8077 0.82603

If the fitted object is printed the output indicates after the number of the node, which part
of the data according to the split is contained (e.g., dyslexia == {no}) or the weights of
the observations in the terminal nodes indicated by stars. In the terminal nodes also the
estimated parameters of the beta regression models are provided.

R> rs_tree
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Beta regression tree

Model formula:

accuracy ~ iq + iq | dyslexia + x1 + x2 + x3

Fitted party:

[1] root

| [2] dyslexia in no: n = 25

| (Intercept) iq (phi)_(Intercept)

| 1.6565 1.4657 1.2726

| (phi)_iq

| 2.0479

| [3] dyslexia in yes: n = 19

| (Intercept) iq (phi)_(Intercept)

| 0.380932 -0.086228 4.807662

| (phi)_iq

| 0.826033

Number of inner nodes: 1

Number of terminal nodes: 2

Number of parameters per node: 4

Objective function (negative log-likelihood): 66.734

The output above confirms that in the nondyslexic group there is a positive association
of both mean accuracy and the precision with IQ score. In the dyslexic group, the mean
accuracy is generally lower with almost no dependence on IQ score while precision is higher
and slightly decreasing with IQ score. Some further details could be revealed by considering for
example summary(rs_tree, node = 3) that provides the usual regression model summary
(unadjusted for recursive partitioning) for the model associated with node 3.

To gain further insight into the recursive construction of the beta regression tree, we use the
results of the parameter instability tests in all three nodes. The test statistics together with
the corresponding p values can be obtained using function sctest() (for structural change
test). This indicates which partitioning variables in each node exhibited significant instability
and the reason for performing no further split, i.e., either because all parameter instability
tests were insignificant (see node 2) or because the node size is too small for a further split
(see node 3).

R> library("strucchange")

R> sctest(rs_tree)

$`1`
dyslexia x1 x2 x3

statistic 2.2687e+01 8.52510 5.56986 3.6273

p.value 5.8479e-04 0.90946 0.99871 0.9142

$`2`
dyslexia x1 x2 x3
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statistic 0 6.41163 4.51702 8.20191

p.value NA 0.84121 0.97516 0.23257

$`3`
NULL

In node 1 only dyslexia shows significant instability while the noise variables are all insignifi-
cant. In node 2, dyslexia cannot be used for splitting anymore and all other variables are still
insignificant and thus the partitioning stops. With only 19 observations, node 3 is consid-
ered too small to warrant further splitting given that minsize = 10 requires that each node
contains at least 10 observations and hence no tests are carried out.

5.3. Latent class beta regression

For illustrating the use of finite mixture models we assume the following situation: A re-
searcher wants to assess whether the relationship between reading accuracy and nonverbal
iq score is different for some subgroups in the data without having further covariates poten-
tially describing the groups available. In particular, we assume that the information whether
the children are dyslexic or not is not available. Modeling the relationship between reading
accuracy and IQ score is now complicated by the fact that latent groups exist in the data
where this relationship is different.

The group of nondyslexic children is challenging as some of them essentially have a perfect
reading accuracy while for others accuracy is strongly increasing with the IQ score. In a
model with observed dyslexia, this can be captured by different variances in the two groups.
However, issues arise when dyslexia is unobserved and a mixture model is employed to infer
the groups. Specifically, the subgroup with perfect reading score will typically be selected
as one component of the mixture whose variance converges to zero leading to an unbounded
likelihood. To address this issue we fit a finite mixture model with three components, where
one component is used to capture those children who have a perfect reading accuracy test
score. Following Smithson et al. (2011) this additional component is assumed to follow a
uniform distribution on the interval coef ± delta.

R> rs_mix <- betamix(accuracy ~ iq, data = ReadingSkills, k = 3,

+ extra_components = extraComponent(type = "uniform",

+ coef = 0.99, delta = 0.01), nstart = 10)

The argument nstart is set to 10. This implies that the EM algorithm is run 10 times,
with each run being randomly initialized. Then only the best solution according to the
log-likelihood is returned. In this way, the chance that the global optimum is detected is
increased (the EM algorithm is generally only guaranteed to converge to a local optimum and
the convergence behaviour depends on the initialization).

The returned fitted model is of class "betamix" and has methods for clusters,betamix,ANY-method(),
coef(), coerce,oldClass,S3-method(), fitted,betamix-method(), initialize,oldClass-method(),
logLik(), posterior,betamix,ANY-method(), predict,betamix-method(), print(), show,oldClass-method(),
slotsFromS3,oldClass-method() and summary(). These methods reuse functionality al-
ready available for finite mixture models that are directly fitted using flexmix() from pack-
age flexmix. The print() method shows the function call and provides information on how
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many observations are assigned to each of the components based on the values of the posterior
probabilities. Furthermore, the convergence status of the EM algorithm is reported, and in
the case of convergence, the number of iterations that were performed is shown.

R> rs_mix

Call:

betamix(formula = accuracy ~ iq, data = ReadingSkills,

k = 3, nstart = 10, extra_components = extraComponent(type = "uniform",

coef = 0.99, delta = 0.01))

Cluster sizes:

1 2 3

20 10 14

convergence after 20 iterations

The summary() method provides more information on the estimated coefficients and their
estimated standard errors. For the calculation of the latter, function optim() is used for the
numerical approximation of the corresponding Hessian matrix.

R> summary(rs_mix)

$Comp.1

$Comp.1$mean

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.5025 0.0825 6.09 1.1e-09 ***

iq -0.0484 0.1130 -0.43 0.67

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$Comp.1$precision

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.251 0.748 5.69 1.3e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$Comp.2

$Comp.2$mean

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.403 0.263 5.33 9.9e-08 ***

iq 0.825 0.216 3.81 0.00014 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$Comp.2$precision
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Figure 4: Fitted regression lines for the mixture model with three components and the
observations shaded according to their posterior probabilities (left). Fitted regression lines
for the partitioned beta regression model with shading according to the observed dyslexic

variable where nondyslexic and dyslexic children are in blue and red, respectively (right).

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.685 0.454 5.91 3.4e-09 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Because only two components are freely estimated and the parameters for the third component
were fixed a-priori, the detailed information on the estimated parameters is only provided for
components 1 and 2. The regression part for the mean indicates that in the first component
the IQ score does not significantly affect the achieved accuracy, while there is a positive
significant effect of the IQ score on accuracy in the second component.

A cross-tabulation of the cluster assignments of the mixture model with the variable dyslexia
indicates that no dyslexic children are assigned to the third component. Furthermore, children
assigned to the first component have a high probability (80%) of being dyslexic.

R> table(clusters(rs_mix), ReadingSkills$dyslexia)

no yes

1 4 16

2 7 3

3 14 0

The fitted mean regression lines for each of the three components are provided in Figure 4
(left). The observations are shaded according to the magnitude of the corresponding posterior
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probabilities. The stronger the shading of an observation is in red, the higher the posterior
probability for this observation being from the first component is. Blue shading corresponds
to the second component and green to the third. For comparison purposes, the right plot in
Figure 4 shows the mean regression lines for the dyslexic and nondyslexic children as obtained
by recursive partitioning – or equivalently for the model where an interaction with the variable
dyslexic is specified in the regressions for mean and precision.

The fitted regression lines for the dyslexic children (red) and the latent group capturing
the dyslexic children (component 1) are very similar. In contrast, the group of nondyslexic
children is modeled differently. With observed dyslexia, the heterogeneity in the control
group is captured by differences in the precision submodel, i.e., in the variance. However, for
unobserved dyslexia, it is more natural to capture the increased heterogeneity in the control
group using two components, one of which would correspond to perfect reading accuracy
irrespective of the IQ score.

6. Conclusions

The new extensions of the package betareg allow to move beyond classical ML inference when
fitting beta regression models. Bias correction and bias reduction of the ML estimates can
be useful alternatives when the ML inferences turn out to be unreliable, and actually their
ready availability in the package allows users to check how sensitive inferences (standard
errors, confidence intervals and Wald tests, in particular) can be to the bias of the ML
estimator. Recursive partitioning methods and finite mixture models enable the user to
investigate heterogeneity – both observed and unobserved – in the regression model fitted to
the whole sample.

For users already familiar with previous versions of the betareg package, obtaining the bias-
corrected/reduced estimators is straightforward; the user only needs to appropriately specify
the type argument (which defaults to "ML"). For the implementation of the aforementioned
extensions some changes and additions in the fitting function betareg.fit() were necessary.
Specifically, the optimization of the likelihood is now followed by a Fisher scoring iteration.
Furthermore, if the bias-reduced or bias-corrected estimates are requested, that Fisher scoring
iteration is accordingly modified using a bias adjustment.

To fit beta regression trees and finite mixtures of beta regressions the new functions betatree()
and betamix() are available in package betareg. These functions borrow functionality from
the packages partykit and flexmix. The interface of the two new functions has been designed
to be as similar as possible to betareg(), in order to facilitate their use by users that are
already familiar with the betareg() function. For modeling heterogeneity betareg.fit() is
reused to fit the models in the nodes when beta regression trees are constructed, and in the
M-step when finite mixture models are fitted. For this task, only a small amount of additional
code was necessary to inherit the functionality provided by the partykit and flexmix packages
to the package betareg.

Overall, the increased flexibility of the extended package betareg enables users to conveniently
check model suitability and appropriateness of the resultant inferences. With the extended
package users can easily compare the results from a beta regression model fitted using ML esti-
mation to those using bias correction/reduction, and draw conclusions incorporating observed
or unobserved heterogeneity in their models.
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A. Bias correction/reduction for gasoline yield data

To illustrate how upward bias in the ML estimator of the precision parameter in beta regres-
sions can severely affect inference, results from Kosmidis and Firth (2010) are replicated. All
three flavors of estimators (ML, BC, and BR) are computed for the fixed-precision beta re-
gression model considered in Ferrari and Cribari-Neto (2004) (also replicated in Cribari-Neto
and Zeileis 2010):

R> data("GasolineYield", package = "betareg")

R> gy <- lapply(c("ML", "BC", "BR"), function(x)

+ betareg(yield ~ batch + temp, data = GasolineYield, type = x))

The estimate of the precision parameter shrinks considerably when bias correction/reduction
is used, indicating a large upward bias for the ML estimator of φ.

R> sapply(gy, coef, model = "precision")

(phi) (phi) (phi)

440.28 261.21 261.04

while the log-likelihood does not change much

R> sapply(gy, logLik)

[1] 84.798 82.947 82.945

This results in much larger standard errors (and hence smaller test statistics and larger
p values) for all coefficients in the mean part of the model. Table 2 replicates Kosmidis
and Firth (2010, Table 1). The picture does also not change much when a log-link is used in
the precision model, see below and Table 3 replicating Kosmidis and Firth (2010, Table 3).

Maximum likelihood Bias correction Bias reduction

β1 −6.15957 (0.18232) −6.14837 (0.23595) −6.14171 (0.23588)
β2 1.72773 (0.10123) 1.72484 (0.13107) 1.72325 (0.13106)
β3 1.32260 (0.11790) 1.32009 (0.15260) 1.31860 (0.15257)
β4 1.57231 (0.11610) 1.56928 (0.15030) 1.56734 (0.15028)
β5 1.05971 (0.10236) 1.05788 (0.13251) 1.05677 (0.13249)
β6 1.13375 (0.10352) 1.13165 (0.13404) 1.13024 (0.13403)
β7 1.04016 (0.10604) 1.03829 (0.13729) 1.03714 (0.13727)
β8 0.54369 (0.10913) 0.54309 (0.14119) 0.54242 (0.14116)
β9 0.49590 (0.10893) 0.49518 (0.14099) 0.49446 (0.14096)
β10 0.38579 (0.11859) 0.38502 (0.15353) 0.38459 (0.15351)
β11 0.01097 (0.00041) 0.01094 (0.00053) 0.01093 (0.00053)
φ 440.27839 (110.02562) 261.20610 (65.25866) 261.03777 (65.21640)

Table 2: ML, BC and BR estimates and corresponding estimated standard errors (in paren-
theses) for a logit-linked beta regression model for the gasoline yield data. The precision
parameter φ is assumed to be equal across the observations.
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Maximum likelihood Bias correction Bias reduction

β1 −6.15957 (0.18232) −6.14837 (0.21944) −6.14259 (0.22998)
β2 1.72773 (0.10123) 1.72484 (0.12189) 1.72347 (0.12777)
β3 1.32260 (0.11790) 1.32009 (0.14193) 1.31880 (0.14875)
β4 1.57231 (0.11610) 1.56928 (0.13978) 1.56758 (0.14651)
β5 1.05971 (0.10236) 1.05788 (0.12323) 1.05691 (0.12917)
β6 1.13375 (0.10352) 1.13165 (0.12465) 1.13041 (0.13067)
β7 1.04016 (0.10604) 1.03829 (0.12767) 1.03729 (0.13383)
β8 0.54369 (0.10913) 0.54309 (0.13133) 0.54248 (0.13763)
β9 0.49590 (0.10893) 0.49518 (0.13112) 0.49453 (0.13743)
β10 0.38579 (0.11859) 0.38502 (0.14278) 0.38465 (0.14966)
β11 0.01097 (0.00041) 0.01094 (0.00050) 0.01093 (0.00052)
log φ 6.08741 (0.24990) 5.71191 (0.24986) 5.61608 (0.24984)

Table 3: ML, BC and BR estimates and corresponding estimated standard errors (in paren-
theses) for a logit-linked beta regression model for the gasoline yield data. Precision is esti-
mated on the log-scale and is assumed to be equal across the observations.

R> data("GasolineYield", package = "betareg")

R> gy2 <- lapply(c("ML", "BC", "BR"), function(x)

+ betareg(yield ~ batch + temp | 1, data = GasolineYield, type = x))

R> sapply(gy2, logLik)

[1] 84.798 83.797 83.268

Affiliation:

Bettina Grün
Institut für Angewandte Statistik
Johannes Kepler Universität Linz
Altenbergerstraße 69
4040 Linz, Austria
E-mail: Bettina.Gruen@jku.at
URL: http://ifas.jku.at/gruen/

Ioannis Kosmidis
Department of Statistical Science
University College London
Gower Street
London WC1E 6BT, United Kingdom
E-mail: ioannis@stats.ucl.ac.uk
URL: http://www.ucl.ac.uk/~ucakiko/

Achim Zeileis
Department of Statistics

mailto:Bettina.Gruen@jku.at
http://ifas.jku.at/gruen/
mailto:ioannis@stats.ucl.ac.uk
http://www.ucl.ac.uk/~ucakiko/


Bettina Grün, Ioannis Kosmidis, Achim Zeileis 25

Universität Innsbruck
Universitätsstr. 15
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