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Introduction

What is the SpatialExtremes package?

The SpatialExtremes package is an add-on package for the R [R Development Core Team, 2007]
statistical computing system. It provides functions for the analysis of spatial extremes using (cur-
rently) max-stable processes.

All comments, criticisms and queries on the package or associated documentation are gratefully
received.

Obtaining the package/guide

The package can be downloaded from CRAN (The Comprehensive R Archive Network) at http:

//cran.r-project.org/. This guide (in pdf) will be in the directory SpatialExtremes/doc/

underneath wherever the package is installed. You can get it by invoking

> vignette("SpatialExtremesGuide")

To have a quick overview of what the package does, you might want to have a look at its own
web page http://spatialextremes.r-forge.r-project.org/.

Contents

To help users to use properly the SpatialExtremes packages, this report introduces all the theory
and references needed. Some practical examples are inserted directly within the text to show how
it works in practice. Chapter 1 is an introduction to max-stable processes and introduces several
models that might be useful in concrete applications. Chapter 2 describes simulation techniques
for unconditional simulation of both Gaussian and max-stable random fields. Statistics and tools
to analyze the spatial dependence of extremes are presented in Chapter 3. Chapter 4 tackles the
problem of fitting max-stable process to data that are assumed to be unit Fréchet distributed.
Chapter 5 is devoted to model selection. Chapter 6 presents models and procedures on how to
fit max-stable processes to data that do not have unit Fréchet margins. Chapter ?? is devoted
to model checking while Chapter ?? is devoted to inferential procedures and predictions. Lastly,
Chapter 7 draws conclusions on spatial extremes. Note that several computations are reported in
the Annex part.

1

http://cran.r-project.org/
http://cran.r-project.org/
http://spatialextremes.r-forge.r-project.org/
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Caveat

I have checked these functions as best I can but they may contain bugs. If you find a bug or
suspected bug in the code or the documentation please report it to me at mathieu.ribatet@epfl.ch.
Please include an appropriate subject line.

Legalese

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any warranty;
without even the implied warranty of merchantability or fitness for a particular purpose. See the
GNU General Public License for more details.

A copy of the GNU General Public License can be obtained from http://www.gnu.org/

copyleft/gpl.html.
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An Introduction to Max-Stable Processes

A max-stable process Z(·) is the limit process of maxima of independent identically distributed
random fields Yi(x), x ∈ Rd. Namely, for suitable an(x) > 0 and bn(x) ∈ R,

Z(x) = lim
n→+∞

maxni=1 Yi(x)− bn(x)

an(x)
, x ∈ Rd (1.1)

Note that (1.1) does not ensure that the limit exists. However, provided it does and from (1.1),
we can see that max-stable processes might be appropriate models for modelling annual maxima
of spatial data, for example.

Theoretically speaking, there is no loss of generality in transforming the margins to have a unit
Fréchet scale i.e.

Pr [Z(x) ≤ z] = exp

(
−1

z

)
, ∀x ∈ Rd, z > 0 (1.2)

and we will first assume that the unit Fréchet assumption holds for which we have an(x) = n and
bn(x) = 0.

Currently, there are two different characterisations of a max-stable process. The first one, often
referred to as the rainfall-storm model, was first introduced by ?. More recently, Schlather [2002]
introduced a new characterisation of a max-stable process allowing for a random shape. In this
Chapter, we will present several max-stable models that might be relevant in studying spatial
extremes.

1.1 The Smith Model

? was the first to proposed a characterisation of max-stable processes. Later, ? use this charac-
terisation to provide a parametric model for spatial extremes. The construction was the following.
Let {(ξi, yi), i ≥ 1} denote the points of a Poisson process on (0,+∞)×Rd with intensity measure
ξ−2dξν(dy), where ν(dy) is a positive measure on Rd. Then one characterisation of a max-stable
process with unit Fréchet margins is

Z(x) = max
i
{ξif(yi, x)} , x ∈ Rd (1.3)

where {f(y, x), x, y ∈ Rd} is a non-negative function such that∫
Rd
f(x, y)ν(dy) = 1, ∀x ∈ Rd

3



4 1 · An Introduction to Max-Stable Processes

To see that equation (1.3) defines a stationary max-stable process with unit Fréchet margins,
we have to check that the margins are indeed unit Fréchet and Z(x) has the max-stable property.
Following Smith, consider the set defined by:

E =
{

(ξ, y) ∈ R+
∗ × Rd : ξf(y, x) > z

}
for a fixed location x ∈ Rd and z > 0. Then

Pr [Z(x) ≤ z] = Pr [no points in E] = exp

[
−
∫
Rd

∫ +∞

z/f(y,x)
ξ−2dξν(dy)

]

= exp

[
−
∫
Rd
z−1f(x, y)ν(dy)

]
= exp

(
−1

z

)

and the margins are unit Fréchet.

The max-stable property of Z(·) follows because the superposition of n independent, identical
Poisson processes is a Poisson process with its intensity multiplied by n. More precisely, we have:

{
n

max
i=1

Zi(x1), . . . ,
n

max
i=1

Zi(xk)

}
·∼ n {Z(x1), . . . , Z(xk)} , k ∈ N.

The process defined by (1.3) is often referred to as the rainfall-storm process, as one can have a
more physical interpretation of the above construction. Think of yi as realisations of rainfall storm
centres in Rd and ν(dy) as the spatial distribution of these storm centres over Rd - usually d = 2.
Each ξi represents the intensity of the i-th storm and therefore ξif(yi, x) represents the amount
of rainfall for this specific event at location x. In other words, f(yi, ·) drives how the i-th storm
centred at yi diffuses in space.

Definition (1.3) is rather general and Smith considered a particular setting where ν(dy) is the
Lebesgue measure and f(y, x) = f0(y − x), where f0(y − x) is a multivariate normal density with
zero mean and covariance matrix Σ1. With these additional assumptions, it can be shown that the
bivariate CDF is

Pr[Z(x1) ≤ z1, Z(x2) ≤ z2] = exp

[
− 1

z1
Φ

(
a

2
+

1

a
log

z2

z1

)
− 1

z2
Φ

(
a

2
+

1

a
log

z1

z2

)]
(1.4)

where Φ is the standard normal cumulative distribution function and, for two given locations 1 and
2

a2 = ∆xTΣ−1∆x, Σ =

[
σ11 σ12

σ12 σ22

]
or Σ =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 and so forth

where ∆x is the distance vector between location 1 and location 2. Figure 1.1 plots two simulations
of Smith’s model with different covariance matrices.

1Another form of Smith’s model that uses a Student distribution instead of the normal one. However, it is not
currently implemented.
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Proof.

− log Pr [Z(x1) ≤ z1, Z(x2) ≤ z2] =

∫
Rd

∫ +∞

min{z1/f0(s−x1),z2/f0(s−x2)}
ξ−2dξds

=

∫
max

{
f0(s− x1)

z1
,
f0(s− x2)

z2

}
ds

=

∫
f0(s− x1)

z1
I
(
f0(s− x1)

z1
>
f0(s− x2)

z2

)
ds

+

∫
f0(s− x2)

z2
I
(
f0(s− x1)

z1
≤ f0(s− x2)

z2

)
ds

=

∫
f0(s)

z1
I
(
f0(s)

z1
>
f0(s− x2 + x1)

z2

)
ds

+

∫
f0(s)

z2
I
(
f0(s− x1 + x2)

z1
≤ f0(s)

z2

)
ds

=
1

z1
E
[
I
(
f0(X)

z1
>
f0(X − x2 + x1)

z2

)]
+

1

z2
E
[
I
(
f0(X − x1 + x2)

z1
≤ f0(X)

z2

)]
where X is a r.v. having f0 as density. To get the closed form of the bivariate distribution, it
remains to compute the probabilities of the event {f0(X)/z1 > f0(X − x2 + x1)/z2}.

f0(X)

z1
>
f0(X − x2 + x1)

z2
⇐⇒ 2 log z1 +XT Σ−1X < 2 log z2 + (X − x2 + x1)

T
Σ−1 (X − x2 + x1)

⇐⇒ XT Σ−1(x1 − x2) > log
z1
z2
− 1

2
(x1 − x2)T Σ−1(x1 − x2)

As X has density f0, XTΣ−1(x1−x2) is normal with mean 0 and variance a2 = (x1−x2)TΣ−1(x1−
x2). And finally, we get

1

z1
E
[
I
(
f0(X)

z1
>
f0(X − x2 + x1)

z2

)]
=

1

z1

{
1− Φ

(
log z1/z2

a
− a

2

)}
=

1

z1
Φ

(
a

2
+

log z2/z1

a

)

and

1

z2
E
[
I
(
f0(X − x1 + x2)

z1
≤ f0(X)

z2

)]
=

1

z2
Φ

(
a

2
+

log z1/z2

a

)
This proves equation (1.4).

In equation (1.4), a is the Mahanalobis distance and is similar to the Euclidean distance except
that it gives different weights to each component of ∆x. It is positive and the limiting cases a→ 0+

and a → +∞ correspond respectively to perfect dependence and independence. Therefore, for Σ
fixed, the dependence decreases monotically and continuously as ||∆x|| increases. On the contrary,
if ∆x is fixed, the dependence decreases monotically as a increases.
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Figure 1.1: Two simulations of the Smith model with different Σ matrices. Left panel: σ11 = σ22 = 9/8
and σ12 = 0. Right panel: σ11 = σ22 = 9/8 and σ12 = 1. The max-stable processes are transformed to unit
Gumbel margins for viewing purposes.

The covariance matrix Σ plays a major role in equation (1.4) as it determines the shape of the
storm events. Indeed, due the use of a multivariate normal distribution, the storm events have an
elliptical shape. Considering the eigen-decomposition of Σ, we can write

Σ = UΛUT , (1.5)

where U is a rotation matrix and Λ is a diagonal matrix of the eigenvalues. Thus, U controls the
direction of the principal axes and Λ controls their lengths.

If Σ is diagonal and all the diagonal terms are identical, then Σ = Λ, so that the ellipsoids
change to circles and model (1.4) becomes isotropic. Figure 1.1 is a nice illustration of this. The
left panel corresponds to an isotropic random field while the right one depicts a clear anisotropy
for which we have

Σ =

[
9/8 1
1 9/8

]
=

[
cos(−3π/4) sin(−3π/4)
− sin(−3π/4) cos(−3π/4)

] [
1/8 0
0 17/8

] [
cos(−3π/4) − sin(−3π/4)
sin(−3π/4) cos(−3π/4)

]
,

so that the main direction of the major principal axis is π/4 and a one unit move along the direction
−π/4 yields the same decrease in dependence as 17 unit moves along the direction π/4.

1.2 The Schlather Model

More recently, Schlather [2002] introduced a second characterisation of max-stable processes. Let
Y (·) be a stationary process on Rd such that E[max{0, Y (x)}] = 1 and {ξi, i ≥ 1} be the points
of a Poisson process on R+

∗ with intensity measure ξ−2dξ. Then Schlather shows that a stationary
max-stable process with unit Fréchet margins can be defined by:

Z(x) = max
i
ξi max {0, Yi(x)} (1.6)

where the Yi(·) are i.i.d copies of Y (·).
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Figure 1.2: Plots of the Whittle–Matérn, the powered exponential, the Cauchy and the Bessel correlation
functions - from left to right. The sill and the range parameters are c1 = c2 = 1 while the smooth parameters
are given in the legends.

As before, the max-stable property of Z(·) stems from the superposition of n independent,
identical Poisson processes, while the unit Fréchet margins holds by the same argument as for the
Smith model. Indeed, let consider the following set:

E =
{

(ξ, y(x)) ∈ R+
∗ × Rd : ξmax(0, y(x)) > z

}
for a fixed location x ∈ Rd and z > 0. Then

Pr [Z(x) ≤ z] = Pr [no points in E] = exp

[
−
∫
Rd

∫ +∞

z/max(0,y(x))
ξ−2dξν(dy(x))

]

= exp

[
−
∫
Rd
z−1 max{0, y(x)}ν(dy(x))

]
= exp

(
−1

z

)
As with the Smith model, the process defined in equation (1.6) has a practical interpretation.

Think of ξiYi(·) as the daily spatial rainfall events so that all these events have the same spatial
dependence structure but differ only in their magnitude ξi. This model differs slightly from Smith’s
one as we now have no deterministic shape such as a multivariate normal density for the storms
but a random shape driven by the process Y (·).

The Schlather and Smith characterisations have strong connections. To see this, let consider
the case for which Yi(x) = f0(x − Xi) where f0 is a probability density function and {Xi} is a
homogeneous Poisson process both in Rd. With this particular setting, model (1.6) is identical to
model (1.3).

Equation (1.6) is very general and we need additional assumptions to get practical models.
Schlather proposed to take Yi(·) to be a stationary standard Gaussian process with correlation
function ρ(h), scaled so that E[max{0, Yi(x)}] = 1. With these new assumptions, it can be shown
that the bivariate CDF of process (1.6) is

Pr[Z(x1) ≤ z1, Z(x2) ≤ z2] = exp

[
−1

2

(
1

z1
+

1

z2

)(
1 +

√
1− 2(ρ(h) + 1)

z1z2

(z1 + z2)2

)]
(1.7)

where h ∈ R+ is the Euclidean distance between location 1 and location 2. Usually, ρ(h), is chosen
from one of the valid parametric families, such as

Whittle–Matérn ρ(h) = 21−ν

Γ(ν)

(
h
c2

)ν
Kν

(
h
c2

)
, c2 > 0, ν > 0

Cauchy ρ(h) =

[
1 +

(
h
c2

)2
]−ν

, c2 > 0, ν > 0

Powered Exponential ρ(h) = exp
[
−
(
h
c2

)ν]
, c2 > 0, 0 < ν ≤ 2

Bessel ρ(h) =
(

2c2
h

)ν
Γ(ν + 1)Jν

(
h
c2

)
, c2 > 0, ν ≥ d−2

2

where c2 and ν are the range and the smooth parameters of the correlation function, Γ is the
gamma function and Jν and Kν are the Bessel and the modified Bessel function of the third kind
with order ν and d is the dimension of the random fields.
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Figure 1.3: Two simulations of the Schlather model with different correlation functions having approxi-
mately the same practical range. Left panel: Whittle–Matérn with c1 = c2 = ν = 1. Right panel: Powered
exponential with c1 = ν = 1 and c2 = 1.5. The max-stable processes are transformed to unit Gumbel
margins for viewing purposes.

Accordingly to Gaussian processes, it is possible to add a sill c1 and a nugget effect ν to these
correlation functions i.e.

ρ∗(h) =

{
ν + c1, h = 0

c1ρ(h), h > 0

where ρ is one of the correlation functions introduced above. However, as Schlather [2002] consider
stationary standard Gaussian processes, the sill and nugget parameters satisfy ν = 1− c1 because
the correlation function has to be equal to 1 at the origin.

Figure 1.2 plots the correlation functions for the parametric families introduced above. The left
panel was generated with the following lines

> covariance(nugget = 0, sill = 1, range = 1, smooth = 4, cov.mod = "whitmat",

+ xlim = c(0,9), ylim = c(0, 1))

> covariance(nugget = 0, sill = 1, range = 1, smooth = 2, cov.mod = "whitmat",

+ add = TRUE, col = 2, xlim = c(0,9))

> covariance(nugget = 0, sill = 1, range = 1, smooth = 1, cov.mod = "whitmat",

+ add = TRUE, col = 3, xlim = c(0,9))

> covariance(nugget = 0, sill = 1, range = 1, smooth = 0.5, cov.mod = "whitmat",

+ col = 4, add = TRUE, xlim = c(0,9))

> legend("topright", c(expression(nu == 4), expression(nu == 2),

+ expression(nu == 1), expression(nu == 0.5)),

+ col = 1:4, lty = 1, inset = 0.05)

Figure 1.3 plots two realisations of the Schlather model with the powered exponential and
Whittle–Matérn correlation functions. It can be seen that the powered exponential model leads to
more rough random fields as, with this particular setting for the covariance parameters, the slope
of the powered exponential correlation function near the origin is steeper than the Whittle–Matérn.

The correlation functions introduced above are all isotropic, but model (1.7) doesn’t require this
assumption. From a valid correlation function ρ it is always possible to get an elliptical correlation
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Figure 1.4: Contour plots of an isotropic (left panel) and anisotropic (right panel) correlation function.
Powered exponential family with c1 = c2 = ν = 1. The anisotropy parameters are: ϕ = π/4, r = 0.5.

function ρe by using the following transformation:

ρe(∆x) = ρ
(√

∆xTA∆x
)

(1.8)

where ∆x is the distance vector between two stations, A is any positive semi-definite matrix that
may involve additional parameters. For example, if the spatial domain belongs to R2, a convenient
parametrization for A is given by

A =

[
cosϕ r2 sinϕ

r2 sinϕ cosϕ

]
where ϕ ∈ [0, π) is the rotation angle and 0 < r < 1 is the ratio between the minor and major
principal axes of the ellipse. Figure 1.4 plots the contour of an isotropic correlation function and
an anistropic one derived from equation (1.8).

The correlation coefficient ρ(h) can take any value in [−1,−1]. Complete dependence is reached
when ρ(h) = 1 while independence occurs when ρ(h) = −1. However, most parametric correlation
families don’t allow negative values so that independence is never reached.





2

Unconditional Simulation of Random Fields

In this chapter, we present some results useful for the simulation of stationary max-stable random
fields. This chapter is organized as follows. As the max-stable process proposed by Schlather [2002]
involves the simulation of gaussian processes, techniques for simulating such processes are first
introduced. Next algorithms for simulating max-stable processes are presented.

2.1 Simulation of Gaussian Random Fields

The simulation of gaussian random fields has been of great interest since the pioneer work of
Matheron [1973]. Various methods, more or less accurate and CPU demanding, were introduced.
In this section we will focus especially on three different techniques: the direct approach, the
circulant embedding method [Chan and Wood, 1997] and the turning bands [Matheron, 1973].
These simulation techniques are introduced in turn.

2.1.1 Direct Approach

The direct approach is certainly the simplest approach for simulating gaussian processes. Although
this method is exact in principle and may be used in Rd, d ≥ 1, its use for a large number of
locations is prohibited as we will see later. The direct simulation relies on the following property
[Davis, 1987].

Proposition 2.1. If X is a n vector of independent standard normal random variables, then

Y = D1/2X, D = D1/2(D1/2)T (2.1)

is a multivariate gaussian random vector with zero mean and covariance matrix D.

Proof. Y has a zero mean as

E[Y ] = E[D1/2X] = D1/2E[X] = 0.

The covariance of Y is therefore

E[Y Y T ] = D1/2E[XXT ](D1/2)T = D1/2In(D1/2)T = D1/2(D1/2)T = D

where In is the n× n identity matrix.

11
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The matrix D1/2 can be obtained using either the Cholesky, the eigen or the singular value
decompositions. These decompositions have in general a computational cost of order O(n3) while
the product D1/2X has a cost of order O(n2) [Dietrich, 1995]. This prevents the use of the direct
simulation for large n, typically for n larger than 1000.

To generate a gaussian random field with zero mean and covariance function γ observed at
locations x1, . . . , xn, one can use the following scheme

1. Build the covariance matrix D = [γ(xi − xj)]i,j , 1 ≤ i, j ≤ n;

2. Compute D1/2 by using the Cholesky or the eigen decompositions of D;

3. Generate a n vector of independent standard normal random variables;

4. And use equation (2.1) to compute Y .

2.1.2 Circulant Embedding Method

2.1.3 Turning Bands Method

The turning bands method introduced by Matheron [1973] simplifies the problem of simulating a
d-dimensional random field to the simulation of one-dimensional random fields. Consequently, this
technique allows one to perform a simulation of a large dimensional random field at the cost of
one-dimensional simulations.

Let X(·) be a zero mean isotropic random process in R with covariance function γX . The idea
consists in considering a random field Y (·) in Rd such that Y equals X on a random line in Rd and
is constant on all hyperplanes orthogonal to this line - see Figure 2.1 left panel. As the random line
has to be centred at the origin, it is uniquely defined by a random vector U uniformly distributed
over the half unit sphere Sd of Rd. More formally, we have

Y (x) = X (〈x, U〉) , ∀x ∈ Rd (2.2)

where 〈, 〉 is the standard inner product in Rd. The covariance of the process Z(·) is therefore

γY (h) = E [Y (x), Y (x+ h)]

= E {E [X(〈x, U〉), X(〈x+ h, U〉)]}
= E [γX (〈h, U〉)]

=

∫
Sd

γX (〈h, u〉)ωd(du)

where ωd(du) is the uniform density over the half unit sphere in Rd and h is a vector in Rd.
Matheron [1973] shows that the previous equation is a one-to-one mapping between the set of

continuous isotropic covariance functions in Rd and that of continuous covariances in R. Therefore,
it allows one to simulate random fields having covariance γY by the simulation of one-dimensional
random fields with covariance γX through the turning bands operator T (γX)

T {γX(h)} =

∫
Sd

γY (〈h, u〉)ωd(du) (2.3)

The turning band operator is often complicated when d = 2 and is defined by

γY (h) =
2

π

∫ h

0

γX(u)√
h2 − u2

du or equivalently γX(h) =
d

dh

∫ h

0

uγY (u)√
h2 − u2

du (2.4)
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while the case d = 3 leads to more tractable expressions

γY (h) =
1

h

∫ h

0
γX(u)du or equivalently γX(h) =

d

dh
{hγY (h)} (2.5)

As stated by Chilès and Delfiner [1999], equation (2.2) is not satisfactory as the random field
Y (·) exhibits zonal anisotropy oriented along the random direction given by U so that its empirical
covariance does not match the theoretical one. To bypass this hurdle, N i.i.d. random fields are
superimposed i.e.

Y (x) =
1√
N

N∑
i=1

Yi (〈x, Ui〉) (2.6)

where Ui are i.i.d random variable uniformly distribution over Sd andXi(·) are i.i.d. one-dimensional
random fields having covariance γX .

For practical simulations, the number of lines generated is of order 50 and 500 for the two
and three dimensional cases respectively. However, it has to be noticed that the simulation of the
process on the line is often faster for the three dimensional case, or the only possible one, if the
turning band operator in the two dimensional case leads to a complex covariance function in R.
For such cases, it might be preferable to simulate a three dimensional random field and take its
values on an arbitrary random field.

Although the directions Ui were supposed so far to be uniformly distributed over Sd, the same
result holds if the random directions are generated from an equidistributed sequence of points in Sd.
For the case d = 2, several authors recommend the use of deterministic equal angles between the
lines [Chilès, 1997; Schlather, 1999]. For the case d = 3, Freulon and de Fouquet [1991] show that
using a Van der Corput sequence instead of uniform directions leads to better ergodic properties
for the simulated random fields.

The Van der Corput sequence computes the binary and ternary decomposition of any integer
n ∈ N∗ i.e.

n = a0 + 2a1 + . . .+ 2pap, ai = 0, 1 (2.7)

n = b0 + 3b1 + . . .+ 3pbq, bi = 0, 1, 2 (2.8)

and leads to two numbers between 0 and 1

un =
a0

2
+
a1

22
+ . . .+

ap
2p+1

vn =
b0
3

+
b1
32

+ . . .+
bq

3q+1

from which we get a point lying in S3{√
1− v2

n cos(2πun),
√

1− v2
n sin(2πun), vn

}
(2.9)

For practical purposes, this sequence is defined up to a random rotation to avoid simulations
based on the same set of directions.

Until now, we have not describe how to simulate a process on a line. The circulant embedding
method could be used but this is not fully satisfactory. Although the locations in Rd defines a
grid, their projections on the lines will usually not be regularly spaced. Fortunately, it is possible
to perform a continuous simulation along the lines. An accurate method for this is the continuous
spectral method [Mantoglou, 1987].
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If γX is continuous, Bochner’s theorem states that it is the Fourier transform of a positive
measure χ, the spectral measure,

γX(h) =

∫
Rd

exp (i〈u, h〉) dχ(u) (2.10)

Since γX(0) = σ2, σ−2χ is a probability distribution function. Hence, if Ω is a random vector
with distribution σ−2χ and Φ ∼ U(0, 2π), Ω and Φ being mutually independent, then the random
function

X(x) =
√

2σ2 cos (〈Ω, x〉+ Φ) (2.11)

has γX as its covariance function.

Proof.

Cov {X(o), X(h)} = E [X(o)X(h)]

= 2σ2E {E [cos (〈Ω, h〉+ Φ) cos Φ]}
= σ2E [cos〈Ω, h〉]

=

∫
Rd

exp (i〈u, h〉) dχ(u)

= γX(h)

A comprehensive overview of methods for simulating random processes on a line from various
covariance families is given by Emery and Lantuéjoul [2006].

The function rgp allows simulations of stationary isotropic gaussian fields. Figure 2.1 plots
three realisations of a gaussian random field having a Whittle-Matern covariance function by using
the turning bands method. The number of lines used for these simulations, from left to right, is 1,
25 and 625 respectively. The code used for generating this figure is

> x <- y <- seq(0, 10, length = 100)

> coord <- cbind(x, y)

> seed <- 3

> set.seed(seed)

> data1 <- rgp(1, coord, cov.mod = "whitmat", sill = 1, range = 1, smooth = 1,

+ grid = TRUE, control = list(nlines = 1))

> set.seed(seed)

> data2 <- rgp(1, coord, cov.mod = "whitmat", sill = 1, range = 1, smooth = 1,

+ grid = TRUE, control = list(nlines = 25))

> set.seed(seed)

> data3 <- rgp(1, coord, cov.mod = "whitmat", sill = 1, range = 1, smooth = 1,

+ grid = TRUE, control = list(nlines = 625))

> png("Figures/tbm.png", width = 1400, height = 700)

> par(mfrow=c(1,3))

> image(x, y, data1, col = terrain.colors(64))

> image(x, y, data2, col = terrain.colors(64))

> image(x, y, data3, col = terrain.colors(64))

> dev.off()
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Figure 2.1: One realisation of a gaussian random field having a Whittle-Matern covariance function with
sill, range and smooth parameters all equal to one using the turning bands methods. The continuous spectral
method was used for simulating processes on the lines. Left panel: 1 line, middle panel: 25 lines, right panel:
625 lines.

2.2 Simulation of Max-Stable Random Fields

The definition of a max-stable process involves the maximum over an infinite number of replication
of a given random process. For simulation purposes, the number of replications is necessarily finite.
However, Schlather [2002] shows that it is possible to get exact simulations on a finite sampling
region.

Theorem 2.2. Let Y be a measurable random function such that E[
∫
Rd max{0, Y (x)}dx] = 1, Π be

a Poisson process on Rd × (0,+∞) with intensity measure dΛ(y, ξ) = ξ−2dydξ and Z(·) as defined
by equation (1.6). Assume that Y is uniformly bounded by C ∈ (0,+∞) and has support in the ball
b(o, r) for some r ∈ (0,+∞). Let B be a compact set, Yi be i.i.d. replications of Y , Ui be i.i.d.
uniformly distributed on Br = ∪x∈Bb(x, r), ξi be i.i.d. standard exponential r.v. and Π, Yi, ξi, Ui
be mutually independent. Then, on B,

Z∗(x) = |Br| sup
i

Yi(x− Ui)∑i
k=1 ξk

, x ∈ B, i = 1, 2, . . . (2.12)

equals the max-stable random fields Z in distribution, and

Z∗(x) = |Br| sup

{
Yi(x− Ui)∑i

k=1 ξk
: i = 1, . . . ,m,m is such that

C∑m
k=1 ξk

≤ max
1≤i≤m

Yi(x− Ui)∑i
k=1 ξk

}
(2.13)

almost surely.

Proof. It is well known that a Poisson process on R+ with intensity 1 can be thought as a sum of
i.i.d standard exponential random variables i.e. Π = {

∑n
i=1 ξi : n = 1, 2, . . .}. The application of



16 2 · Unconditional Simulation of Random Fields

the mapping ξ 7→ |Br|ξ−1 to the points of Π yields to a new Poisson process on R+ with intensity
measure |Br|ξ−2dξ. As the Ui are i.i.d. uniformly distributed on Br, we have that the random set{(

Un,
|Br|∑n
i=1 ξi

)
: n = 1, 2, . . .

}
(2.14)

is a simple Poisson process on Br × (0,+∞) with intensity measure dΛ(y, ξ) = ξ−2dydξ and the
process Z∗ equals Z in distribution.

To show the second assertion, we first note that m is necessarily finite as the sequence
∑m

k=1 ξk
is non decreasing and Y is uniformly bounded by C so that

lim
m→+∞

C∑m
k=1 ξk

= 0

Hence, there exists m finite such that

Pr

[
max

1≤i≤m

Yi(x− Ui)∑i
k=1 ξk

≥ C∑m
k=1 ξk

]
= 1

and

Pr

[∣∣∣∣∣ max
1≤i≤m

Yi(x− Ui)∑i
k=1 ξk

− sup
i≥1

Yi(x− Ui)∑i
k=1 ξk

∣∣∣∣∣ 6= 0

]
= 0

If the conditions of Theorem 2.2 are not met i.e. for random functions Y whose support is not
included in a ball b(o, r) or which are not uniformly bounded by a constant C, approximations for
r and C should be used. Although the simulations will not be exact, it seems that approximations
for r and C lead to accurate simulations.

2.2.1 The Smith Model

Recall that the Smith model is defined by

Z(x) = max
i
ξiYi(x), Yi(x) = f(x− Ui) (2.15)

where f is the zero mean multivariate normal density with covariance matrix Σ and {(Ui, ξi)}i≥1

are the points of a Poisson process with intensity measure dΛ(y, ξ) = ξ−2dydξ.
As we just mentionned, the use of Theorem 2.2 to generate realisations from the Smith model is

not theoretically justified as the support of the multivariate normal distribution is not included in
a finite ball b(o, r), r < +∞. However, if r is large enough, the multivariate normal density should
be close to 0 and the points in x ∈ Rd \ b(o, r) are unlikely to contribute to Z(x).

Schlather [2002] in his seminal paper suggests to use r such that ϕ(r) = 0.001 i.e. r ≈ 3.46,
where ϕ denotes the standard normal density. By taking into account that the variance in the
covariance matrix Σ might be large, a reasonable choice is to let

r = 3.46
√

max {σii : i = 1, . . . , d} (2.16)

where σii are the diagonal elements of the covariance matrix Σ.
The function rmaxstab allows the simulation from the Smith model. Figure 2.2 plots two

realisations on a 512× 512 grid with two different covariance matrices Σ. The generation of these
two random fields takes around 2.5 seconds each. The figures was generated by invoking the
following lines
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Figure 2.2: Two simulations of the Smith model with different covariance matrices. Left panel: σ11 =
σ22 = 9/8, σ12 = 0. Right panel: σ11 = σ22 = 9/8, σ12 = 3/4. The observations are transformed to unit
Gumbel margins for viewing purposes.

> x <- y <- seq(0, 10, length = 100)

> coord <- cbind(x, y)

> set.seed(8)

> M0 <- rmaxstab(1, coord, "gauss", cov11 = 9/8, cov12 = 0, cov22 = 9/8,

+ grid = TRUE)

> set.seed(8)

> M1 <- rmaxstab(1, coord, "gauss", cov11 = 9/8, cov12 = 3/4, cov22 = 9/8,

+ grid = TRUE)

> png("Figures/rmaxstabSmith.png", width = 1400, height = 700)

> par(mfrow = c(1,2))

> image(x, y, log(M0), col = terrain.colors(64))

> image(x, y, log(M1), col = terrain.colors(64))

> dev.off()

2.2.2 The Schlather Model

Recall that the Schlather model is defined by

Z(x) = max
i
ξi max {0, Yi(x)} , (2.17)

where Yi(·) are i.i.d. stationary standard gaussian processes with correlation function ρ(h), scaled
so that E[max{0, Yi(x)}] = 1 and {ξi}i≥1 are the points of a Poisson process on R+

∗ with intensity
measure dΛ(ξ) = ξ−2dξ.

Again, the conditions required by theorem 2.2 are not satisfied as the gaussian processes are
not uniformly bounded. However, Schlather [2002] claims that by choosing a constant C such that
Pr[max{0, Yi(x)} > C] is small, the simulation procedure is still accurate and recommends the use
of C = 3.

The package allows for simulation of max-stable processes by using the rmaxstab function. A
typical use for scattered location is
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> coord <- matrix(runif(100, 0, 10), ncol = 2)

> data1 <- rmaxstab(100, coord, "whitmat", nugget = 0, range = 1, smooth = 1)

while for locations located on a grid, users should invoke

> x <- seq(0, 10, length = 100)

> coord <- cbind(x, x)

> data2 <- rmaxstab(1, coord, "powexp", nugget = 0, range = 1, smooth = 2,

+ grid = TRUE)



3

Spatial Dependence of Max-Stable Random Fields

Sooner or later, statistical modellers will be interested in knowing how evolves dependence in space.
When dealing with non-extremal data, a common tools is the (semi-)variogram γ [Cressie, 1993].
Let Y (·) be a stationary gaussian process with correlation function ρ and variance σ2. It is well
known that Y (·) is fully characterized by its mean and its covariance. Consequently, the variogram
defined as

γ(x1 − x2) =
1

2
Var [Y (x1)− Y (x2)] = σ2 {1− ρ(x1 − x2)} (3.1)

determines the degree of spatial dependence of Y (·).
When extreme values are of interest, the variogram is no longer a useful tool, as it may not even

exist. Therefore, there is a need to develop more suitable tools for analyzing the spatial dependence
of max-stable fields. In this chapter, we will present the extremal coefficient as a measure of the
degree of dependence for extreme values, and variogram-based approaches that are especially well
adapted to extremes.

3.1 The Extremal Coefficient

Let Z(·) be a stationary max-stable random field with unit Fréchet margins. The extremal de-
pendence among N fixed locations in Rd can be summarised by the extremal coefficient, which is
defined as:

Pr [Z(x1) ≤ z, . . . , Z(xN ) ≤ z] = exp

(
−θN
z

)
(3.2)

where 1 ≤ θN ≤ N with the lower and upper bounds corresponding to complete dependence and
independence and thus provides a measure of the degree of spatial dependence between stations.
Following this idea, θN can be thought as the effective number of independent stations.

Given the properties of the max-stable process with unit Fréchet marings, the finite-dimensional
CDF belongs to the class of multivariate extreme value distributions

Pr [Z(x1) ≤ z1, . . . , Z(xN ) ≤ zN ] = exp {−V (z1, . . . , zN )} (3.3)

where V is a homogeneous function of order −1 called the exponent measure [Pickands, 1981; Coles,
2001]. As a consequence, the homogeneity property of V implies a strong relationship between the
exponent measure and the extremal coefficient

θN = V (1, . . . , 1) (3.4)

19
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Figure 3.1: Extremal coefficient functions for different max-stable models. Σ is the 2× 2 identity matrix.
Correlation function: Whittle–Matérn with c1 = c2 = ν = 1.

An important special case of equation (3.2) is to consider pairwise extremal coefficients, that is

Pr [Z(x1) ≤ z, Z(x2) ≤ z] = exp

{
−θ(x1 − x2)

z

}
(3.5)

Following Schlather and Tawn [2003], θ(·) is called the extremal coefficient function; it pro-
vides sufficient information about extremal dependence for many problems although it does not
characterise the full distribution.

The extremal coefficient functions for max-stable models presented in Chapter 1 can be derived
directly from their bivariate distribution by letting z1 = z2 = z. More precisely, we have:

Smith θ(x1 − x2) = 2Φ

(√
(x1−x2)TΣ−1(x1−x2)

2

)
Schlather θ(x1 − x2) = 1 +

√
1−ρ(x1−x2)

2

Figure 3.1 plots the extremal coefficient function for the different max-stable models introduced.
The Smith model covers the whole range of dependence while Schlather’s model has an upper bound
of 1 +

√
1/2 if the covariance function only takes positive values. More generally, the properties of

isotropic positive definite functions [Matérn, 1986] imply that θ(·) ≤ 1.838 in R2 and θ(·) ≤ 1.781
in R3 for the Schlather model.

Schlather and Tawn [2003] prove several interesting properties for θ(·):

1. 2− θ(·) is a semi-definite positive function;

2. θ(·) isn’t differentiable at 0 unless θ ≡ 1;

3. if d ≥ 2 and Z(·) is isotropic, θ(·) has at most one jump at 0 and is continuous elsewhere.

These properties have strong consequences. The first indicates that the spatial dependence
structure of a stationary max-stable process can be characterised by a correlation function. The
second states that a valid correlation functions does not always lead to a valid extremal coefficient
function. For instance, the Gaussian correlation model, ρ(h) = exp(−h2), h ≥ 0, is not allowed
since it is differentiable at h = 0.

Equation (3.2) forms the basis for a simple maximum likelihood estimator. Suppose we have
Z1(·), . . . , Zn(·), independent replications of Z(·) observed at a set A = {x1, . . . , x|A|} of locations.
The log-likelihood based on equation (3.2) is given by:

`A(θA) = n log θA − θA
n∑
i=1

1

maxj∈A

{
Zi(xj)Z(xj)

} (3.6)

where the terms of the form log maxj∈A{Zi(xj)} were omitted and Z(xj) = n−1
∑n

i=1 1/Zi(xj).

The scalings by Z(xj) are here to ensure that θ̂A = 1 when |A| = 1.

The problem with the MLE based on equation (3.6) is that the extremal coefficient estimates
may not have the properties on the extremal coefficient function stated above. To solve this,
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Figure 3.2: Pairwise extremal coefficient estimates from the Schlather and Tawn (left panel) and Smith
(right panel) estimators from a simulated max-stable random field having a Whittle–Matérn correlation
function - c1 = c2 = ν = 1. The red lines are the theoretical extremal coefficient function.

Schlather and Tawn [2003] propose self consistent estimators for θA by either sequentially correct-
ing the estimates obtained by equation (3.6) or by modifying the log-likelihood to ensure these
properties.

? proposed another estimator for the pairwise extremal coefficients. As Z(x) is unit Fréchet
for all x ∈ Rd, 1/Z(x) has a unit exponential distribution and, according to equation (3.5),
1/max{Z(x1), Z(x2)} has an exponential distribution with rate θ(x1 − x2). By the law of large
numbers

∑n
i=1 1/Zi(x1) =

∑n
i=1 1/Zi(x2) ≈ n1, this suggests a simple estimator for the extremal

coefficient between locations x1 and x2:

θ̂(x1 − x2) =
n∑n

i=1 min{Zi(x1)−1, Zi(x2)−1}
(3.7)

Figure 3.2 plots the pairwise extremal coefficient estimates from a simulated Schlather model
having a Whittle–Matérn correlation function using equations (3.6) and (3.7). This figure was
generated using the following code:

> n.site <- 40

> n.obs <- 100

> coord <- matrix(runif(2 * n.site, 0, 10), ncol = 2)

> data <- rmaxstab(n.obs, coord, "whitmat", nugget = 0, range = 1,

+ smooth = 1)

> par(mfrow=c(1,2))

> fitextcoeff(data, coord, loess = FALSE)

> fitextcoeff(data, coord, estim = "Smith", loess = FALSE)

3.2 Madogram-based approaches

As we already stated, variograms are useful quantities to assess the degree of spatial dependence
for Gaussian processes. However their use for extreme observations is limited as variograms may
not exist. To see this, consider a stationary max-stable process with unit Fréchet margins. For
such random processes, both mean and variance are not finite and the variogram does not exist
theoretically, so we need extra work to get reliable variogram-based tools.

3.2.1 Madogram

A standard tool in geostatistics, similar to the variogram, is the madogram [Matheron, 1987]. The
madogram is

ν(x1 − x2) =
1

2
E [|Z(x1)− Z(x2)|] , (3.8)

where Z(·) is a stationary random field with mean assumed finite.
The problem with the madogram is almost identical to the one we emphasized with the var-

iogram as unit Fréchet random variables have no finite mean. This led Cooley et al. [2006] to

1In fact, these relations are exact if the margins were transformed to unit Fréchet by using the maximum likelihood
estimates.
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Figure 3.3: Madogram (left panel) and binned madogram (right panel) with unit Gumbel margins for the
Schlather model with the Whittle–Matérn correlation functions. The red lines are the theoretical madograms.
Points are pairwise estimates.

consider identical GEV margins with shape parameter ξ < 1 to ensure that the mean, and even
the variance, are finite. It is possible to use the same strategy to ensure that the variogram exists
theoretically but, as we will show later, we will see that working with the madogram is particularly
suited for extreme values and has strong links with the extremal coefficient.

By using simple arguments and some results obtained by Hosking et al. [1985] on probability
weighted moments, Cooley et al. [2006] show that

θ(x1 − x2) =

uβ
(
µ+ ν(x1−x2)

Γ(1−ξ)

)
, ξ < 1, ξ 6= 0,

exp
(
ν(x1−x2)

σ

)
, ξ = 0,

(3.9)

where µ, σ and ξ are the location, scale and shape parameters for the GEV distribution, Γ(·) is the
Gamma function and

uβ(x) =

(
1 + ξ

x− µ
σ

)1/ξ

+

Equation (3.8) suggests a simple estimator

ν̂(x1 − x2) =
1

2n

n∑
i=1

|zi(x1)− zi(x2)| (3.10)

where zi(x1) and zi(x2) are the i-th observations of the random field at location x1 and x2 and n
is the total number of observations. If isotropy is assumed, then it might be preferable to use a
“binned” version of estimator (3.10)

ν̂(h) =
1

2n|Bh|
∑

(x1,x2)∈Bh

n∑
i=1

|zi(x1)− zi(x2)| (3.11)

where Bh is the set of pair of locations whose pairwise distances belong to [h− ε, h+ ε[, for ε > 0.
Figure 3.3 plots the theoretical madograms for the Schlather’s model having a Whittle–Matérn

correlation function. Pairwise and binned pairwise estimates as defined by equations (3.10) ans (3.11)
are also reported. The code used to generate these madogram estimates was

> n.site <- 50

> n.obs <- 100

> coord <- matrix(runif(2 * n.site, 0, 10), ncol = 2)

> data <- rmaxstab(n.obs, coord, "whitmat", nugget = 0, range = 1, smooth = 1)

> par(mfrow=c(1,2))

> madogram(data, coord, which = "mado")

> madogram(data, coord, which = "mado", n.bins = 100)

Using a plugin estimate in equation (3.9) leads to a simple estimator for θ(·):

θ̂(x1 − x2) =

uβ
(
µ+ ν̂(x1−x2)

Γ(1−ξ)

)
, ξ < 1, ξ 6= 0,

exp
(
ν̂(x1−x2)

σ

)
, ξ = 0,

(3.12)
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Figure 3.4: Pairwise madograms (left panel) and extremal coefficients (right panel) estimates from a
simulated max-stable random field having a Whittle–Matérn correlation function - c1 = c2 = ν = 1. The
red lines are the theoretical madogram and extremal coefficient function.

Figure 3.5: Pairwise F -madogram (left panel) and extremal coefficient (right panel) estimates for the Smith
model with Σ equals to the identity matrix. The red lines are the theoretical F -madogram and extremal
coefficient function.

Figure 3.4 plots the madogram and extremal coefficient functions estimated from a simulated
max-stable process with unit Fréchet margins and having a Whittle–Matérn correlation function.
These estimates were obtained by using equations (3.10) and (3.12) respectively. The figure was
generated using the code below.

> n.site <- 40

> n.obs <- 100

> coord <- matrix(runif(2 * n.site, 0, 10), ncol = 2)

> data <- rmaxstab(n.obs, coord, "whitmat", nugget = 0, range = 1, smooth = 1)

> madogram(data, coord)

3.2.2 F -Madogram

In the previous subsection, we introduced the madogram as a summary statistic for the spatial
dependence structure. However, the choice of the GEV parameters to compute this madogram
is somewhat arbritrary. Instead, Cooley et al. [2006] propose a modified madogram called the
F -madogram

νF (x1 − x2) =
1

2
E [|F (Z(x1))− F (Z(x2)) |] (3.13)

where Z(·) is a stationary max-stable random field with unit Fréchet margins and F (z) = exp(−1/z).

The F -madogram is well defined even in the presence of unit Fréchet margins as we work with
F (Z(x1)) instead of Z(x1). Obviously, equation (3.13) suggests a simple estimator:

ν̂F (x1 − x2) =
1

2n

n∑
i=1

|F̂ (zi(x1))− F̂ (zi(x2))| (3.14)

where zi(x1) and zi(x2) are the i-th observations of the random field at location x1 and x2 and n
is the total number of observations.

The F -madogram has strong connections with the extremal coefficient introduced in Section 3.1.
Indeed, we have

2νF (x1 − x2) =
θ(x1 − x2)− 1

θ(x1 − x2) + 1
(3.15)

or conversely

θ(x1 − x2) =
1 + 2νF (x1 − x2)

1− 2νF (x1 − x2)
(3.16)

Proof. Let first note that

|x− y| = 2 max {x, y} − (x+ y) (3.17)
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Using equation (3.17) in equation (3.13), we have:

νF (x1 − x2) =
1

2
E [|F (Z(x1))− F (Z(x2)) |]

= E [max {F (Z(x1)) , F (Z(x2))}]− E [F (Z(x1))]

= E [F (max{Z(x1), Z(x2)})]− 1

2

where we used the fact that F (Z(x1)) is uniformly distributed on [0, 1] and F is monotone increasing.
Now, from Section 3.1, we know that

Pr [max {Z(x1), Z(x2)} ≤ z] = exp

(
−θ(x1 − x2)

z

)
so that

E [F (max{Z(x1), Z(x2)})] = θ(x1 − x2)

∫ +∞

0
exp

(
−1

z

)
exp

(
−θ(x1 − x2)

z

)
z−2dz

=
θ(x1 − x2)

θ(x1 − x2) + 1

This proves equations (3.15) and (3.16).

As we can see from equation (3.16), there is a one-to-one relationship between the extremal
coefficient and the F -madogram. This suggests a simple estimator for θ(x1 − x2)

θ̂(x1 − x2) =
1 + 2ν̂F (x1 − x2)

1− 2ν̂F (x1 − x2)
(3.18)

Figure 3.5 plots the pairwise F -madogram and extremal coefficient estimates from 100 replica-
tions of the isotropic Smith model. The code used to produce this figure was:

> n.site <- 40

> n.obs <- 100

> coord <- matrix(runif(2 * n.site, 0, 10), ncol = 2)

> data <- rmaxstab(n.obs, coord, "gauss", cov11 = 1, cov12 = 0, cov22 = 1)

> par(mfrow=c(1,2))

> fmadogram(data, coord)

As with the madogram presented in the previous Section, it is also possible to have binned
estimates of the F -madogram by passing the argument n.bins into the fmadogram function.

3.2.3 λ-Madogram

The extremal coefficient, and thus the (F -)madogram, does not fully characterize the spatial depen-
dence of a random field. Indeed, from equation (3.2), it only considers Pr[Z(x1) ≤ z1, Z(x2) ≤ z2]
where z1 = z2 = z. To solve this issue, Naveau et al. [2009] introduce the λ-madogram defined as

νλ(x1 − x2) =
1

2
E
[
|F λ{Z(x1)} − F 1−λ{Z(x2)}|

]
(3.19)

for any λ ∈ [0, 1].
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The idea beyond this is that by varying λ, we will focus on Pr[Z(x1) ≤ z1, Z(x2) ≤ z2] where
z1 = λz and z2 = (1 − λ)z and thus explore the whole space. The λ-madogram is related to the
exponent measure V , namely

νλ(x1 − x2) =
Vx1,x2(λ, 1− λ)

1 + Vx1,x2(λ, 1− λ)
− c(λ) (3.20)

where c(λ) = 3/{2(1 + λ)(2− λ)}.

Proof. Applying equation (3.17) with x = F λ{Z(x1)} and y = F 1−λ{Z(x2)}, we have

νλ(x1 − x2) = E
[
max{F λ{Z(x1)}, F 1−λ{Z(x2)}}

]
− 1

2
E
[
F λ{Z(x1)}

]
− 1

2
E
[
F 1−λ{Z(x2)}

]
= E

[
max{F λ{Z(x1)}, F 1−λ{Z(x2)}}

]
− 1

2(1 + λ)
− 1

2(2− λ)

where we used the fact that E[Xk] = 1/(1 + k), X ∼ U(0, 1), k > 0. From Section 3.1 we know
that

Pr
[
max{F λ{Z(x1)}, F 1−λ{Z(x2)}} ≤ z

]
= Pr

[
Z(x1) ≤ − λ

log z
, Z(x2) ≤ −1− λ

log z

]
= exp {− log(z)Vx1,x2 (λ, 1− λ)}

where Vx1,x2 is the homogeneous function of order −1 introduced in equation (3.3). Differentiating
this distribution with respect to z gives the probability density function of the random variable
max{F λ{Z(x1)}, F 1−λ{Z(x2)}}, so that we have

E
[
max{F λ{Z(x1)}, F 1−λ{Z(x2)}}

]
=

∫ 1

0
−Vx1,x2(λ, 1− λ) exp {− log(z)Vx1,x2 (λ, 1− λ)} dz

=
Vx1,x2(λ, 1− λ)

1 + Vx1,x2(λ, 1− λ)

and finally

νλ(x1 − x2) =
Vx1,x2(λ, 1− λ)

1 + Vx1,x2(λ, 1− λ)
− c(λ)

where c(λ) = 3/{2(1 + λ)(2− λ)}.

Again there is a one-to-one relationship between νλ and the dependence measure, so that we
can express Vx1,x2 as a function of νλ

Vx1,x2(λ, 1− λ) =
c(λ) + νλ(x1 − x2)

1− c(λ)− νλ(x1 − x2)
(3.21)

As Vx1,x2(0.5, 0.5) = 2θ(x1 − x2), the previous equation induces that the madogram and the
F -madogram are special cases of the λ-madogram when λ = 0.5. For instance, we have

ν0.5(x1 − x2) =
8νF (x1 − x2)

3{3 + 2νF (x1 − x2)}

Equation (3.19) suggests a simple estimator

ν̂λ(x1 − x2) =
1

2n

n∑
i=1

|F̂ λ{zi(x1)} − F̂ 1−λ{zi(x2)}| (3.22)



26 3 · Spatial Dependence of Max-Stable Random FieldsFigure 3.6: Binned λ-madogram estimates for two Schlather models having a powered exponential (right
panel) and a Cauchy covariance (left panel) functions. c1 = c2 = ν = 1.

where zi(x1) and zi(x2) are the i-th observations of the random field at location x1 and x2, n is the
total number of observations and F̂ is an estimate of the CDF at the specified location.

There is an issue with the previous estimator. Indeed, the boundary conditions for the λ-
madogram when λ = 0 or λ = 1 are not always fulfilled. From equation (3.19), if λ = 0 or λ = 1,
νλ(x1 − x2) = 1/4. If F is estimated by MLE, then this condition fails while if F̂ (xi:n) = i/(n+ 1)
we get the required conditions. To bypass this hurdle, Naveau et al. [2009] propose the following
adjusted estimator

ν̂λ(x1 − x2) =
1

2n

n∑
i=1

|F̂ λ{zi(x1)} − F̂ 1−λ{zi(x2)}| − λ

2n

n∑
i=1

[
1− F̂ λ{zi(x1)}

]
− 1− λ

2n

n∑
i=1

[
1− F̂ 1−λ{zi(x2)}

]
+

1− λ+ λ2

2(2− λ)(1 + λ)

By plug in this estimator into equation (3.21) we get an estimator for the dependence measure

V̂x1,x2(λ, 1− λ) =
c(λ) + ν̂λ(x1 − x2)

1− c(λ)− ν̂λ(x1 − x2)
(3.23)

Figure 3.6 plots the binned λ-madogram estimates from 100 replications of the Schlather model
having a powered exponential and a Cauchy correlation functions. The code used to produce this
figure was:

> n.site <- 40

> n.obs <- 100

> coord <- matrix(runif(2 * n.site, 0, 10), ncol = 2)

> data1 <- rmaxstab(n.obs, coord, "powexp", nugget = 0, range = 1, smooth = 1)

> data2 <- rmaxstab(n.obs, coord, "cauchy", nugget = 0, range = 1, smooth = 1)

> par(mfrow=c(1,2), pty = "s")

> lmadogram(data1, coord, n.bins = 60)

> lmadogram(data2, coord, n.bins = 60)

It might be useful to use the excellent persp3d function provided by the contributed rgl R
package to explore dynamically the λ-madogram.
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Fitting a Unit Fréchet Max-Stable Process to Data

In Chapter 1, we described max-stable processes and gave two different characterisations of them.
However, we mentioned that only the bivariate distributions are analytically known so that the
fitting of max-stable processes to data is not straightforward. In this Chapter, we will present two
different approaches to fitting max-stable processes to data. The first one is based on least squares
and was first introduced by ?. The second one uses the maximum composite likelihood estimator
[Lindsay, 1988], more precisely the maximum pairwise likelihood estimator. We will consider these
two different approaches separately.

4.1 Least Squares

As stated by equations (1.4) and (1.7), the density of a max-stable process is analytically known only
for the bivariate case so that maximum likelihood estimators are not available. This observation
led ? to propose an estimator based on least squares. This fitting procedure consists in minimizing
the objective function

C(ψ) =
∑
i<j

(
θi,j − θ̃i,j
s(θ̃i,j)

)2

(4.1)

where ψ is the vector parameter of the max-stable process, θi,j is the extremal coefficient predicted
from the max-stable model for stations i and j , θ̃i,j is a semi-parametric estimator defined by
equation (3.7) for stations i and j and s(θ̃i,j) is the standard deviation related to the estimation of
θ̃i,j , estimated by the jacknife estimator [Efron, 1982].

S.J. Neil, in his M.Phil. thesis, suggests the use of this weighted sum of squares criterion to
avoid unsatisfactory fits in regions of high dependence i.e. when θi,j is close to 1.

Although ? proposed this estimator for his own max-stable model, there is no restriction in
applying it to any of the max-stable models introduced in Chapter 1. An illustration of this fitting
procedure is given by the following lines:

> n.site <- 40

> n.obs <- 80

> coord <- matrix(runif(2*n.site, 0, 10), ncol = 2)

> data <- rmaxstab(n.obs, coord, "gauss", cov11 = 9/8, cov12 = 1, cov22 = 9/8)

> fitcovmat(data, coord, marge = "emp")

Estimator: Least Squares

Model: Smith

27
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Weighted: TRUE

Objective Value: 870.7347

Covariance Family: Gaussian

Estimates

Marginal Parameters:

Not estimated.

Dependence Parameters:

cov11 cov12 cov22

0.7598 0.6550 0.8091

Optimization Information

Convergence: successful

Function Evaluations: 144

This approach suffers from two major drawbacks. First, unless we use Monte-Carlo techniques,
standard errors are not available and because the observations are far from being normal, the least
squares estimator should be far from efficiency in the way given by the Cramér-Rao lower bound
[Cramér, 1946] and the Gauss-Markov theorem. Secondly, for concrete analysis, it is hopeless that
the observed (spatial) annual maxima have unit Fréchet margins so that we need first to transform
the data to the unit Fréchet scale. This suggests the use of a more flexible estimator.

4.2 Pairwise Likelihood

As already stated, the “full” likelihood for the max-stable model presented in Chapter 1 is not ana-
lytically known if the number of stations under consideration is greater or equal to three. However,
as the bivariate density is analytically known, this suggests the use of the pairwise likelihood in
place of the full likelihood. The log pairwise-likelihood is given by

`p(z;ψ) =
∑
i<j

ni,j∑
k=1

log f(z
(i)
k , z

(j)
k ;ψ) (4.2)

where z is the data available on the whole region, ni,j is the number of common observations

between sites i and j, y
(i)
k is the k-th observation of the i-th site and f(·, ·) is the bivariate density

of the unit Fréchet max-stable process.

4.2.1 Misspecification

Properties of the maximum composite likelihood estimator are well known [Lindsay, 1988; Cox and
Reid, 2004] and belong to the class of maximum likelihood estimation under misspecification1.

A statistical model {f(y;ψ), ψ ∈ Rp} is said misspecified if the observations yi, i = 1, . . . , n
are drawn from a unknown true density g instead of f . We say that the model {f(y;ψ), ψ ∈ Rp}
is correct if there exists ψ∗ ∈ Rd such that f(y;ψ∗) = g(y), for all y.

Let ψ̂ be the maximum likelihood estimator. Because of the law of large numbers, we have

1

n

n∑
i=1

log f
(
yi; ψ̂

)
−→

∫
log f (y;ψg) g(y)dy, n→ +∞ (4.3)

1More rigorously we should say partially specified.
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where ψg is the value that minimizes the Kullback–Leibler discrepancy defined as

D (fψ, g) =

∫
log

(
g(y)

f(y;ψ)

)
g(y)dy (4.4)

By definition of ψ̂, we have:

1

n

n∑
i=1

∂ log f(yi; ψ̂)

∂ψ
= 0

so that, provided the log-likelihood is regular enough, a Taylor expansion about ψg yields

1

n

n∑
i=1

∂ log f(yi;ψg)

∂ψ
+
(
ψ̂ − ψg

)T 1

n

n∑
i=1

∂2 log f(yi;ψg)

∂ψ∂ψT
·

= 0

⇐⇒ ψ̂
·

= ψg −

{
1

n

n∑
i=1

∂2 log f(yi;ψg)

∂ψ∂ψT

}−1{
1

n

n∑
i=1

∂ log f(yi;ψg)

∂ψ

}

It can be shown using the central limit theorem and the weak law of large numbers [Davison,
2003, p. 124] that the previous equation implies that

ψ̂
·∼ N

(
ψg, H(ψg)

−1J(ψg)H(ψg)
−1
)

(4.5)

where

H(ψg) = n

∫
∂2 log f(y;ψ)

∂ψ∂ψT
g(y)dy (4.6)

J(ψg) = n

∫
∂ log f(y;ψ)

∂ψ

∂ log f(y;ψ)

∂ψT
g(y)dy (4.7)

Note that if by a lucky chance our candidate model f(y;ψ) contains the true one, then ψg = ψ
and H(ψg) = −J(ψg) so that equation (4.5) reduces to the usual asymptotic distribution for the
MLE.

The use of pairwise likelihood, as a specific case of composite likelihood, leads to further sim-
plifications. To see this, we consider the gradient of the log-pairwise likelihood

∇`p(y;ψ) =
∑
i<j

ni,j∑
k=1

∇ log f(y
(i)
k , y

(j)
k ;ψ) (4.8)

For each fixed i and j,
ni,j∑
k=1

∇ log f(y
(i)
k , y

(j)
k ;ψ) = 0

is an unbiased estimating equation so that ∇`p(y;ψ) = 0 is unbiased too as a linear combination
of unbiased estimating equations. This leads to a modification of equation (4.5)

ψ̂p
·∼ N

(
ψ,H(ψ)−1J(ψ)H(ψ)−1

)
(4.9)

where H(ψ) and J(ψ) are given by equations (4.6) and (4.7).
Let consider a simple case study to see how it works in practice. Here we simulate independent

replications of the Schlather model with a Whittle–Matérn correlation function having its sill, range
and shape parameters equal to 0.8, 3 and 1.2 respectively.
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> n.obs <- 80

> n.site <- 40

> set.seed(12)

> coord <- matrix(runif(2*n.site, 0, 10), ncol = 2)

> data <- rmaxstab(n.obs, coord, "whitmat", nugget = 0.8, range = 3, smooth = 1.2)

> fitmaxstab(data, coord, cov.mod = "whitmat")

Estimator: MPLE

Model: Schlather

Weighted: FALSE

Pair. Deviance: 561442.9

TIC: 561624

Covariance Family: Whittle-Matern

Estimates

Marginal Parameters:

Assuming unit Frechet.

Dependence Parameters:

nugget range smooth

0.7715 1.4972 4.3331

Standard Errors

nugget range smooth

0.07054 4.96117 24.43904

Asymptotic Variance Covariance

nugget range smooth

nugget 4.976e-03 -2.797e-01 1.336e+00

range -2.797e-01 2.461e+01 -1.208e+02

smooth 1.336e+00 -1.208e+02 5.973e+02

Optimization Information

Convergence: successful

Function Evaluations: 40

From this output, we can see that we indeed use the Schlather’s representation with a Whittle–
Matérn correlation function. The convergence was successful and the parameter estimates for the
covariance function as well as the pairwise deviance are accessible. Large deviations from the
theoretical values may be expected as the parameters of the Whittle–Matérn covariance function
are far from orthogonal. Thus, the range and smooth estimates may be totally different while
leading (approximately) to the same covariance function.

The fitmaxstab function provides a powerful option that can fix any parameter of the model
under consideration. For instance, this could be especially useful when using the Whittle–Matérn
correlation function as it is sometimes preferable to fix the smooth parameter using prior knowledge
on the process smoothness [Diggle et al., 2007]. Obviously, this feature is not restricted to this
specific case and one can consider more exotic models. Fixing parameters of the model is illustrated
by the following lines
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> fitmaxstab(data, coord, cov.mod = "whitmat", smooth = 1.2)

> fitmaxstab(data, coord, cov.mod = "whitmat", nugget = 0)

> fitmaxstab(data, coord, cov.mod = "whitmat", range = 3)

Although the Whittle–Matérn model is flexible, one may want to consider other families of
covariance functions. This is achieved by invoking:

> fitmaxstab(data, coord, cov.mod = "cauchy")

> fitmaxstab(data, coord, cov.mod = "powexp")

One may also consider the Smith model, this could be done as follows

> fitmaxstab(data, coord, cov.mod = "gauss")

It is also possible to used different optimization routines to fit the model to data by passing the
method argument. For instance, if one wants to use the BFGS method:

> fitmaxstab(data, coord, cov.mod = "gauss", cov12 = 0, method = "BFGS")

Instead of using the optim function, one may want to use the nlm or nlminb functions. This is
done as before using the method = "nlm" or method = "nlminb" option.

Finally, it is important to note that maximizing the pairwise likelihood can be expensive. The
choice of the numerical optimizer is important. In particular, optimizers that use the gradient
of the pairwise likelihood might be clumsy. Indeed, if the Whittle–Matérn covariance function
is considered and the smooth parameter has to be estimated, then the pairwise likelihood is not
differentiable with respect to this specific parameter. In general, the Nelder–Mead [Nelder and
Mead, 1965] approach seems to perform better even if the convergence is sometimes slow.

4.2.2 Assessing Uncertainties

Recall that the maximum pairwise likelihood estimator ψ̂p satisfies

ψ̂p
·∼ N

(
ψ,H(ψ)−1J(ψ)H(ψ)−1

)
, n→ +∞,

where H(ψ) = E[∇2`p(ψ; Y)] (the Hessian matrix) and J(ψ) = Var[∇`p(ψ; Y)], where the expec-
tations are with respect to the “full” density.

In practice, to get the standard errors we need estimates of H(ψ) and J(ψ). The estimation of
H(ψ) is straightforward and is Ĥ(ψ̂p) = ∇2`p(ψ̂p; y); that is, the Hessian matrix evaluated at ψ̂p.

Usually, standard optimizers are able to get finite-difference based estimates for H(ψ̂p) so that no

extra work is needed to get Ĥ(ψ̂p).

The estimation of J(ψ̂p) is a little bit more difficult and can be done in two different ways [Varin

and Vidoni, 2005]. First note that J(ψ̂p) could be estimated using the “naive” estimator Ĵ(ψ̂p) =

∇`p(ψ̂p; y)∇`p(ψ̂p; y)
T

. This is unsatisfactory as most often the gradient of the log composite

likelihood vanishes. Top bypass this hurdle, J(ψ̂p) can be estimated by

Ĵ(ψ̂p) =
n∑
i=1

∇`p(ψ̂p; yi)∇`p(ψ̂p; yi)
T

(4.10)

Another estimator is given by noticing that J(ψ) corresponds to the variance of the pairwise score
equation `p(ψ; Y) = 0. The latter estimator is used to get standard errors. These two estimators
are only accessible if independent replications of Y are available2.

2which will mostly be the case for spatial extremes.
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Model Selection

Model selection plays an important role in statistical modelling. According to Ockham’s razor,
given several models that fit the data equally well, we should focus on simple models rather than
more complex ones. Depending on the models to be compared, several approaches exist for model
selection. In this section, we will present theory on information criteria such as the Akaike Infor-
mation Criterion (AIC) [Akaike, 1974] and the likelihood ratio statistic [Davison, 2003, Sec. 4.5].
We present these two approaches in turn.

5.1 Takeuchi Information Criterion

Having two different models, we want to know which one we should prefer for modelling our data.
If two models have exactly the same maximized log-likelihoods, we should prefer the one which
has fewer parameters because it will have a smaller variance. However, if these two maximized
log-likelihoods only differ by a small amount, does this small increase worth the price of having
additional parameters? To answer this question, we resort to the Kullback–Leibler discrepancy.

Let consider a random sample Y1, . . . , Yn drawn from an unknown density g. Ignoring g, we
fit a statistical model f(y;ψ) by maximizing the log-likelihood. The Kullback–Leibler discrepancy
measures the discrepancy of our fitted model f from the true one g

D (fψ, g) =

∫
log

(
g(y)

f(y;ψ)

)
g(y)dy (5.1)

The Kullback–Leibler discrepancy is always positive. Indeed, as x 7→ − log(x) is a convex
function, Jensen’s inequality states

D (fψ, g) =

∫
log

(
g(y)

f(y;ψ)

)
g(y)dy ≥ − log

(∫
f(y;ψ)

g(y)
g(y)dy

)
= 0

where we used the fact that f(y;ψ) is a probability density function. Furthermore, the lower
bound is reached if and only if the convex function is not strictly convex which only occurs iff
f(y;ψ) = g(y).

Consequently, for model selection, we aim to choose models that minimize D(fψ, g). However,
D(fψ, g) is not enough discriminant as several models may satisfy D(fψ, g) = 0. To solve this issue,

suppose we have an estimate ψ̂, we need to average D(fψ̂, g) over the distribution of ψ̂. Intuitively,

because of their larger sampling variance, averaging over ψ̂ will penalized much more models having
a larger number of parameters than those with fewer parameters.
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Let ψg be the value that minimizes D(fψ, g). A Taylor expansion of log f(y; ψ̂) around ψg gives

log f(y; ψ̂) ≈ log f(y;ψg) +
1

2

(
ψ̂ − ψg

)T ∂2 log f(y;ψg)

∂ψ∂ψT

(
ψ̂ − ψg

)
where we use the fact that ψg minimise the Kullback–Leibler discrepancy so its partial derivative
with respect to ψ vanishes. By putting this into equation (5.1) we get

D
(
fψ̂, g

)
·

= D
(
fψg , g

)
− 1

2n
tr
{

(ψ̂ − ψg)(ψ̂ − ψg)TJ(ψg)
}

where J(ψg) is given by equation (4.7). Finaly, we have

nEg
[
D
(
fψ̂, g

)]
·

= nD
(
fψg , g

)
− 1

2
tr
{
J(ψg)

−1H(ψg)
}

(5.2)

where H(ψg) is given by equation (4.6).

The AIC is, up to constant, an estimator of equation (5.2) and is defined as

AIC = −2`(ψ̂) + 2p (5.3)

The simplification tr{J(ψg)
−1H(ψg)} = −p arises as the AIC supposes that there is no misspecifi-

cation.

Because we see in Section 4.2.1 that by using the maximum pairwise likelihood estimator we
work under misspecification, the AIC is not appropriate. Another estimator of equation (5.2),
which allows for misspecification, is the Takeuchi information criterion (TIC)

TIC = −2`(ψ̂)− 2tr
{
ĴĤ−1

}
(5.4)

In accordance with the AIC, the best model will correspond to the one that minimizes equation (5.4).
Recently, Varin and Vidoni [2005] rediscover this information criterion and demonstrate its use for
model selection when composite likelihood is involved.

In practice, one can have a look at the output of the fitmaxstab function or use the TIC

function.

> n.obs <- 80

> n.site <- 40

> coord <- matrix(runif(2*n.site, 0, 10), ncol = 2)

> data <- rmaxstab(n.obs, coord, "cauchy", nugget = 0.2, range = 3, smooth = 1.2)

> M0 <- fitmaxstab(data, coord, cov.mod = "powexp")

> M1 <- fitmaxstab(data, coord, cov.mod = "cauchy")

> TIC(M0, M1)

M0 M1

570677.5 570698.0

The TIC for M1 is lower that the one for M0 so that we might prefer using M1.
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5.2 Likelihood Ratio Statistic

TIC is useful when comparing different models. When dealing with nested models, one may prefer
using the likelihood ratio statistic because of the Neyman–Pearson lemma [Neyman and Pearson,
1933].

Suppose we are interested in a statistical model {f(x;ψ)} where ψT = (κT , φT ) and more
especially wether a particular value κ0 of κ is relevant with our data. Let (κ̂T , φ̂T ) be the maximum
likelihood estimate for ψ and φ̂κ0 the maximum likelihood estimate under the restriction κ = κ0.
A common statistic to check if κ0 is relevant or not is the likelihood ratio statistic W (κ0) which
satisfies, under mild regularity conditions,

W (κ0) = 2
{
`(κ̂, φ̂)− `(κ0, φ̂κ0)

}
−→ χ2

p, n→ +∞ (5.5)

where p is the dimension of κ0.

Unfortunately, when working under misspecification, the usual asymptotic χ2
p distribution does

not hold anymore. There’s two ways to solve this issue: (a) adjusting the χ2 distribution [Rotnitzki
and Jewell, 1990] or (b) adjusting the composite likelihood so that the usual χ2

p holds [Chandler
and Bate, 2007]. We will consider these two strategies in turn.

5.2.1 Adjusting the χ2 distribution

If the model is misspecified, equation (5.5) has to be adjusted. More precisely, as stated by [Kent,
1982], we have

W (κ0) = 2
{
`(κ̂, φ̂)− `(κ0, φ̂κ0)

}
−→

p∑
i=1

λiXi, n→ +∞ (5.6)

where λi are the eigenvalues of ((H−1JH−1)κ{−(H−1)κ}−1, the Xi are independent χ2
1 random

variables and (H−1JH−1)κ and (H−1)κ are the submatrices of H−1JH−1 and H−1 corresponding
to the elements of κ and where the matrices H and J are given by equations (4.6) and (4.7). For
practical purposes, the matrices H and J are substituted for their respective estimates as described
in Section 4.2.2.

The problem with equation (5.6) is that generally the distribution of
∑p

i=1 λiXi is not known
exactly. This led Rotnitzki and Jewell [1990] to consider pW (κ0)/

∑p
i=1 λi as a χ2

p random variable.
However, a better approximation uses results on quadratic forms of normal random distribution.

An application of this approach is given by the following lines:

> n.obs <- 50

> n.site <- 30

> coord <- matrix(rnorm(2*n.site, sd = sqrt(.2)), ncol = 2)

> data <- rmaxstab(n.obs, coord, "gauss", cov11 = 100, cov12 = 25, cov22 = 220)

> M0 <- fitmaxstab(data, coord, "gauss", cov11 = 100)

> M1 <- fitmaxstab(data, coord, "gauss")

> anova(M0, M1)

Eigenvalue(s): 220.32

Analysis of Variance Table
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MDf Deviance Df Chisq Pr(> sum lambda Chisq)

M0 2 97942

M1 3 97901 1 41.626 0.6638

From this ouput, we can see that the p-value is approximately 0.875 which turns out to be in
favour of H0 i.e. σ11 = 100 in Σ. Note that the eigenvalue estimate was also reported.

5.2.2 Adjusting the composite likelihood

Contrary to the approach of Rotnitzki and Jewell [1990], Chandler and Bate [2007] propose to adjust
the composite likelihood instead of adjusting the asymptotic likelihood ratio statistic distribution.
The starting point is that, under misspecification, the log-composite likelihood evaluated at its
maximum likelihood estimate ψ̂ has curvature −Ĥ−1 while it should be Ĥ−1ĴĤ−1. This forms the
basis for adjusting the log-composite likelihood is the following way,

`A(ψ) = `(ψ∗), ψ∗ = ψ̂ + C(ψ − ψ̂) (5.7)

for some p× p matrix C.

It is straightforward to see that ψ̂ maximizes `A with zero derivative. The key point is that its
curvature at θ̂ is CT Ĥ−1C. By choosing an appropriate C matrix, it is possible to ensure that `A
has the right curvature for applying (5.5) directly. More precisely, by letting

C = M−1MA (5.8)

where MTM = Ĥ and MT
AMA = Ĥ−1ĴĤ−1, we ensure that `A has curvature Ĥ−1ĴĤ−1. If p > 1,

the matrix square roots M and MA are not unique and one may use the Cholesky or the singular
value decompostions.

With this setting, we can apply (5.5) directly i.e.

WA(κ0) = 2
{
`A(κ̂, φ̂)− `A(κ0, φ̂A)

}
−→ χ2

p

where φ̂A is the maximum adjusted likelihood estimated for the restricted model.

The problem with the above equation is that it requires the estimation of φ̂A which could be
CPU prohibitive. Unfortunately, substituting φ̂ for φ̂A doesn’t solve the problem as `A(φ̂) ≤ `A(φ̂A)
so that this substitution will inflate WA(κ0) and thus PrH0 [Wa(κ0) > wa(α)] > 1−α, where wa(α)
is the 1− α quantile for the χ2

p distribution and α the significance level of the hypothesis test.

To solve these problems, Chandler and Bate [2007] propose to compensate for the use of φ̂
instead of φ̂A by considering a modified likelihood ratio statistic

W ∗A(κ0) = 2c
{
`A(κ̂, φ̂)− `A(κ0, φ̂A)

}
−→ χ2

p (5.9)

where

c =
(κ̂− κ0)T {−(Ĥ−1ĴĤ−1)κ0}−1(κ̂− κ0)

{(κ̂T , φ̂T )}T {−(Ĥ−1ĴĤ−1)κ0}{(κ̂T , φ̂T )}

The next lines performs the same hypothesis test as that in Section 5.2.1.

> anova(M0, M1, method = "CB")
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Analysis of Variance Table

MDf Deviance Df Chisq Pr(> sum lambda Chisq)

M0 2 60576

M1 3 60576 1 0.2089 0.6476

By using the Chandler and Bate methodology, we draw the same conclusion as in the previous
section, i.e. the observations are consistent with the null hypothesis σ11 = 100.





6

Fitting a Max-Stable Process to Data With Unknown

GEV Margins

In practice, the observations will never be drawn from a unit Fréchet distribution so that Chapter 4
won’t help much with concrete applications. One way to avoid this problem is to fit a GEV to each
location and then transform all data to the unit Fréchet scale. Given a continuous random variable
Y whose cumulative distribution function is F , one can define a new random variable Z such as Z
is unit Fréchet distributed

Z = − 1

logF (Y )
(6.1)

More precisely, if Y is a random variable distributed as a GEV with location, scale and shape
parameters equal to µ, σ and ξ respectively, it turns out that equation (6.2) becomes

Z =

(
1 + ξ

Y − µ
σ

)1/ξ

(6.2)

The above transformation can be done by using the gev2frech function

> x <- c(2.2975896, 1.6448808, 1.3323833, -0.4464904, 2.2737603, -0.2581876,

+ 9.5184398, -0.5899699, 0.4974283, -0.8152157)

> z <- gev2frech(x, 1, 2, .2)

or conversely if Z is a unit Fréchet random variable, then the random variable Y defined as

Y = µ+ σ
Zξ − 1

ξ
(6.3)

is GEV distributed with location, scale and shape parameters equal to µ ∈ R, σ ∈ R+
∗ and ξ ∈ R

respectively.

> frech2gev(z, 1, 2, .2)

[1] 2.2975896 1.6448808 1.3323833 -0.4464904 2.2737603 -0.2581876

[7] 9.5184398 -0.5899699 0.4974283 -0.8152157

The drawback of this approach is that standard errors are incorrect as the margins are fitted
separately from the spatial dependence structure. Consequently, the standard errors related to the
spatial dependence parameters are underestimated as we suppose that data were originally unit
Fréchet.

39
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One can solve this problem by fitting in one step both GEV and spatial dependence parameters
[Padoan, 2008; Padoan et al., 2008; Gholam-Rezaee, 2009]. As the bivariate distributions for the
max-stable models introduced in Chapter 1 were imposing unit Fréchet margins, we need to rewrite
them for unknown GEV margins. To this aim, let define the transformation t such that

t : Y (x) 7→
(

1 + ξ(x)
Y (x)− µ(x)

σ(x)

)1/ξ(x)

(6.4)

where Y (·) is supposed to be a max-stable random field having GEV margins such that Y (x) ∼
GEV(µ(x), σ(x), ξ(x)), σ(x) > 0 for all x ∈ Rd. Consequently, the bivariate distribution of
(Y (x1), Y (x2)) is

Pr [Y (x1) ≤ y1, Y (x2) ≤ y2] = Pr [Z(x1) ≤ z2, Z(x2) ≤ z2]

where z1 = t(y1) and z2 = t(y2). Thus, one can relate the bivariate density for (Y (x1), Y (x2)) to
the one for (Z(x1), Z(x2)) that we introduced in Chapter 1 and the log pairwise likelihood becomes

`p(y;ψ) =
∑
i<j

ni,j∑
k=1

{
log f(z

(i)
k , z

(j)
k ;ψ) + log |J(y

(i)
k )J(y

(j)
k )|

}
(6.5)

where ni,j is the sample size of common observations between site i and j and

z
(i)
k =

(
1 + ξi

y
(i)
k − µi
σi

)1/ξi

where µi, σi, ξi are the GEV parameters for the i-th site and y
(i)
k is the k-th observation available

at site i and |J(t(y
(i)
k ))| is the Jacobian of the mapping t evaluated at the y

(i)
k observation i.e.

|J(t(y
(i)
k ))| = 1

σi

(
1 + ξi

y
(i)
k − µi
σi

)1/ξi−1

Maximizing the log-pairwise likelihood given by equation (6.5) is possible by passing the option
fit.marge = TRUE in the fitmaxstab function i.e.

> fitmaxstab(data, coord, "gauss", fit.marge = TRUE)

However, this will be really time consuming as such models will have 3n.site+ p parameters to
estimate, where p is the number of parameters related to the extremal spatial dependence structure.
Another drawback is that prediction at unobserved locations won’t be possible. Indeed, if no model
is assumed for the evolution of the GEV parameters in space, it is therefore impossible to predict
them where no data is available.

Another way may be to fit response surfaces for the GEV parameters. The next section aims
to give an introduction to the use of response surfaces.

6.1 Response Surfaces

Response surfaces is a generic term when the problem under concern is to describe how a response
variable y depends on explanatory variables x1, . . . , xk. For instance, with our particular problem
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of spatial extremes, one may wonder how is it possible to predict the GEV parameters at a fixed
location given the knowledge of extra covariables such as longitude, latitude, . . . The goal of response
surfaces is to get efficient predictions for the response variable while keeping, so far as we can, simple
models.

In this section, we will first introduce the linear regression models. Next, we will increase in
complexity and flexibility by introducing semiparametric regression models.

6.1.1 Linear Regression Models

Suppose we observe a response y through the y1, . . . , yn values. For each observed yi, we also have
p related explanatory variables denoted by x1,i, . . . , xp,i. To predict y given the x·,· values, one
might consider the following model:

yi = β0 + β1x1,i + · · ·+ βpxp,i + εi

where β0, . . . , βp are the regression parameters to be estimated and εi is an unobserved error term.

It is possible to write the above equation in a more compact way by using matrix notation e.g.

y = Xβ + ε (6.6)

where y is a n× 1 vector, X is a n× p matrix called the design matrix and ε is a p× 1 vector.

Model (6.6) is called a linear model as it is linear in β but not necessarily in the covariates x.
For example, the two following models are linear models

y = β0 + β1x1 + β2x
2
1 + ε

y = β0 + β1x1 + β2 log x2 + ε

or equivalently in a matrix notationy1
...
yn

 =

1 x1,1 x2
1,1

...
...

...
1 x1,n x2

1,n


β0

β1

β2

+

ε0ε1
ε2


y1

...
yn

 =

1 x1,1 log x2,1
...

...
...

1 x1,n log x2,n


β0

β1

β2

+

ε0ε1
ε2


Usually, β is estimated by minimizing least squares

SS(β) =
n∑
i=1

(yi − xTi β)2 = (y −Xβ)T (y −Xβ) (6.7)

which amounts to solve the equations

n∑
i=1

xj,i(yi − βTxi) = 0, j = 1, . . . , p

or equivalently in a matrix notation

XT (y −Xβ) = 0
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so that, provided that XTX is invertible, the least squares estimate for β is given by

β̂ =
(
XTX

)−1
XTy (6.8)

and the fitted y values are given by

ŷ = Xβ̂ = X
(
XTX

)−1
XTy (6.9)

The matrix H = X
(
XTX

)−1
XT is called the hat matrix as it puts“hats”on y. H is a projection

matrix that orthogonally projects y onto the plane spanned by the columns of the design matrix
X.

The hat matrix plays an important role in parametric regression as it provides useful informa-
tions on the influence of some observations to the fitted values. Indeed, from equation (6.9), we
have

ŷi =
n∑
j=1

Hi,jyj

so that Hi,i is the contribution of yi to the estimate ŷi. Furthermore, if we consider the total
influence of all the observations, we have

n∑
i=1

Hi,i = tr(H) = tr{X(XTX)−1XT }

= tr{XTX(XTX)−1} = tr(Ip) = p

and the total influence of all observations is equal to the degrees of freedom of the model.

6.1.2 Semiparametric Regression Models

In the previous section, we talked about linear regression models for which the relationship between
the explanatory variables and the response has a deterministic shape and is supposed to be known.
However, it may happened applications for which the data have a complex behaviour. For such
cases, we benefit from using semiparametric regression models defined as

yi = f(xi) + εi (6.10)

where f is a smooth function with unknown shape.

The idea of semiparametric regression models is to decompose f into an appropriate basis for
which equation (6.10) simplifies to equation (6.6) e.g.

f(x) =

q∑
j=1

bj(x)βj (6.11)

where bj(·) is the j-th basis function and βj is the j-th element of the regression parameter β.

Several basis functions exist such as the polynomial basis, the cubic spline basis, B-splines,
. . . It is beyond the scope of this document to introduce all of them in details but the interested
reader should have a look at Ruppert et al. [2003]. Some details about the basis implemented in
the package are reported in Annex A
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Figure 6.1: Impact of the number of knots in the fitted p-spline. Left panel: q = 2, middle panel: q = 10,
right panel: q = 50. The small vertical lines corresponds to the location of each knot.

Figure 6.2: Impact of the smoothing parameter λ on the fit. Left panel: λ = 0, middle panel: λ = 0.1 and
right panel: λ = 10.

Usually, the basis functions bj(·) depends on knots κ so that equation (6.11) becomes

f(x) = β0 + β1x+

q∑
j=1

bj(x− κj) (6.12)

The problem with model (6.12) is that it is strongly affected by the number of knots. Figure 6.1
depicts this problem by fitting the same dataset to model (6.12) with q = 2, 10 and 50. Clearly,
the first fit is not satisfactory and we need to increase the number of knots. The second one seems
plausible while the last one clearly overfits. This figure was generated with the following lines

> set.seed(12)

> x <- runif(100)

> fun <- function(x) sin(3 * pi * x)

> y <- fun(x) + rnorm(100, 0, 0.15)

> knots1 <- quantile(x, prob = 1:2 / 3)

> knots2 <- quantile(x, prob = 1:10 / 11)

> knots3 <- quantile(x, prob = 1:50 / 51)

> M0 <- rbpspline(y, x, knots = knots1, degree = 3, penalty = 0)

> M1 <- rbpspline(y, x, knots = knots2, degree = 3, penalty = 0)

> M2 <- rbpspline(y, x, knots = knots3, degree = 3, penalty = 0)

> par(mfrow=c(1,3))

> plot(x, y, col = "lightgrey")

> rug(knots1)

> lines(M0)

> plot(x, y, col = "lightgrey")

> rug(knots2)

> lines(M1, col = 2)

> plot(x, y, col = "lightgrey")

> rug(knots3)

> lines(M2, col = 3)

Consequently, there is a pressing need for a kind of “automatic knot selection”. One common
strategy to overcome this issue is to resort to penalized splines or p-splines. The idea beyond this
is to consider a large number of knots but to constrain, in a sense to be defined, their influence.

To avoid overfitting, one wish to minimize the sum of square subject to some constraint on the
β parameter i.e.

minimize ||y −Xβ||2 subject to βTKβ ≤ C
for a judicious choice of C and a given matrix K. Annex A.1 gives further details for one possi-
ble choice of K. Using a Lagrange multiplier argument, this constraint optimization problem is
equivalent to choosing β to minimize

||y −Xβ||2 + λβTKβ (6.13)
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for some λ ≥ 0 called the smoothing parameter as it controls the amount of smoothing. Indeed, if
λ = 0, then problem (6.13) is left unconstrained and leads to wiggly fits, while λ being large implies
smoother fits. Figure 6.2 is a nice illustration of the impact of the smoothing parameter on the
smoothness of the fitted curve. It was generated using the following code

> M0 <- rbpspline(y, x, knots = knots3, degree = 3, penalty = 0)

> M1 <- rbpspline(y, x, knots = knots3, degree = 3, penalty = 0.1)

> M2 <- rbpspline(y, x, knots = knots3, degree = 3, penalty = 10)

> par(mfrow=c(1,3))

> plot(x, y, col = "lightgrey")

> lines(M0)

> plot(x, y, col = "lightgrey")

> lines(M1, col = 2)

> plot(x, y, col = "lightgrey")

> lines(M2, col = 3)

It can be shown that problem (6.13) has the solution

β̂λ = (XTX + λK)−1XTy (6.14)

and the corresponding fitted values for a penalized spline are given by

ŷ = X(XTX + λK)−1XTy (6.15)

In accordance with the hat matrix with linear models, one can define the smoother matrix Sλ
such that

ŷ = Sλy (6.16)

where Sλ = X(XTX + λK)−1XT . Consequently, a kind of effective degrees of freedom is given by
tr(Sλ).

If the problem of knot selection seems to be resolved by using these constrained least squares
minimisation, there is still some open questions: given our data and knots, what is the best value
for λ? Would it be possible to get an “automatic selection” for λ?

One common tool for answering these two questions is known as cross-validation (CV)

CV (λ) =

n∑
i=1

{yi − f̂−i(xi;λ)}2 (6.17)

where f̂−i corresponds to the semiparametric estimator applied to the data but with (xi, yi) omitted.
Intuitively, large values of CV (λ) corresponds to models that are wiggly and/or have a large variance
in the parameter estimates so that minimising CV (λ) is a nice option for an “automatic selection”
of λ.

Unfortunately, the computation of equation (6.17) directly is often too CPU demanding. How-
ever, it can be shown [Ruppert et al., 2003] that

CV (λ) =

n∑
i=1

(
yi − ŷi

1− Sλ,ii

)2

(6.18)

where Sλ,ii is the (i, i) element of Sλ. Clearly, equation (6.18) does a better job than equation (6.17)
as it only requires one fit to compute CV (λ).
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Figure 6.3: Cross-validation and generalized cross validation curves and corresponding fitted curves.

Sometimes, the weights 1 − Sλ,ii are replaced by the mean weight, tr(Id − Sλ)/n, where Id is
the identity matrix, leading to the generalized cross-validation (GCV) score

GCV (λ) = n2
n∑
i=1

(
yi − ŷi

tr(Id− Sλ)

)2

(6.19)

GCV has computational advantages over CV, and it has also computational advantages in term
of invariance [Wood, 2006].

Figure 6.3 plots the CV and GCV curves for the data plotted in Figure 6.2 and the corresponding
fitted p-spline. The selection of λ using CV or GCV yield approximately to the same smoothing
parameter value. These“best”λ values are in accordance with the values we held fixed in Figure 6.2.
The fitted curves using eigher CV or GCV lead to indistinguishable curves. The code used to
generate Figure 6.3 was

> par(mfrow=c(1,3))

> lambda.cv <- cv(y, x, knots = knots3, degree = 3)$penalty

> abline(v = lambda.cv, lty = 2)

> lambda.gcv <- gcv(y, x, knots = knots3, degree = 3)$penalty

> abline(v = lambda.gcv, lty = 2)

> cv.fit <- rbpspline(y, x, knots3, degree = 3, penalty = "cv")

> gcv.fit <- rbpspline(y, x, knots3, degree = 3, penalty = "gcv")

> plot(x, y, col = "lightgrey")

> lines(cv.fit, col = 2)

> lines(gcv.fit, col = 3)

6.2 Building Response Surfaces for the GEV Parameters

In the previous section, we introduced the notion of response surfaces and we show that they should
be used if one is interested in simultaneously fitting the GEV and the spatial dependence parameters
of a max-stable process. However, one may wonder how to build accurate response surfaces for the
GEV parameters. This is the aim of this section.

A first attempt could be to fit several max-stable models and identify the most promising ones
by using the techniques on model selection introduced in Chapter 5. Although it is a legitimate
approach, its use in practice is limited because the fitting procedure, due to the pairwise likelihood
estimator, is CPU prohibitive.

A more pragmatic strategy is to consider only these response surfaces while omitting temporally
the spatial dependence parameters. Although this strategy doesn’t take into account all the uncer-
tainties on the max-stable parameters, it should lead to accurate model selection as one expects the
spatial dependence parameters and the GEV response surface parameters to be nearly orthogonal.
The main asset of the latter approach is that fitting a (kind of) spatial GEV model to data is less
CPU consuming.

This spatial GEV model is defined as follows:

Z(x) ∼ GEV (µ(x), σ(x), ξ(x)) (6.20)
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where the GEV parameters are defined through the following equations

µ = Xµβµ, σ = Xσβσ, ξ = Xξβξ

where X· are design matrices and β· are parameters to be estimated.
The log-likelihood of the spatial GEV model is

`(β) =
n.site∑
i=1

n.obs∑
j=1

{
− log σi −

(
1 + ξi

zi,j − µi
σi

)−1/ξi

−
(

1 +
1

ξi

)
log

(
1 + ξi

zi,j − µi
σi

)}
(6.21)

where β = (βµ, βσ, βξ), µi, σi and ξi are the GEV parameters for the i-th site and zi,j is the j-th
obvservation for the i-th site.

From equation (6.21), we can see that independence between stations is assumed. For most
applications, this assumption is clearly incorrect and we require the use of the MLE asymptotic
distribution under misspecification to get standard error estimates:

(βµ, βσ, βξ)
·∼ N

(
ψ,H(β)−1J(β)H(β)−1

)
, n→ +∞ (6.22)

where H(β) = E[∇2`p(β; Y)] (the Hessian matrix) and J(β) = Var[∇`p(β; Y)].
In practice, the spatial GEV model is fitted to data through the fitspatgev function. The use

of this function is similar to fitmaxstab.
Lets start by simulating a max-stable process with unit Fréchet margins and transform it to

have a spatially structured GEV margins.

> n.site <- 20

> n.obs <- 50

> coord <- matrix(runif(2*n.site, 0, 10), ncol = 2)

> colnames(coord) <- c("lon", "lat")

> data <- rmaxstab(n.obs, coord, "gauss", cov11 = 100, cov12 = 25, cov22 = 220)

> param.loc <- -10 + 2 * coord[,2]

> param.scale <- 5 + 2 * coord[,1] + coord[,2]^2

> param.shape <- rep(0.2, n.site)

> for (i in 1:n.site)

+ data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i])

Now we define appropriate response surfaces for our spatial GEV model and fit two different
models.

> loc.form <- y ~ lat

> scale.form <- y ~ lon + I(lat^2)

> shape.form <- y ~ 1

> shape.form2 <- y ~ lon

> M1 <- fitspatgev(data, coord, loc.form, scale.form, shape.form)

> M2 <- fitspatgev(data, coord, loc.form, scale.form, shape.form2)

> M1

Model: Spatial GEV model

Deviance: 10539.99

TIC: 10647.06
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Location Parameters:

locCoeff1 locCoeff2

-10.92 1.87

Scale Parameters:

scaleCoeff1 scaleCoeff2 scaleCoeff3

5.5874 1.8485 0.8579

Shape Parameters:

shapeCoeff1

0.2579

Standard Errors

locCoeff1 locCoeff2 scaleCoeff1 scaleCoeff2 scaleCoeff3 shapeCoeff1

1.7216 0.8970 2.1847 0.2414 0.1291 0.1098

Asymptotic Variance Covariance

locCoeff1 locCoeff2 scaleCoeff1 scaleCoeff2 scaleCoeff3

locCoeff1 2.963756 0.925637 2.625197 -0.076452 0.115644

locCoeff2 0.925637 0.804575 1.153040 -0.066338 0.062434

scaleCoeff1 2.625197 1.153040 4.772983 -0.272605 0.199482

scaleCoeff2 -0.076452 -0.066338 -0.272605 0.058289 -0.001247

scaleCoeff3 0.115644 0.062434 0.199482 -0.001247 0.016677

shapeCoeff1 -0.057426 -0.018256 -0.047083 0.013160 -0.002727

shapeCoeff1

locCoeff1 -0.057426

locCoeff2 -0.018256

scaleCoeff1 -0.047083

scaleCoeff2 0.013160

scaleCoeff3 -0.002727

shapeCoeff1 0.012066

Optimization Information

Convergence: successful

Function Evaluations: 1673

The output of model M1 is very similar to the one of a fitted max-stable process except the
spatial dependence parameters are not present. As explained in Chapter 5, it is easy to perform
model selection by inspecting the following output:

> anova(M1, M2)

Eigenvalue(s): 0.86

Analysis of Variance Table

MDf Deviance Df Chisq Pr(> sum lambda Chisq)

M1 6 10540

M2 7 10539 1 0.551 0.4226

> TIC(M1, M2)
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M1 M2

10647.06 10648.58

From these two outputs, we can see that the p-value for the likelihood ratio test is around 0.72
which advocates the use of model M1. The TIC corroborates this conclusion.
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Conclusion
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A

P-splines with radial basis functions

A.1 Model definition

Let us recall that a general definition of a p-spline is given by

yi = β0 + β1xi +

q∑
j=1

bj(xi − κj) (A.1)

for some basis functions bj and knots κj .

As the purpose of this document is the modelling of spatial extremes, we benefit from using
radial basis functions. Radial basis functions depend only on the distance |xi − κj | so that a
generalisation to higher dimension, i.e. ||xi − κj ||, xi, κj ∈ Rd, is straightforward.

The model for p-spline with radial basis function of order p, p being odd, is

f(x) = β0 + β1x+ · · ·+ βm−1x
m−1 +

q∑
j=1

βm+j |x− κj |2m−1 (A.2)

where p = 2m− 1.

The fitting criterion is

minimize ||y −Xβ||2 + λ2m−1βTKβ (A.3)

where

X =

1 x1 · · · xm−1
1 |x1 − κ1|2m−1 · · · |x1 − κq|2m−1

...
...

. . .
...

...
. . .

...
1 xn · · · xm−1

n |xn − κ1|2m−1 · · · |xn − κq|2m−1


and K = KT

∗K∗ with

K∗ =



0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0

0 . . . 0 |κ1 − κ1|m−1/2 · · · |κ1 − κq|m−1/2

...
. . .

...
...

. . .
...

0 · · · 0 |κq − κ1|m−1/2 · · · |κq − κq|m−1/2


where the m first rows and columns of K∗ have zeros as elements.
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A.2 Fast computation of p-splines

Although this section is included in the p-splines with radial basis functions, the methodology
introduced here can be successfully applied to any other basis functions [Ruppert et al., 2003].

As we stated in Section 6.1.2, for a fixed smoothing parameter λ, the fitted values are given by

ŷ = X(XTX + λK)−1XTy

for some symmetric matrix K.
Consequently, to perform automatic selection for λ by minimising the CV or GCV criterion

might be computationally demanding and numerically unstable. Fortunately, the Demmler–Reinsch
orthogonalisation often overcomes these issues. The following lines describe how it works in practice.

1. Obtain the Cholesky decomposition of XTX i.e.

XTX = RTR

where R is a square matrix and invertible

2. Obtain the singular value decomposition of R−TKR−1 i.e.

R−TKR−1 = UΛUT

3. Define A← XR−1U and b← ATy

4. The fitted values are

ŷ = A
b

1 + λΛ

with corresponding degrees of freedom

df(λ) = 1T
1

1 + λΛ

Once the matrices A and Λ and the vector b have been computed, the fitted values ŷ and
df(λ) are obtained through a simple matrix multiplication. This is appealing as now the automatic
selection for λ will be cheaper.
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dimensions. Technical report, Ecole des Mines de Paris.

Gholam-Rezaee, M. (2009). Spatial extreme value: A composite likelihood. PhD thesis, École
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Index

covariance function
bessel, 7
cauchy, 7
elliptical, 9
powered exponential, 7
range, 7
smooth, 7
Whittle–Matérn, 7

cross-validation, 44
generalized, 45

degrees of freedom, 42, 44
design matrix, 41
distance

Euclidean, 7
Mahanalobis, 5

eigen-decomposition, 6
eigenvalues, 6
extremal coefficient, 19

function, 20

Fréchet
unit, 3

hat matrix, 42

information criterion
AIC, 34
TIC, 34

intensity measure, 3, 6

Jacobian, 40

Kullback–Leibler discrepancy, 29

least squares, 27, 41

likelihood ratio statistic, 35
linear model, 41

madogram, 21
F -madogram, 23
λ-madogram, 24

max-stable
process, 3
property, 4

misspecification, 28

p-splines, 43
pairwise-likelihood, 28
Poisson process, 3

rainfall-storm process, 3, 4

score equation, 31
smoother matrix, 44
smoothing parameter, 44
standard errors, 31

variogram, 19
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