
SIBERG User Manual

Pan Tong and Kevin R Coombes

December 20, 2018

Contents

1 Introduction 1

2 Using SIBER 1
2.1 A Quick Example . 1
2.2 Dealing With RNAseq Normalization . 2
2.3 Parallelizing SIBER . 3

3 Fitting Two-component Mixture Models 4

4 Session Info 5

1 Introduction

SIBERG (Systematic Identification of Bimodally ExpRessed Genes using RNAseq data) is an R package
that effectively identifies bimodally expressed genes from RNAseq data based on Bimodality Index. SIBER
models the RNAseq data in the finite mixture modeling framework and incorporates mechanisms for dealing
with RNAseq normalization. Three types of mixture models are implemented, namely, the mixture of log
normal, negative binomial or generalized poisson distribution. For completeness, we also add the normal
mixture model that has been used to identify bimodal genes from microarray data.

SIBER proceeds in two steps. The first step fits a two-component mixture model. The second step
calculates the Bimodality Index corresponding to the assumed mixture distribution. Four types of mixture
models are implemented: log normal (LN), Negative Binomial (NB), Generalized Poisson (GP) and normal
mixture (NL).

Besides identifying bimodally expressed genes, SIBER provides functionalities to fit 2-component mixture
distribution from LN, NB and GP models. A degenerate case where one component becomes a point mass
at zero (called 0-inflation) is also incorporated. The 0-inflated model is designed specificaly to deal with the
observed zero count in real RNAseq data.

2 Using SIBER

2.1 A Quick Example

Of course, we need to load the SIBER package.

> library(SIBERG)

1

Pan Tong 2

We simulate RNAseq count data from 1-component Negative Binomial distribution as below:

> set.seed(1000)

> N <- 100 # sample size

> G <- 200 # number of simulated genes

> # RNAseq count data simulated from NB model with mean 1000, dispersion=0.2

> Dat <- matrix(rnbinom(G*N, mu=1000, size=1/0.2), nrow=G)

We use the first gene for our illustration. We first fit the LN mixture model and calculate BI:

> SIBER(y=Dat[1,], model='LN')

mu1 mu2 sigma1 sigma2 pi1 delta BI

6.2581878 6.9015498 0.3641801 0.3641801 0.1032280 1.7666038 0.5375005

To apply the NB model:

> SIBER(y=Dat[1,], model='NB')

mu1 mu2 sigma1 sigma2 pi1 delta

881.7878094 1292.5535708 322.5813919 472.2132984 0.7129706 0.9452263

BI

0.4275971

To apply the GP model:

> SIBER(y=Dat[1,], model='GP')

mu1 mu2 sigma1 sigma2 pi1 delta

5.788304e+02 1.022990e+03 3.058969e+02 4.066634e+02 5.246266e-02 1.423620e+00

BI

3.174076e-01

For the NL model, we first transform the data such that it follows normal mixture distribution.

> SIBER(y=log(Dat[1,]+1), model='NL')

mu1 mu2 sigma1 sigma2 pi1 delta BI

6.2297063 6.8917722 0.3672838 0.3672838 0.1016360 1.8026005 0.5446901

Since the data is simulated from 1-component model, all of the calculated BIs are small indicating lack
of bimodality.

2.2 Dealing With RNAseq Normalization

Previously, only the raw RNAseq count data is passed to SIBER. It is easy to incorporate RNAseq normaliza-
tion in the mixture modeling. Currently, the RPKM [Mortazavi et al., 2008], TMM [Robinson et al., 2010b]
and RLE [Anders and Huber, 2010] methods have been widely used to normalize RNAseq data. Once the
normalization constant is estimated, i.e. using the edgeR package [Robinson et al., 2010a], we can easily
calculate the BI after adjusting for the normalization.

In the following, we use edgeR package to calculate the normalization factor using TMM approach.

Pan Tong 3

> if (require(edgeR)) {

TMM <- calcNormFactors(Dat, method='TMM')
} else {

manually set factors from previous computations

TMM <- c(1.0390711, 0.9813734, 1.0091593, 0.9641022, 1.0137000,

1.0188657, 0.9648757, 0.9956814, 0.9689530, 0.9774278,

1.0059115, 1.0076910, 0.9923854, 1.0121838, 1.0249094,

1.0403172, 0.9887074, 1.0003546, 0.9998479, 0.9844905,

1.0040203, 0.9692244, 0.9987567, 1.0063895, 0.9954510,

1.0204917, 0.9717720, 1.0317981, 0.9826344, 0.9817171,

0.9949059, 0.9745569, 0.9652138, 1.0075196, 0.9879748,

0.9929244, 0.9895606, 1.0144117, 1.0612923, 0.9626716,

1.0049376, 1.0192416, 0.9826612, 1.0234523, 0.9921186,

1.0029780, 1.0199930, 1.0054256, 1.0152748, 0.9655475,

0.9919175, 1.0231102, 0.9750882, 0.9958528, 1.0268000,

0.9651300, 1.0158949, 0.9803130, 1.0385707, 0.9870510,

1.0211765, 1.0326759, 1.0234579, 0.9524254, 0.9742719,

0.9887936, 1.0476640, 0.9787385, 0.9992178, 1.0046021,

0.9929379, 0.9595237, 1.0690364, 0.9910940, 1.0158325,

0.9799790, 1.0316363, 1.0341890, 1.0036944, 0.9728850,

1.0080238, 1.0190104, 0.9735436, 0.9744903, 0.9974915,

0.9804733, 1.0243671, 0.9881085, 0.9923432, 0.9638553,

1.0178705, 1.0476191, 1.0260725, 1.0474791, 1.0449745,

0.9987096, 1.0028339, 0.9971751, 0.9487246, 0.9696386)

}

We now incorporate the TMM normalization into SIBER. We use the LN model below. The calculation
with other models is similar. Note that our definition of the normalization factor differs from edgeR package.
In our notation, E[Cs] = dsµc(s) where Cs is the observed raw count for sample s, ds is the normalization
factor applied to sample s, c(s)={1, 2} denotes which of the two components sample s comes from and µ1, µ2

are mean parameters for the two components. Therefore, our definition of ds maps the true expression level
to the observed counts. In contrast, the normalization constant estimated by edgeR maps the observed
counts to the estimated true expression. As a result, we need to pass the reciprocal of the normalization
vector estimated by edgeR to SIBER.

> SIBER(y=Dat[1,], d=1/TMM, model='LN')

mu1 mu2 sigma1 sigma2 pi1 delta BI

6.2533386 6.9024425 0.3666528 0.3666528 0.1036901 1.7703504 0.5397056

2.3 Parallelizing SIBER

When there are many genes to be fitted, we can easily parallel SIBER to speed up the computation. There
are several ways for parallelization. Here we choose the foreach package for the backend. The workers are
requested and registered by the doSNOW package.

library(doParallel)

cl <- makeCluster(3, type = "SOCK")

registerDoParallel(cl)

Pan Tong 4

Note that the above command also works on Linux servers. However, it requests master nodes when run
within R. For good practice, we can use qsub such that the computation is done in the compute nodes.

Below we illustrate how to use SIBER with parallel computation.

func <- function(i) {

SIBER(y=Dat[i,], model='LN')
}

BIinfo_LN <- foreach(i=1:nrow(Dat),

.combine='rbind',

.packages='SIBER') %dopar% {

func(i)

}

3 Fitting Two-component Mixture Models

SIBER package provides functions to fit three types of mixture models besides detecting bimodally expressed
genes. These include: (1) 2-component mixture with equal dispersion or variance (E model); (2) 2-component
mixture with unequal dispersion or variance (V model); (3) 0-inflated model. All three types of distributions
are implemented.

The rule to fit 0-inflated model is that the observed percentage of count exceeds the user specified
threshold. This rule overrides the model argument (E or V) when observed percentae of zero count exceeds
the threshold.

First, we illustrate how to fit the E and V models. We use the simulated data from LN model. The
gene we use is not 0-inflated. By default, the minimum observed percentage of zero is not achieved (ze-
roPercentThr=0.2). Hence, the 0-inflated model is disabled. In this case, the model specification will be
effective.

> data(simDat)

> ind <- 1

> # true parameter generating the simulated data

> parList$LN[ind,]

mu1 mu2 sigma1 sigma2 pi1

5.0 9.0 1.0 1.0 0.1

> # fit by E model

> fitLN(y=dataList$LN[ind,], base=exp(1), eps=1, model='E')

mu1 mu2 sigma1 sigma2 pi1

4.6990876 9.1145635 0.9417622 0.9417622 0.1029831

logLik BIC

-2067.7614236 4156.7161167

> # fit by V model.

> fitLN(y=dataList$LN[ind,], base=exp(1), eps=1, model='V')

mu1 mu2 sigma1 sigma2 pi1

4.6373527 9.1072744 0.7071008 0.9650604 0.1000980

logLik BIC

-2066.6375398 4159.7666664

Pan Tong 5

>

Now we choose a gene that has zero inflation and illustrate how to fit a 0-inflated model:

> ind <- 5 # 0-inflated gene

> # true parameter generating the simulated data

> parList$LN[ind,]

mu1 mu2 sigma1 sigma2 pi1

0.0 4.0 1.0 1.0 0.3

> # fit by E model. 0-inflated model is disabled by setting zeroPercentThr=1.

> # the result is biased.

> fitLN(y=dataList$LN[ind,], base=exp(1), eps=1, model='E', zeroPercentThr=1)

mu1 mu2 sigma1 sigma2 pi1

0.05104833 4.01559275 0.78377975 0.78377975 0.30833327

logLik BIC

-914.36505926 1849.92338799

> # fit by 0-inflated model. 0-inflated model overrides the E model since percentage

> # of observed zero counts exceeds the threshold.

> fitLN(y=dataList$LN[ind,], base=exp(1), eps=1, model='E', zeroPercentThr=0.2)

mu1 mu2 sigma1 sigma2 pi1 logLik

0.0000000 3.9612703 0.0000000 0.9722536 0.3000000 -870.9626887

BIC

1757.8203295

>

Here we see that when there is severe 0-inflation, fitting a E (or V) model gives biased estimate. Instead,
our 0-inflated model works pretty well.

The usage of fitNB(), fitGP() is quite similar and is omitted in this manual.

4 Session Info

After all the computations, we close the connection to the workers.

stopCluster(cl)

> getwd()

[1] "/tmp/RtmpzOo0sq/Rbuild637304e6a05/SIBERG/vignettes"

> sessionInfo()

R version 3.5.2 RC (2018-12-17 r75858)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Debian GNU/Linux buster/sid

Pan Tong 6

Matrix products: default

BLAS: /srv/R/R-patched/build.18-12-18/lib/libRblas.so

LAPACK: /srv/R/R-patched/build.18-12-18/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] edgeR_3.24.2 limma_3.38.3 SIBERG_2.0.2

loaded via a namespace (and not attached):

[1] compiler_3.5.2 mclust_5.4.2 tools_3.5.2 Rcpp_1.0.0

[5] grid_3.5.2 locfit_1.5-9.1 lattice_0.20-38

References

Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data. Genome biol,
11(10):R106, 2010.

Ali Mortazavi, Brian A Williams, Kenneth McCue, Lorian Schaeffer, and Barbara Wold. Mapping and
quantifying mammalian transcriptomes by rna-seq. Nature methods, 5(7):621–628, 2008.

Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edger: a bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics, 26(1):139–140, 2010a.

Mark D Robinson, Alicia Oshlack, et al. A scaling normalization method for differential expression analysis
of rna-seq data. Genome Biol, 11(3):R25, 2010b.

	Introduction
	Using SIBER
	A Quick Example
	Dealing With RNAseq Normalization
	Parallelizing SIBER

	Fitting Two-component Mixture Models
	Session Info

