
smfsb - Stochastic Modelling for Systems Biology,

second edition

Darren Wilkinson

May 28, 2018

1 Overview

The smfsb package provides all of the R code associated with the book, Wilkin-
son (2011). The book should therefore be regarded as the main source of docu-
mentation regarding the code. However, there should be sufficient documenta-
tion here in order to get started with using the software. In particular, owners
of Wilkinson (2006) should find it relatively straightforward to get to grips with
this new R package. Note that most of this code is intended primarily to be
pedagogic. It is not intended to be especially efficient or robust, and therefore
is not recommended for ”production environments”. Almost all of the code is
pure R code, intended to be inspected from the R command line. In order to
keep the code short, clean and easily understood, there is almost no argument
checking or other boilerplate code. This is not a bug, so please don’t report it as
such. Much of the code is computationally intensive, and would be speeded up
by porting to C. Again, I haven’t done this in order to keep the code as simple
and easy to understand as possible.

See the web home page for Wilkinson (2011) for further details:
http://www.staff.ncl.ac.uk/d.j.wilkinson/smfsb/2e/

2 Installation

It is hoped that by the time the book is in print, the package will be available
from CRAN, and it should therefore be possible to install using

install.packages("smfsb")

from any machine with an internet connection.
The package is being maintained on R-Forge, and so it should always be

possible to install the very latest nightly build from the R command prompt
with

install.packages("smfsb",repos="http://r-forge.r-project.org")

Once installed, the package can be loaded ready for use with

library(smfsb)

1

3 Accessing documentation

I have tried to ensure that the package and all associated functions and datasets
are properly documented with runnable examples. So,

help(package="smfsb")

will give a brief overview of the package and a complete list of all functions. The
list of vignettes associated with the package can be obtained with

vignette(package="smfsb")

At the time of writing, this vignette is the only one available, and can be accessed
from the R command line with

vignette("smfsb",package="smfsb")

Help on functions can be obtained using the usual R mechanisms. For example,
help on the function StepGillespie can be obtained with

?StepGillespie

and the associated example can be run with

example(StepGillespie)

A list of demos associated with the package can be obtained with

demo(package="smfsb")

A list of data sets associated with the package can be obtained with

data(package="smfsb")

For example, the small table, mytable from the introduction to R in Chapter 4
can by loaded with

data(mytable)

After running this command, the data frame mytable will be accessible, and
can be examined by typing

mytable

at the R command prompt.

4 Simulation of stochastic kinetic models

The main purpose of this package is to provide a collection of tools for building
and simulating stochastic kinetic models. This can be illustrated using a simple
Lotka–Volterra predator–prey system. First, consider the prey, X1 and the
predator X2 as a stochastic network as

X1 −→ 2X1

X1 +X2 −→ 2X2

X2 −→ ∅.

2

The first “reaction” represents predator reproduction, the second predator–prey
interaction and the third predator death. We can write this in tabular form as

Pre Post Hazard
1 0 2 0 θ1x1
1 1 0 2 θ2x1x2
0 1 0 0 θ3x2

This can be encoded in R as a stochastic Petri net (SPN) using

SPN for the Lotka-Volterra system

LV=list()

LV$Pre=matrix(c(1,0,1,1,0,1),ncol=2,byrow=TRUE)

LV$Post=matrix(c(2,0,0,2,0,0),ncol=2,byrow=TRUE)

LV$h=function(x,t,th=c(th1=1,th2=0.005,th3=0.6))

{

with(as.list(c(x,th)),{

return(c(th1*x1, th2*x1*x2, th3*x2))

})

}

which could be created directly by executing

data(spnModels)

Functions for simulating from the transition kernel of the Markov process defined
by the SPN can be created easily by passing the SPN object into the appropriate
constructor. For example, if simulation using the Gillespie algorithm is required,
a simulation function can be created with

stepLV=StepGillespie(LV)

This function can then be used to advance the state of the process. For example,
to simulate the state of the process at time 1, given an initial condition of
X1 = 50, X2 = 100 at time 0, use

stepLV(c(x1=50,x2=100),0,1)

Alternatively, to simulate a realisation of the process on a regular time grid over
the interval [0, 100] in steps of 0.1 time units, use

out = simTs(c(x1=50,x2=100),0,100,0.1,stepLV)

This returns an R time series object which can be plotted directly. See the help
and runnable example for the function StepGillespie for further details.

5 Inference for stochastic kinetic models from
time course data

Estimating the parameters of stochastic kinetic models using noisy time course
measurements on some aspect of the system state is a very important prob-
lem. Wilkinson (2011) takes a Bayesian approach to the problem, using particle
MCMC methodology. For this, a key aspect is the use of a particle filter to com-
pute an unbiased estimate of marginal likelihood. This is accomplished using

3

the function pfMLLik. Once a method is available for generating unbiased esti-
mates for the marginal likelihood, this may be embedded into a fairly standard
marginal Metropolis–Hastings algorithm for parameter estimation. See the help
and runnable example for pfMLLik for further details, along with the particle
MCMC demo, which can by run using demo(PMCMC).

6 References

Wilkinson, D. J. (2006) Stochastic Modelling for Systems Biology, Chapman &
Hall/CRC Press.

Wilkinson, D. J. (2011) Stochastic Modelling for Systems Biology, second edi-
tion, Chapman & Hall/CRC Press.

4

