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Abstract. The package High-dimensional Metrics (hdm) is an evolving collection of statistical meth-

ods for estimation and quantification of uncertainty in high-dimensional approximately sparse mod-

els. It focuses on providing confidence intervals and significance testing for (possibly many) low-

dimensional subcomponents of the high-dimensional parameter vector. Efficient estimators and uni-

formly valid confidence intervals for regression coefficients on target variables (e.g., treatment or

policy variable) in a high-dimensional approximately sparse regression model, for average treatment

effect (ATE) and average treatment effect for the treated (ATET), as well for extensions of these pa-

rameters to the endogenous setting are provided. Theory grounded, data-driven methods for selecting

the penalization parameter in Lasso regressions under heteroscedastic and non-Gaussian errors are

implemented. Moreover, joint/ simultaneous confidence intervals for regression coefficients of a high-

dimensional sparse regression are implemented, including a joint significance test for Lasso regression.

Data sets which have been used in the literature and might be useful for classroom demonstration

and for testing new estimators are included. R and the package hdm are open-source software projects

and can be freely downloaded from CRAN: http://cran.r-project.org.
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1. Introduction

Analysis of high-dimensional models, models in which the number of parameters to be estimated is

large relative to the sample size, is becoming increasingly important. Such models arise naturally in

modern data sets which have many measured characteristics available per individual observation as in,

for example, population census data, scanner data, and text data. Such models also arise naturally even

in data with a small number of measured characteristics in situations where the exact functional form

with which the observed variables enter the model is unknown and we create many technical variables,

a dictionary, from the raw characteristics. Examples covered by this scenario include semiparametric

models with nonparametric nuisance functions. More generally, models with many parameters relative

to the sample size often arise when attempting to model complex phenomena.

With increasing availability of such data sets in economics and other data science fields, new methods

for analyzing those data have been developed. The R package hdm contains implementations of recently

developed methods for high-dimensional approximately sparse models, mainly relying on forms of lasso

and post-lasso as well as related estimation and inference methods. The methods are illustrated with

econometric applications, but are also useful in other disciplines such as medicine, biology, sociology

or psychology.

The methods which are implemented in this package are distinct from already available methods in

other packages in the following four major ways:

1) First, we provide a version of Lasso regression that expressly handles and allows for non-

Gaussian and heteroscedastic errors.

2) Second, we implement a theoretically grounded, data-driven choice of the penalty level λ in the

Lasso regressions. To underscore this choice, we call the Lasso implementation in this package

“rigorous”Lasso (=rlasso). The prefix r in function names should underscore this. In high-

dimensional settings cross-validation is very popular; but it lacks a theoretical justification for
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use in the present context and some theoretical proposals for the choice of λ are often not

feasible.

3) Third, we provide efficient estimators and uniformly valid confidence intervals for various

low-dimensional causal/structural parameters appearing in high-dimensional approximately

sparse models. For example, we provide efficient estimators and uniformly valid confidence

intervals for a regression coefficient on a target variable (e.g., a treatment or policy variable)

in a high-dimensional sparse regression model. Target variable in this context means the

object not interest, e.g. a prespecified regression coefficient. We also provide estimates and

confidence intervals for average treatment effect (ATE) and average treatment effect for the

treated (ATET), as well extensions of these parameters to the endogenous setting.

4) Fourth, joint/ simultaneous confidence intervals for estimated coefficients in a high-dimensional

approximately sparse models are provided, based on the methods and theory developed in

Belloni, Chernozhukov, and Kato (2014). They proposed uniformly valid confidence regions

for regressions coefficients in a high-dimensional sparse Z-estimation problems, which include

median, mean, and many other regression problems as special cases. In this article we apply

this method to the coefficients of a Lasso regression and highlight this method with an empirical

example.

2. How to get started

R is an open source software project and can be freely downloaded from the CRAN website along with

its associated documentation. The R package hdm can be downloaded from cran.r-project.org. To

install the hdm package from R we simply type,

install.packages("hdm")

The most current version of the package (development version) is maintained at R-Forge and can

installed by

install.packages("hdm", repos = "http://R-Forge.R-project.org")

Provided that your machine has a proper internet connection and you have write permission in the

appropriate system directories, the installation of the package should proceed automatically. Once the

hdm package is installed, it can be loaded to the current R session by the command,

library(hdm)

Online help is available in two ways. For example, you can type:

help(package = "hdm")

help(rlasso)

The former command gives an overview over the available commands in the package, and the latter

gives detailed information about a specific command.

More generally one can initiate a web-browser help session with the command,
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help.start()

and navigate as desired. The browser approach is better adapted to exploratory inquiries, while the

command line approach is better suited to confirmatory ones.

A valuable feature of R help files is that the examples used to illustrate commands are executable, so

they can be pasted into an R session or run as a group with a command like,

example(rlasso)

3. Prediction using Approximate Sparsity

3.1. Prediction in Linear Models using Approximate Sparsity. Consider high dimensional

approximately sparse linear regression models. These models have a large number of regressors p,

possibly much larger than the sample size n, but only a relatively small number s = o(n) of these

regressors are important for capturing accurately the main features of the regression function. The

latter assumption makes it possible to estimate these models effectively by searching for approximately

the right set of regressors.

The model reads

yi = x′iβ0 + εi, E[εixi] = 0, β0 ∈ Rp, i = 1, . . . , n

where yi are observations of the response variable, xi = (xi,j , . . . , xi,p)’s are observations of p−dimensional

regressors, and εi’s are centered disturbances, where possibly p� n. Assume that the data sequence

is i.i.d. for the sake of exposition, although the framework covered is considerably more general. An

important point is that the errors εi may be non-Gaussian or heteroskedastic (Belloni, Chen, Cher-

nozhukov, and Hansen, 2012).

The model can be exactly sparse, namely

‖β0‖0 ≤ s = o(n),

or approximately sparse, namely that the values of coefficients, sorted in decreasing order, (|β0|(j))pj=1

obey,

|β0|(j) ≤ Aj−a(β0), a(β0) > 1/2, j = 1, ..., p.

An approximately sparse model can be well-approximated by an exactly sparse model with sparsity

index

s ∝ n1/(2a(β0)).

In order to get theoretically justified performance guarantees, we consider the Lasso estimator with

data-driven penalty loadings:

β̂ = arg min
β∈Rp

En[(yi − x′iβ)2] +
λ

n
||Ψ̂β||1

where ||β||1 =
∑p
j=1 |βj |, Ψ̂ = diag(ψ̂1, . . . , ψ̂p) is a diagonal matrix consisting of penalty loadings, and

En abbreviates the empirical average. The penalty loadings are chosen to insure basic equivariance of

coefficient estimates to rescaling of xi,j and can also be chosen to address heteroskedasticity in model

errors. We discuss the choice of λ and Ψ̂ below.

Regularization by the `1-norm naturally helps the Lasso estimator to avoid overfitting, but it also

shrinks the fitted coefficients towards zero, causing a potentially significant bias. In order to remove
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some of this bias, consider the Post-Lasso estimator that applies ordinary least squares to the model

T̂ selected by Lasso, formally,

T̂ = support(β̂) = {j ∈ {1, . . . , p} : |β̂| > 0}.

The Post-Lasso estimate is then defined as

β̃ ∈ arg min
β∈Rp

En

yi − p∑
j=1

xi,jβj

2

: βj = 0 if β̂j = 0, ∀j.

In words, the estimator is ordinary least squares applied to the data after removing the regressors that

were not selected by Lasso. The Post-Lasso estimator was introduced and analysed in Belloni and

Chernozhukov (2013).

A crucial matter is the choice of the penalization parameter λ. With the right choice of the penalty

level, Lasso and Post-Lasso estimators possess excellent performance guarantees: They both achieve

the near-oracle rate for estimating the regression function, namely with probability 1− γ − o(1),√
En[(x′i(β̂ − β0))2] .

√
(s/n) log p.

In high-dimensions setting, cross-validation is very popular in practice but lacks theoretical justification

and so may not provide such a performance guarantee. In sharp contrast, the choice of the penalization

parameter λ in the Lasso and Post-Lasso methods in this package is theoretical grounded and feasible.

Therefore we call the resulting method the “rigorous”Lasso method and hence add a prefix r to the

function names.

In the case of homoscedasticity, we set the penalty loadings ψ̂j =
√

Enx2i,j , which insures basic equiv-

ariance properties. There are two choices for penalty level λ: the X-independent choice and X-

dependent choice. In the X-independent choice we set the penalty level to

λ = 2c
√
nσ̂Φ−1(1− γ/(2p)),

where Φ denotes the cumulative standard normal distribution, σ̂ is a preliminary estimate of σ =
√
Eε2,

and c is a theoretical constant, which is set to c = 1.1 by default for the Post-Lasso method and c = .5

for the Lasso method, and γ is the probability level, which is set to γ = .1 by default. The parameter

γ can be interpreted as the probability of mistakenly not removing X’s when all of them have zero

coefficients. In the X-dependent case the penalty level is calculated as

λ = 2cσ̂Λ(1− γ|X),

where

Λ(1− γ|X) = (1− γ)− quantile of n||En[xiei]||∞|X,

where X = [x1, . . . , xn]′ and ei are iid N(0, 1), generated independently from X; this quantity is

approximated by simulation. The X-independent penalty is more conservative than the X-dependent

penalty. In particular the X-dependent penalty automatically adapts to highly correlated designs,

using less aggressive penalization in this case Belloni, Chernozhukov, and Hansen (2010).

In the case of heteroskedasticity, the loadings are set to ψ̂j =
√

En[x2ij ε̂
2
i ], where ε̂i are preliminary

estimates of the errors. The penalty level can be X-independent (Belloni, Chen, Chernozhukov, and
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Hansen, 2012):

λ = 2c
√
nΦ−1(1− γ/(2p)),

or it can be X-dependent and estimated by a multiplier bootstrap procedure (Chernozhukov, Chetverikov,

and Kato, 2013):

λ = c× cW (1− γ),

where cW (1− γ) is the 1− γ-quantile of the random variable W , conditional on the data, where

W := n max
1≤j≤p

|2En[xij ε̂iei]|,

where ei are iid standard normal variables distributed independently from the data, and ε̂i denotes an

estimate of the residuals.

Estimation proceeds by iteration. The estimates of residuals ε̂i are initialized by running least squares

of yi on five regressors that are most correlated to yi. This implies conservative starting values for

λ and the penalty loadings, and leads to the initial Lasso and Post-Lasso estimates, which are then

further updated by iteration. The resulting iterative procedure is fully justified in the theoretical

literature.

3.2. A Joint Significance Test for Lasso Regression. A basic question frequently arising in

empirical work is whether the Lasso regression has explanatory power, comparable to a F-test for the

classical linear regression model. The construction of a joint significance test follows (Chernozhukov,

Chetverikov, and Kato, 2013) (Appendix M), and can be described as:

Based on the model yi = a0 +x′ib0 + εi, the null hypothesis of joint statistical in-significance is b0 = 0.

The alternative is that of the joint statistical significance: b0 6= 0. The null hypothesis implies that

E [(yi − a0)xi] = 0,

and restriction can be tested using the sup-score statistic:

S = ‖
√
nEn [(yi − â0)xi] ‖∞,

where âi = En[yi]. The critical value for this statistic can be approximated by the multiplier bootstrap

procedure, which simulates the statistic:

S∗ = ‖
√
nEn [(yi − â0)xigi] ‖∞,

where gi’s are iid N(0, 1), conditional on the data. The (1 − α)-quantile of S∗ serves as the critical

value, c(1 − α). We reject the null if S > c(1 − α) in favor of statistical significant, and we keep the

null of non-significance otherwise. This test procedure is implemented in the package when calling the

summary-method of rlasso-objects.
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R implementation. The function rlasso implements Lasso and post-Lasso, where the prefix “r”

signifies that these are theoretically rigorous versions of Lasso and post-Lasso. The default option

is post-Lasso, post=TRUE. This function returns an object of S3 class rlasso for which methods like

predict, print, summary are provided.

lassoShooting.fit is the computational algorithm that underlies the estimation procedure, which

implements a version of the Shooting Lasso Algorithm (Fu, 1998). The user has several options for

choosing the non-default options. Specifically, the user can decide if an unpenalized intercept should

be included (TRUE by default). The option penalty of the function rlasso allows different choices for

the penalization parameter and loadings. It allows for homoskedastic or heteroskedastic errors with

default homoscedastic = FALSE. Moreover, the dependence structure of the design matrix might be

taken into consideration for calculation of the penalization parameter with X.dependent.lambda =

TRUE. In combination with these options, the option lambda.start allows the user to set a starting

value for λ for the different algorithms. Moreover, the user can provide her own fixed value for the

penalty level – instead of the data-driven methods discussed above – by setting homoscedastic =

"none" and supplying the value via lambda.start.

The constants c and γ from above can be set in the option penalty. The quantities ε̂, Ψ̂, σ̂ are

calculated in a iterative manner. The maximum number of iterations and the tolerance when the

algorithms should stop can be set with control.

The method summary of rlasso-objects displays additionally for model diagnosis the R2 value, the

adjusted R2 with degrees of freedom equal to the number of selected parameters, and the sup-score

statistic for joint significance – described above – with corresponding p-value.

Example. (Prediction Using Lasso and Post-Lasso) Consider generated data from a sparse linear

model:

set.seed(12345)

n = 100 #sample size

p = 100 # number of variables

s = 3 # nubmer of variables with non-zero coefficients

X = matrix(rnorm(n * p), ncol = p)

beta = c(rep(5, s), rep(0, p - s))

Y = X %*% beta + rnorm(n)

Next we estimate the model, print the results, and make in-sample and out-of sample predictions. We

can use methods print and summarize to print the results, where the option all can be set to FALSE

to limit the print only to the non-zero coefficients.

lasso.reg = rlasso(Y ~ X, post = FALSE) # use lasso, not-Post-lasso

# lasso.reg = rlasso(X, Y, post=FALSE)

sum.lasso <- summary(lasso.reg, all = FALSE) # can also do print(lasso.reg, all=FALSE)

##

## Call:

## rlasso.formula(formula = Y ~ X, post = FALSE)

##
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## Post-Lasso Estimation: FALSE

##

## Total number of variables: 100

## Number of selected variables: 3

##

## Residuals:

## Min 1Q Median 3Q Max

## -4.64751 -0.96395 0.03107 0.82387 3.76062

##

## Estimate

## (Intercept) 0.190

## 1 4.274

## 2 4.041

## 3 4.080

##

## Residual standard error: 1.575

## Multiple R-squared: 0.9665

## Adjusted R-squared: 0.9655

## Joint significance test:

## the sup score statistic for joint significance test is 64.02 with a p-value of 0

yhat.lasso = predict(lasso.reg) #in-sample prediction

Xnew = matrix(rnorm(n * p), ncol = p) # new X

Ynew = Xnew %*% beta + rnorm(n) #new Y

yhat.lasso.new = predict(lasso.reg, newdata = Xnew) #out-of-sample prediction

post.lasso.reg = rlasso(Y ~ X, post = TRUE) #now use post-lasso

print(post.lasso.reg, all = FALSE) # or use summary(post.lasso.reg, all=FALSE)

##

## Call:

## rlasso.formula(formula = Y ~ X, post = TRUE)

##

## (Intercept) 1 2 3

## 0.0341 4.9241 4.8579 4.9644

yhat.postlasso = predict(post.lasso.reg) #in-sample prediction

yhat.postlasso.new = predict(post.lasso.reg, newdata = Xnew) #out-of-sample prediction

MAE <- apply(cbind(abs(Ynew - yhat.lasso.new), abs(Ynew - yhat.postlasso.new)), 2,

mean)

names(MAE) <- c("lasso MAE", "Post-lasso MAE")

print(MAE, digits = 2) # MAE for Lasso and Post-Lasso

## lasso MAE Post-lasso MAE
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## 1.53 0.79

In the example above the sup-score statistic for overall significance is 64.02 with a pvalue of 0. This

means that the null hypothesis is rejected on level α = 0.05 and the model seems to have explanatory

power.

4. Inference on Target Regression Coefficients

Here we consider inference on the target coefficient α in the model:

yi = diα0 + x′iβ0 + εi, Eεi(x′i, d′i)′ = 0.

Here di is a target regressor such as treatment, policy or other variable whose regression coefficient α0

we would like to learn (Belloni, Chernozhukov, and Hansen, 2014). If we are interested in coefficients

of several or even many variables, we can simply write the model in the above form treating each

variable of interest as di in turn and then applying the estimation and inference procedures described

below.

We assume approximate sparsity for x′iβ0 with sufficient speed of decay of the sorted components of

β0, namely a(β0) > 1. This condition translates into having a sparsity index s�
√
n. In general di is

correlated to xi, so α0 cannot be consistently estimated by the regression of yi on di. To keep track of

the relationship of di to xi, write

di = x′iπ
d
0 + ρdi , Eρdi xi = 0.

To estimate α0, we also impose approximate sparsity on the regression function x′iπ
d
0 with sufficient

speed of decay of sorted components of πd0 , namely a(πd0) > 1.

The Orthogonality Principle. Note that we can not use naive estimates of α0 based simply on

applying Lasso and Post-Lasso to the first equation. Such a strategy in general does not produce

root-n consistent and asymptotically normal estimators of α, due to the possibility of large omitted

variable bias resulting from estimating the nuisance function x′iβ0 in high-dimensional setting. In

order to overcome the omitted variable bias, we need to use orthogonalized estimating equations for

α0. Specifically we seek to find a score ψ(wi, α, η), where wi = (yi, x
′
i)
′ and η is the nuisance parameter,

such that

Eψ(wi, α0, η0) = 0,
∂

∂η
Eψ(wi, α0, η0) = 0.

The second equation is the orthogonality condition, which states that the equations are not sensitive

to the first-order perturbations of the nuisance parameter η near the true value. The latter property

allows estimation of these nuisance parameters η0 by regularized estimators η̂, where regularization is

done via penalization or selection. Without this property, regularization may have too much effect on

the estimator of α0 for regular inference to proceed.

The estimators α̂ of α0 solve the empirical analog of the equation above,

Enψ(wi, α̂, η̂) = 0,

where we have plugged in the estimator η̂ for the nuisance parameter. Due to the orthogonality

property the estimator is first-order equivalent to the infeasible estimator α̃ solving

Enψ(wi, α̃, η0) = 0,
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where we use the true value of the nuisance parameter. The equivalence holds in a variety of models

under plausible conditions. The systematic development of the orthogonality condition for inference on

low-dimensional parameters in modern high-dimensional settings is given in Chernozhukov, Hansen,

and Spindler (2015a).

In turns out that in the linear model the orthogonal equations are closely connected to the classical

ideas of partialling out.

4.1. Intuition for the Orthogonality Principle in Linear Models via Partialling Out. One

way to think about estimation of α0 is to think of the regression model:

ρyi = α0ρ
d
i + εi,

where ρyi is the residual that is left after partialling out the linear effect of xi from yi and ρdi is the

residual that is left after partialling out the linear effect of xi from di, both done in the population.

Note that we have Eρyi xi = 0, i.e. ρyi = yi−x′iπ
y
0 where x′iπ

y
0 is the linear projection of yi on xi. After

partialling out, α0 is the population regression coefficient in the univariate regression of ρyi on ρdi . This

is the Frisch-Waugh-Lovell theorem. Thus, α = α0 solves the population equation:

E(ρyi − αρ
d
i )ρ

d
i = 0.

The score associated to this equation is:

ψ(wi, α, η) = (yi − x′iπy)− α(di − x′iπd))(di − x′iπd), η = (πy
′
, πd

′
)′,

ψ(wi, α0, η0) = (ρyi − αρ
d
i )ρ

d
i , η0 = (πy

′

0 , π
d′

0 ).

It is straightforward to check that this score obeys the orthogonality principle; moreover, this score is

the semi-parametrically efficient score for estimating the regression coefficient α0.

In low-dimensional settings, the empirical version of the partialling out approach is simply another

way to do the least squares. Let’s verify this in an example. First, we generate some data

set.seed(1)

n = 5000

p = 20

X = matrix(rnorm(n * p), ncol = p)

colnames(X) = c("d", paste("x", 1:19, sep = ""))

xnames = colnames(X)[-1]

beta = rep(1, 20)

y = X %*% beta + rnorm(n)

dat = data.frame(y = y, X)

We can estimate α0 by running full least squares:

# full fit

fmla = as.formula(paste("y ~ ", paste(colnames(X), collapse = "+")))

full.fit = lm(fmla, data = dat)

summary(full.fit)$coef["d", 1:2]
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## Estimate Std. Error

## 0.97807455 0.01371225

Another way to estimate α0 is to first partial out the x-variables from yi and di, and run least squares

on the residuals:

fmla.y = as.formula(paste("y ~ ", paste(xnames, collapse = "+")))

fmla.d = as.formula(paste("d ~ ", paste(xnames, collapse = "+")))

# partial fit via ols

rY = lm(fmla.y, data = dat)$res

rD = lm(fmla.d, data = dat)$res

partial.fit.ls = lm(rY ~ rD)

summary(partial.fit.ls)$coef["rD", 1:2]

## Estimate Std. Error

## 0.97807455 0.01368616

One can see that the estimates are identical, while standard errors are nearly identical. In fact, the

standard errors are asymptotically equivalent due to the orthogonality property of the estimating

equations associated with the partialling out approach.

In high-dimensional settings, we can no longer rely on the full least-squares and instead may rely on

Lasso or Post-Lasso for partialling out. This amounts to using orthogonal estimating equations, where

we estimate the nuisance parameters by Lasso or Post-Lasso. Let’s try this in the above example,

using Post-Lasso for partialling out:

# partial fit via post-lasso

rY = rlasso(fmla.y, data = dat)$res

rD = rlasso(fmla.d, data = dat)$res

partial.fit.postlasso = lm(rY ~ rD)

summary(partial.fit.postlasso)$coef["rD", 1:2]

## Estimate Std. Error

## 0.97273870 0.01368677

We see that this estimate and standard errors are nearly identical to the previous estimates given

above. In fact they are asymptotically equivalent to the previous estimates in the low-dimensional

settings, with the advantage that, unlike the previous estimates, they will continue to be valid in the

high-dimensional settings.

The orthogonal estimating equations method – based on partialling out via Lasso or post-Lasso – is

implemented by the function rlassoEffect, using method= "partialling out":

Eff = rlassoEffect(X[, -1], y, X[, 1], method = "partialling out")

summary(Eff)$coef[, 1:2]

## Estimate. Std. Error

## 0.97273870 0.01368677
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Another orthogonal estimating equations method – based on the double selection of covariates – is im-

plemented by the the function rlassoEffect, using method= "double selection". Algorithmically

the method is as follows:

(1) Select controls xij ’s that predict yi by Lasso.

(2) Select controls xij ’s that predict di by Lasso.

(3) Run OLS of yi on di and the union of controls selected in steps 1 and 2.

Eff = rlassoEffect(X[, -1], y, X[, 1], method = "double selection")

summary(Eff)$coef[, 1:2]

## Estimate. Std. Error

## 0.97807455 0.01415624

4.2. Inference: Confidence Intervals and Significance Testing. The function rlassoEffects

does inference – namely construction of confidence intervals and significance testing – for target vari-

ables. Those can be specified either by the variable names, an integer valued vector giving their

position in x or by a logical vector indicating the variables for which inference should be conducted.

It returns an object of S3 class rlassoEffects for which the methods summary, print, confint, and

plot are provided. rlassoEffects is a wrap function for the function rlassoEffect which does

inference for a single target regressor. The theoretical underpinning is given in Belloni, Chernozhukov,

and Hansen (2014) and for a more general class of models in Belloni, Chernozhukov, and Kato (2014).

The function rlassoEffects might either be used in the form rlassoEffects(x, y, index) where

x is a matrix, y denotes the outcome variable and index specifies the variables of x for which inference

is conducted. This can done by an integer vector (postion of the variables), a logical vector or the

name of the variables. An alternative usage is as rlassoEffects(formula, data, I) where I is a

one-sided formula which specifies the variables for which is inference is conducted. For further details

we refer to the help page of the function and the following examples where both methods for usage

are shown.

Here is an example of the use.

set.seed(1)

n = 100 #sample size

p = 100 # number of variables

s = 3 # nubmer of non-zero variables

X = matrix(rnorm(n * p), ncol = p)

colnames(X) <- paste("X", 1:p, sep = "")

beta = c(rep(3, s), rep(0, p - s))

y = 1 + X %*% beta + rnorm(n)

data = data.frame(cbind(y, X))

colnames(data)[1] <- "y"

fm = paste("y ~", paste(colnames(X), collapse = "+"))

fm = as.formula(fm)

We can do inference on a set of variables of interest, e.g. the first, second, third, and the fiftieth:
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# lasso.effect = rlassoEffects(X, y, index=c(1,2,3,50))

lasso.effect = rlassoEffects(fm, I = ~X1 + X2 + X3 + X50, data = data)

print(lasso.effect)

##

## Call:

## rlassoEffects.formula(formula = fm, data = data, I = ~X1 + X2 +

## X3 + X50)

##

## Coefficients:

## X1 X10 X11 X12 X13 X14

## 2.94448 -0.03038 0.10862 -0.01007 0.02001 0.09558

## X15 X16 X17 X18 X19 X100

## -0.01426 -0.10897 -0.04645 -0.06300 -0.10824 0.03385

summary(lasso.effect)

## [1] "Estimates and significance testing of the effect of target variables"

## Estimate. Std. Error t value Pr(>|t|)

## X1 2.94448 0.08815 33.404 <2e-16 ***

## X10 -0.03038 0.07485 -0.406 0.685

## X11 0.10862 0.07595 1.430 0.153

## X12 -0.01007 0.08012 -0.126 0.900

## X13 0.02001 0.07325 0.273 0.785

## X14 0.09558 0.09106 1.050 0.294

## X15 -0.01426 0.07608 -0.187 0.851

## X16 -0.10897 0.07383 -1.476 0.140

## X17 -0.04645 0.07942 -0.585 0.559

## X18 -0.06300 0.06676 -0.944 0.345

## X19 -0.10824 0.07372 -1.468 0.142

## X100 0.03385 0.08973 0.377 0.706

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

confint(lasso.effect)

## 2.5 % 97.5 %

## X1 2.77171308 3.11724213

## X10 -0.17709146 0.11632283

## X11 -0.04024408 0.25748432

## X12 -0.16709410 0.14695616

## X13 -0.12356150 0.16358294

## X14 -0.08288835 0.27404185

## X15 -0.16338572 0.13485904
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## X16 -0.25367299 0.03574284

## X17 -0.20209814 0.10920353

## X18 -0.19384187 0.06784675

## X19 -0.25273372 0.03624496

## X100 -0.14201026 0.20971450

The two methods are first-order equivalent in both low-dimensional and high-dimensional settings

under regularity conditions. Not surprisingly we see that in the numerical example of this section, the

estimates and standard errors produced by the two methods are very close to each other.

It is also possible to estimate joint confidence intervals. The method relies on a multiplier bootstrap

method as described in Belloni, Chernozhukov, and Kato (2014). Joint confidence intervals can be

invoked by setting the option joint to TRUE in the method confint for objects of class rlassoEffects.

We will also demonstrate the application of joint confidence intervals in an empirical application in

the next section.

confint(lasso.effect, level = 0.95, joint = TRUE)

## 2.5 % 97.5 %

## X1 2.6852859 3.2036693

## X10 -0.2742900 0.2135214

## X11 -0.1138438 0.3310841

## X12 -0.2681175 0.2479796

## X13 -0.2112551 0.2512766

## X14 -0.1773748 0.3685283

## X15 -0.2396332 0.2111065

## X16 -0.3458083 0.1278782

## X17 -0.2985994 0.2057048

## X18 -0.2414498 0.1154547

## X19 -0.3382716 0.1217828

## X100 -0.2464246 0.3141289

Finally, we can also plot the estimated effects with their confidence intervals:

plot(lasso.effect, main = "Confidence Intervals")

For logistic regression we provide the functions rlassologit and rlassologitEffects. Further

information can be found in the help.

4.3. Application: the effect of gender on wage. In Labour Economics an important question is

how the wage is related to the gender of the employed. We use US census data from the year 2012 to

analyse the effect of gender and interaction effects of other variables with gender on wage jointly. The

dependent variable is the logarithm of the wage, the target variable is female (in combination with

other variables). All other variables denote some other socio-economic characteristics, e.g. marital

status, education, and experience. For a detailed description of the variables we refer to the help page.

First, we load and prepare the data.



15

library(hdm)

data(cps2012)

X <- model.matrix(~-1 + female + female:(widowed + divorced + separated + nevermarried +

hsd08 + hsd911 + hsg + cg + ad + mw + so + we + exp1 + exp2 + exp3) + +(widowed +

divorced + separated + nevermarried + hsd08 + hsd911 + hsg + cg + ad + mw + so +

we + exp1 + exp2 + exp3)^2, data = cps2012)

dim(X)

## [1] 29217 136

X <- X[, which(apply(X, 2, var) != 0)] # exclude all constant variables

dim(X)

## [1] 29217 116

index.gender <- grep("female", colnames(X))

y <- cps2012$lnw

The parameter estimates for the target parameters, i.e. all coefficients related to gender (i.e. by

interaction with other variables) are calculated and summarized by the following commands

effects.female <- rlassoEffects(x = X, y = y, index = index.gender)

summary(effects.female)

## [1] "Estimates and significance testing of the effect of target variables"

## Estimate. Std. Error t value Pr(>|t|)

## female -0.154923 0.050162 -3.088 0.002012

## female:widowed 0.136095 0.090663 1.501 0.133325

## female:divorced 0.136939 0.022182 6.174 6.68e-10

## female:separated 0.023303 0.053212 0.438 0.661441

## female:nevermarried 0.186853 0.019942 9.370 < 2e-16

## female:hsd08 0.027810 0.120914 0.230 0.818092

## female:hsd911 -0.119335 0.051880 -2.300 0.021435

## female:hsg -0.012890 0.019223 -0.671 0.502518

## female:cg 0.010139 0.018327 0.553 0.580114

## female:ad -0.030464 0.021806 -1.397 0.162405

## female:mw -0.001063 0.019192 -0.055 0.955811

## female:so -0.008183 0.019357 -0.423 0.672468

## female:we -0.004226 0.021168 -0.200 0.841760

## female:exp1 0.004935 0.007804 0.632 0.527139

## female:exp2 -0.159519 0.045300 -3.521 0.000429

## female:exp3 0.038451 0.007861 4.891 1.00e-06

##

## female **

## female:widowed

## female:divorced ***
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## female:separated

## female:nevermarried ***

## female:hsd08

## female:hsd911 *

## female:hsg

## female:cg

## female:ad

## female:mw

## female:so

## female:we

## female:exp1

## female:exp2 ***

## female:exp3 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Finally, we estimate and plot confident intervals, first ”pointwise” and then the joint confidence inter-

vals.

joint.CI <- confint(effects.female, level = 0.95, joint = TRUE)

joint.CI

## 2.5 % 97.5 %

## female -0.30603229 -0.003814272

## female:widowed -0.15653773 0.428728700

## female:divorced 0.06952949 0.204349281

## female:separated -0.12858528 0.175190803

## female:nevermarried 0.12437577 0.249331199

## female:hsd08 -0.40860401 0.464224633

## female:hsd911 -0.28171322 0.043043144

## female:hsg -0.06956840 0.043788835

## female:cg -0.04607426 0.066351365

## female:ad -0.10137824 0.040450752

## female:mw -0.05925508 0.057128199

## female:so -0.06734356 0.050976877

## female:we -0.07083349 0.062381227

## female:exp1 -0.01831195 0.028182469

## female:exp2 -0.29470841 -0.024330247

## female:exp3 0.01501663 0.061884530

# plot(effects.female, joint=TRUE, level=0.95) # plot of the effects

This analysis allows a closer look how discrimination according to gender is related to other socio-

economic variables.
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As a side remark, the version 0.2 allows also now a formula interface for many functions including

rlassoEffects. Hence, the analysis could also be done more compact as

effects.female <- rlassoEffects(lnw ~ female + female:(widowed + divorced + separated +

nevermarried + hsd08 + hsd911 + hsg + cg + ad + mw + so + we + exp1 + exp2 +

exp3) + (widowed + divorced + separated + nevermarried + hsd08 + hsd911 + hsg +

cg + ad + mw + so + we + exp1 + exp2 + exp3)^2, data = cps2012, I = ~female +

female:(widowed + divorced + separated + nevermarried + hsd08 + hsd911 + hsg +

cg + ad + mw + so + we + exp1 + exp2 + exp3))

The one-sided option I gives the target variables for which inference is conducted.

4.4. Application: Estimation of the treatment effect in a linear model with many con-

founding factors. A part of empirical growth literature has focused on estimating the effect of an

initial (lagged) level of GDP (Gross Domestic Product) per capita on the growth rates of GDP per

capita. In particular, a key prediction from the classical Solow-Swan-Ramsey growth model is the hy-

pothesis of convergence, which states that poorer countries should typically grow faster and therefore

should tend to catch up with the richer countries, conditional on a set of institutional and societal

characteristics. Covariates that describe such characteristics include variables measuring education

and science policies, strength of market institutions, trade openness, savings rates and others.

Thus, we are interested in a specification of the form:

yi = α0di +

p∑
j=1

βjxij + εi,

where yi is the growth rate of GDP over a specified decade in country i, di is the log of the initial level of

GDP at the beginning of the specified period, and the xij ’s form a long list of country i’s characteristics

at the beginning of the specified period. We are interested in testing the hypothesis of convergence,

namely that α1 < 0. Given that in the Barro and Lee (1994) data, the number of covariates p is large

relative to the sample size n, covariate selection becomes a crucial issue in this analysis. We employ

here the partialling out approach (as well as the double selection version) introduced in the previous

section.

First, we load and prepare the data

data(GrowthData)

dim(GrowthData)

## [1] 90 63

y = GrowthData[, 1, drop = F]

d = GrowthData[, 3, drop = F]

X = as.matrix(GrowthData)[, -c(1, 2, 3)]

varnames = colnames(GrowthData)

Now we can estimate the effect of the initial GDP level. First, we estimate by OLS:
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xnames = varnames[-c(1, 2, 3)] # names of X variables

dandxnames = varnames[-c(1, 2)] # names of D and X variables

# create formulas by pasting names (this saves typing times)

fmla = as.formula(paste("Outcome ~ ", paste(dandxnames, collapse = "+")))

ls.effect = lm(fmla, data = GrowthData)

Second, we estimate the effect by the partialling out by Post-Lasso:

dX = as.matrix(cbind(d, X))

lasso.effect = rlassoEffect(x = X, y = y, d = d, method = "partialling out")

summary(lasso.effect)

## [1] "Estimates and significance testing of the effect of target variables"

## Estimate. Std. Error t value Pr(>|t|)

## [1,] -0.04981 0.01394 -3.574 0.000351 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Third, we estimate the effect by the double selection method:

dX = as.matrix(cbind(d, X))

doublesel.effect = rlassoEffect(x = X, y = y, d = d, method = "double selection")

summary(doublesel.effect)

## [1] "Estimates and significance testing of the effect of target variables"

## Estimate. Std. Error t value Pr(>|t|)

## gdpsh465 -0.05001 0.01579 -3.167 0.00154 **

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then collect results in a nice latex table:

library(xtable)

table = rbind(summary(ls.effect)$coef["gdpsh465", 1:2], summary(lasso.effect)$coef[,

1:2], summary(doublesel.effect)$coef[, 1:2])

colnames(table) = c("Estimate", "Std. Error") #names(summary(full.fit)£coef)[1:2]

rownames(table) = c("full reg via ols", "partial reg

via post-lasso ", "partial reg via double selection")

tab = xtable(table, digits = c(2, 2, 5))

tab

We see that the OLS estimates are noisy, which is not surprising given that p is comparable to n. The

partial regression approaches, based on Lasso selection of covariates in the two projection equations,

in contrast yields much more precise estimates, which does support the hypothesis of conditional
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Estimate Std. Error

full reg via ols -0.01 0.02989

partial reg via post-lasso -0.05 0.01394

partial reg via double selection -0.05 0.01579

convergence. We note that the partial regression approaches represent a special case of the orthogonal

estimating equations approach.

5. Instrumental Variable Estimation in a High-Dimensional Setting

In many applied settings the researcher is interested in estimating the (structural) effect of a variable

(treatment variable), but this variable is endogenous, i.e. correlated with the error term. In this case,

instrumental variables (IV) methods are used for identification of the causal parameters.

We consider the linear instrumental variables model:

yi = α0di + γ0x
′
i + εi,(1)

di = z′iΠ + β0x
′
i + vi,(2)

where E[εi(x
′
i, z
′
i)] = 0, E[vi(x

′
i, z
′
i)] = 0, but E[εivi] 6= 0 leading to endogeneity. In this setting di

is a scalar endogenous variable of interest, zi is a pz-dimensional vector of instruments and xi is a

px-dimensional vector of control variables.

In this section we present methods to estimate the effect α0 in a setting where either x is high-

dimensional or z is high-dimensional. Instrumental variables estimation with very many instruments

was analysed in Belloni, Chen, Chernozhukov, and Hansen (2012), the extension with many instruments

and many controls in Chernozhukov, Hansen, and Spindler (2015b).

5.1. Estimation and Inference. To get efficient estimators and uniformly valid confidence intervals

for the structural parameters there are different strategies which are asymptotically equivalent where

again orthogonalization (via partialling out) is a key concept.

In the case of the high-dimensional instrument zi and low-dimensional xi. We predict the endogenous

variable di using (Post-)Lasso regression of di on the instruments zi and xi, forcing the inclusion of

xi. Then we compute the IV estimator (2SLS) α̂ of the parameter α0 using the predicted value d̂i

as instrument and using xi’s as controls. We then perform inference on α0 using α̂ and conventional

heteroskedasticity robust standard errors.

In the case of the low-dimensional instrument zi and high-dimensional xi, we first partial out the

effect of xi from di, yi, and zi by (Post-)Lasso. Second, we then use the residuals to compute the IV

estimator (2SLS) α̂ of the parameter α0. We then perform inference on α0 using α̂ and conventional

heteroskedasticity robust standard errors.

In the case of the high-dimensional instrument zi and high-dimensional xi the algorithm described in

Chernozhukov, Hansen, and Spindler (2015b) is adopted.

R Implementation. The wrap function rlassoIV handles all of the previous cases. It has the

options select.X and select.Z which implement selection of either covariates or instruments, both

with default values set to TRUE. The class of the return object depends on the chosen options, but

the methods summary, print and confint are available for all. The functions rlassoSelectX and
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rlassoSelectZ do selection on x-variables only and z-variables only. Selection on both is done in

rlassoIV. All functions employ the option post=TRUE as default, which uses post-Lasso for partialling

out. By setting post=FALSE we can employ Lasso instead of Post-Lasso. Finally, the package provides

the standard function tsls, which implements the “classical” two-stage least squares estimation.

Fucntion usage Both the family of rlassoIV-functions and the family of the functions for treatment

effects , which are introduced in the next section, allow use with both formula-interface and by handing

over the prepard model matrices. Hence the general pattern for use with formula is function(formula,

data, ...) where formula consists of two-parts and is a member of the class Formula. These formulas

are of the pattern y d + x | x + z where y is the outcome variable, x are exogenous variables, d

endogenous varialbes (if several ones are allowed depends on the concrete function), and z denote the

instrumental variables. A more primitive use of the functions is by simply hand over the required

group of variables as matrices: function(x=x, d=d, y=y, z=z). In some of the following examples

both alternatives are displayed.

5.2. Application: Economic Development and Institutions. Estimating the causal effect of

institutions on output is complicated by the simultaneity between institutions and output: specifically,

better institutions may lead to higher incomes, but higher incomes may also lead to the development

of better institutions. To help overcome this simultaneity, Acemoglu, Johnson, and Robinson (2001)

use mortality rates for early European settlers as an instrument for institution quality. The validity

of this instrument hinges on the argument that settlers set up better institutions in places where they

are more likely to establish long-term settlements, that where they are likely to settle for the long

term is related to settler mortality at the time of initial colonization, and that institutions are highly

persistent. The exclusion restriction for the instrumental variable is then motivated by the argument

that GDP, while persistent, is unlikely to be strongly influenced by mortality in the previous century,

or earlier, except through institutions.

In this application, we consider the problem of selecting controls. The input raw controls are the Lati-

tude and the continental dummies. The technical controls can include various polynomial transforma-

tions of the Latitude, possibly interacted with the continental dummies. Such flexible specifications of

raw controls results in the high-dimensional x, with dimension comparable to the sample size.

First, we process the data

data(AJR)

y = AJR$GDP

d = AJR$Exprop

z = AJR$logMort

x = model.matrix(~-1 + (Latitude + Latitude2 + Africa + Asia + Namer + Samer)^2,

data = AJR)

dim(x)

## [1] 64 21

Then we estimate an IV model with selection on the X
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# AJR.Xselect = rlassoIV(x=x, d=d, y=y, z=z, select.X=TRUE, select.Z=FALSE)

AJR.Xselect = rlassoIV(GDP ~ Exprop + (Latitude + Latitude2 + Africa + Asia + Namer +

Samer)^2 | logMort + (Latitude + Latitude2 + Africa + Asia + Namer + Samer)^2,

data = AJR, select.X = TRUE, select.Z = FALSE)

summary(AJR.Xselect)

## [1] "Estimation and significance testing of the effect of target variables in the IV regression model"

## coeff. se. t-value p-value

## Exprop 0.8450 0.2699 3.131 0.00174 **

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

confint(AJR.Xselect)

## 2.5 % 97.5 %

## Exprop 0.3159812 1.374072

It is interesting to understand what the procedure above is doing. In essence, it partials out xi from

yi, di and zi using Post-Lasso and applies the 2SLS to the residual quantities.

Let us investigate partialling out in more detail in this example. We can first try to use OLS for

partialling out:

# parialling out by linear model

fmla.y = GDP ~ (Latitude + Latitude2 + Africa + Asia + Namer + Samer)^2

fmla.d = Exprop ~ (Latitude + Latitude2 + Africa + Asia + Namer + Samer)^2

fmla.z = logMort ~ (Latitude + Latitude2 + Africa + Asia + Namer + Samer)^2

rY = lm(fmla.y, data = AJR)$res

rD = lm(fmla.d, data = AJR)$res

rZ = lm(fmla.z, data = AJR)$res

# ivfit.lm = tsls(y=rY,d=rD, x=NULL, z=rZ, intercept=FALSE)

ivfit.lm = tsls(rY ~ rD | rZ, intercept = FALSE)

print(cbind(ivfit.lm$coef, ivfit.lm$se), digits = 3)

## [,1] [,2]

## rD 1.27 1.73

We see that the estimates exhibit large standard errors. The imprecision is expected because dimension

of x is quite large, comparable to the sample size.

Next, we replace the OLS operator by post-Lasso for partialling out

# parialling out by lasso

rY = rlasso(fmla.y, data = AJR)$res

rD = rlasso(fmla.d, data = AJR)$res

rZ = rlasso(fmla.z, data = AJR)$res

# ivfit.lasso = tsls(y=rY,d=rD, x=NULL, z=rZ, intercept=FALSE)

ivfit.lasso = tsls(rY ~ rD | rZ, intercept = FALSE)



22 High-Dimensional Metrics in R

print(cbind(ivfit.lasso$coef, ivfit.lasso$se), digits = 3)

## [,1] [,2]

## rD 0.845 0.27

This is exactly what command rlassoIV is doing by calling the command rlassoSelectX, so the

numbers we see are identical to those reported first. In comparison to OLS results, we see precision is

improved by doing selection on the exogenous variables.

5.3. Application: Impact of Eminent Domain Decisions on Economic Outcomes. Here we

investigate the effect of pro-plaintiff decisions in cases of eminent domain (government’s takings of

private property) on economic outcomes. The analysis of the effects of such decisions is complicated

by the possible endogeneity between judicial decisions and potential economic outcomes. To address the

potential endogeneity, we employ an instrumental variables strategy based on the random assignment

of judges to the federal appellate panels that make the decisions. Because judges are randomly assigned

to three-judge panels, the exact identity of the judges and their demographics are randomly assigned

conditional on the distribution of characteristics of federal circuit court judges in a given circuit-

year. Under this random assignment, the characteristics of judges serving on federal appellate panels

can only be related to property prices through the judges’ decisions; thus the judge’s characteristics

will plausibly satisfy the instrumental variable exclusion restriction. For further information on this

application and the data set we refer to Chen and Yeh (2010) and Belloni, Chen, Chernozhukov, and

Hansen (2012).

First, we load the data an construct the matrices with the controls (x), instruments (z), outcome (y),

and treatment variables (d). Here we consider regional GDP as the outcome variable.

data(EminentDomain)

z <- as.matrix(EminentDomain$logGDP$z)

x <- as.matrix(EminentDomain$logGDP$x)

y <- EminentDomain$logGDP$y

d <- EminentDomain$logGDP$d

x <- x[, apply(x, 2, mean, na.rm = TRUE) > 0.05] #

z <- z[, apply(z, 2, mean, na.rm = TRUE) > 0.05] #

As mentioned above, y is the economic outcome, the logarithm of the GDP, d the number of pro

plaintiff appellate takings decisions in federal circuit court c and year t, x is a matrix with control

variables, and z is the matrix with instruments. Here we consider socio-economic and demographic

characteristics of the judges as instruments.

First, we estimate the effect of the treatment variable by simple OLS and 2SLS using two instruments:

ED.ols = lm(y ~ cbind(d, x))

ED.2sls = tsls(y = y, d = d, x = x, z = z[, 1:2], intercept = FALSE)

Next, we estimate the model with selection on the instruments.
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lasso.IV.Z = rlassoIV(x = x, d = d, y = y, z = z, select.X = FALSE, select.Z = TRUE)

# or lasso.IV.Z = rlassoIVselectZt(x=X, d=d, y=y, z=z)

summary(lasso.IV.Z)

## [1] "Estimates and significance testing of the effect of target variables in the IV regression model"

## coeff. se. t-value p-value

## d1 0.4146 0.2902 1.428 0.153

confint(lasso.IV.Z)

## 2.5 % 97.5 %

## d1 -0.1542764 0.9834796

Finally, we do selection on both the x and z variables.

lasso.IV.XZ = rlassoIV(x = x, d = d, y = y, z = z, select.X = TRUE, select.Z = TRUE)

summary(lasso.IV.XZ)

## Estimates and Significance Testing of the effect of target variables in the IV regression model

## coeff. se. t-value p-value

## d1 -0.0301 0.1608 -0.187 0.852

confint(lasso.IV.XZ)

## 2.5 % 97.5 %

## d1 -0.3452364 0.2850425

Comparing the results we see, that the OLS estimates indicate that the influence of pro plaintiff

appellate takings decisions in federal circuit court is significantly positive, but the 2SLS estimates

which account for the potential endogeneity render the results insignificant. Employing selection

on the instruments yields similar results. Doing selection on both the x- and z-variables results in

extremely imprecise estimates.

Finally, we compare all results

library(xtable)

table = matrix(0, 4, 2)

table[1, ] = summary(ED.ols)$coef[2, 1:2]

table[2, ] = cbind(ED.2sls$coef[1], ED.2sls$se[1])

table[3, ] = summary(lasso.IV.Z)[, 1:2]

## [1] "Estimates and significance testing of the effect of target variables in the IV regression model"

## coeff. se. t-value p-value

## d1 0.4146 0.2902 1.428 0.153

table[4, ] = summary(lasso.IV.XZ)[, 1:2]

## Estimates and Significance Testing of the effect of target variables in the IV regression model

## coeff. se. t-value p-value

## d1 -0.0301 0.1608 -0.187 0.852

colnames(table) = c("Estimate", "Std. Error")

rownames(table) = c("ols regression", "IV estimation ", "selection on Z", "selection on X and Z")
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tab = xtable(table, digits = c(2, 2, 7))

tab

Estimate Std. Error

ols regression 0.01 0.0098659

IV estimation -0.01 0.0337664

selection on Z 0.41 0.2902492

selection on X and Z -0.03 0.1607884

6. Inference on Treatment Effects in a High-Dimensional Setting

In this section, we consider estimation and inference on treatment effects when the treatment variable d

enters non-separably in determination of the outcomes. This case is more complicated than the additive

case, which is covered as a special case of Section 3. However, the same underlying principle – the

orthogonality principle – applies for the estimation and inference on the treatment effect parameters.

Estimation and inference of treatment effects in a high-dimensional setting is analysed in Belloni,

Chernozhukov, Fernández-Val, and Hansen (2013).

6.1. Treatment Effects Parameters – a short Introduction. In many situations researchers

are asked to evaluate the effect of a policy intervention. Examples are the effectiveness of a job-

related training program or the effect of a newly developed drug. We consider n units or individuals,

i = 1, . . . , n. For each individual we observe the treatment status. The treatment variable Di takes

the value 1, if the unit received (active) treatment, and 0, if it received the control treatment. For

each individual we observe the outcome for only one of the two potential treatment states. Hence, the

observed outcome depends on the treatment status and is denoted by Yi(Di).

One important parameter of interest is the average treatment effect (ATE):

E[Y (1)− Y (0)] = E[Y (1)]− E[Y (0)].

This quantity can be interpreted as the average effect of the policy intervention.

Researchers might also be interested in the average treatment effect on the treated (ATET) given by

E[Y (1)− Y (0)|D = 1] = E[Y (1)|D = 1]− E[Y (0)|D = 1].

This is the average treatment effect restricted to the population the treated individuals.

When treatment D is randomly assigned conditional on confounding factors X, the ATE and ATET can

be identified by regression or propensity score weighting methods. Our identification and estimation

method rely on the combination of two methods to create orthogonal estimating equations for these

parameters.1

In observational studies, the potential treatments are endogenous, i.e. jointly determined with the

outcome variable. In such cases, causal effects may be identified with the use of a binary instrument

1It turns out that the orthogonal estimating equations are the same as doubly robust estimating equations, but

emphasizing the name ”doubly robust” could be confusing in the present context.



25

Z that affects the treatment but is independent of the potential outcomes. An important parameter

in this case is the local average treatment effect (LATE):

E[Y (1)− Y (0)|D(1) > D(0)].

The random variables D(1) and D(0) indicate the potential participation decisions under the instru-

ment states 1 and 0. LATE is the average treatment effect for the subpopulation of compliers – those

units that respond to the change in the instrument. Another parameter of interest is the local average

treatment effect of the treated (LATET):

E[Y (1)− Y (0)|D(1) > D(0), D = 1],

which is the average effect for the subpopulation of the treated compliers.

When the instrument Z is randomly assigned conditional on confounding factors X, the LATE and

LATET can be identified by instrumental variables regression or propensity score weighting methods.

Our identification and estimation method rely on the combination of two methods to create orthogonal

estimating equations for these parameters.

6.2. Estimation and Inference of Treatment effects. We consider the estimation of the effect of

an endogenous binary treatment, D, on an outcome variable, Y , in a setting with very many potential

control variables. In the case of endogeneity, the presence of a binary instrumental variable, Z, is

required for the estimation of the LATE and LATET.

When trying to estimate treatment effects, the researcher has to decide what conditioning variables

to include. In the case of a non-randomly assigned treatment or instrumental variable, the researcher

must select the conditioning variables so that the instrument or treatment is plausibly exogenous. Even

in the case of random assignment, for a precise estimation of the policy variable selection of control

variables is necessary to absorb residual variation, but overfitting should be avoided. For uniformly

valid post-selection inference, “orthogonal ”estimating equations as described above are they key to

the efficient estimation and valid inference. We refer to Belloni, Chernozhukov, Fernández-Val, and

Hansen (2013) for details.

R Implementation. The package contains the functions rlassoATE, rlassoATET, rlassoLATE, and

rlassoLATE to estimate the corresponding treatment effects. All functions have as arguments the out-

come variable y, the treatment variable d, and the conditioning variables x. The functions rlassoLATE,

and rlassoLATE have additionally the argument z for the binary instrumental variable. For the calcu-

lation of the standard errors bootstrap methods are implemented, with options to use Bayes, normal,

or wild bootstrap. The number of repetitions can be specified with the argument nRep and the default

is set to 500. By default no bootstrap standard errors are provided (bootstrap="none"). For the func-

tions the logicals intercept and post can be specified to include an intercept and to do Post-Lasso at

the selection steps. The family of treatment functions returns an object of class rlassoTE for which

the methods print, summary, and confint are available.

6.3. Application: 401(k) plan participation. Though it is clear that 401(k) plans are widely used

as vehicles for retirement saving, their effect on assets is less clear. The key problem in determining

the effect of participation in 401(k) plans on accumulated assets is saver heterogeneity coupled with
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nonrandom selection into participation states. In particular, it is generally recognized that some

people have a higher preference for saving than others. Thus, it seems likely that those individuals

with the highest unobserved preference for saving would be most likely to choose to participate in tax-

advantaged retirement savings plans and would also have higher savings in other assets than individuals

with lower unobserved saving propensity. This implies that conventional estimates that do not allow for

saver heterogeneity and selection of the participation state will be biased upward, tending to overstate

the actual savings effects of 401(k) and IRA participation.

Again, we start first with the data preparation:

data(pension)

y = pension$tw

d = pension$p401

z = pension$e401

X = pension[, c("i2", "i3", "i4", "i5", "i6", "i7", "a2", "a3", "a4", "a5", "fsize",

"hs", "smcol", "col", "marr", "twoearn", "db", "pira", "hown")] # simple model

xvar = c("i2", "i3", "i4", "i5", "i6", "i7", "a2", "a3", "a4", "a5", "fsize", "hs",

"smcol", "col", "marr", "twoearn", "db", "pira", "hown")

xpart = paste(xvar, collapse = "+")

form = as.formula(paste("tw ~ ", paste(c("e401", xvar), collapse = "+"), "|", paste(xvar,

collapse = "+")))

formZ = as.formula(paste("tw ~ ", paste(c("e401", xvar), collapse = "+"), "|", paste(c("e401",

xvar), collapse = "+")))

Now we can compute the estimates of the target treatment effect parameters. For ATE and ATET we

report the the effect of eligibility for 401(k).

# pension.ate = rlassoATE(X,d,y)

pension.ate = rlassoATE(form, data = pension)

summary(pension.ate)

## Estimation and significance testing of the treatment effect

## Type: ATE

## Bootstrap: not applicable

## coeff. se. t-value p-value

## TE 8492 1903 4.463 8.1e-06 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# pension.atet = rlassoATET(X,d,y)

pension.atet = rlassoATET(form, data = pension)

summary(pension.atet)

## Estimation and significance testing of the treatment effect

## Type: ATET

## Bootstrap: not applicable
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## coeff. se. t-value p-value

## TE 9022 2548 3.541 0.000399 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For LATE and LATET we estimate the effect of 401(k) participation (d) with plan eligibility (z) as

instrument.

pension.late = rlassoLATE(X, d, y, z)

# pension.late = rlassoLATE(formZ, data=pension)

summary(pension.late)

## Estimation and significance testing of the treatment effect

## Type: LATE

## Bootstrap: not applicable

## coeff. se. t-value p-value

## TE 12250 2745 4.463 8.1e-06 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

pension.latet = rlassoLATET(X, d, y, z)

# pension.latet = rlassoLATET(formZ, data=pension)

summary(pension.latet)

## Estimation and significance testing of the treatment effect

## Type: LATET

## Bootstrap: not applicable

## coeff. se. t-value p-value

## TE 12806 3617 3.541 0.000399 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results are summarized into a table, which is then processed using xtable to produce the latex

output:

library(xtable)

table = matrix(0, 4, 2)

table[1, ] = summary(pension.ate)[, 1:2]

## Estimation and significance testing of the treatment effect

## Type: ATE

## Bootstrap: not applicable

## coeff. se. t-value p-value

## TE 8492 1903 4.463 8.1e-06 ***
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## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

table[2, ] = summary(pension.atet)[, 1:2]

## Estimation and significance testing of the treatment effect

## Type: ATET

## Bootstrap: not applicable

## coeff. se. t-value p-value

## TE 9022 2548 3.541 0.000399 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

table[3, ] = summary(pension.late)[, 1:2]

## Estimation and significance testing of the treatment effect

## Type: LATE

## Bootstrap: not applicable

## coeff. se. t-value p-value

## TE 12250 2745 4.463 8.1e-06 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

table[4, ] = summary(pension.latet)[, 1:2]

## Estimation and significance testing of the treatment effect

## Type: LATET

## Bootstrap: not applicable

## coeff. se. t-value p-value

## TE 12806 3617 3.541 0.000399 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

colnames(table) = c("Estimate", "Std. Error")

rownames(table) = c("ATE", "ATET ", "LATE", "LATET")

tab = xtable(table, digits = c(2, 2, 2))

Estimate Std. Error

ATE 8491.99 1902.92

ATET 9021.60 2547.89

LATE 12249.51 2744.92

LATET 12805.53 3616.55

Finally, we estimate a model including all interaction effects:
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# X = model.matrix(~ -1 + (i2 + i3 + i4 + i5 + i6 + i7 + a2 + a3 + a4 + a5 +

# fsize + hs + smcol + col + marr + twoearn + db + pira + hown)^2, data =

# pension) # model with interactions

xvar2 <- paste("(", xvar, ")^2", sep = "")

formExt = as.formula(paste("tw ~ ", paste(c("e401", xvar2), collapse = "+"), "|",

paste(xvar2, collapse = "+")))

formZExt = as.formula(paste("tw ~ ", paste(c("e401", xvar2), collapse = "+"), "|",

paste(c("e401", xvar2), collapse = "+")))

pension.ate = rlassoATE(X, z, y)

pension.atet = rlassoATET(X, z, y)

pension.late = rlassoLATE(X, d, y, z)

pension.latet = rlassoLATET(X, d, y, z)

# pension.ate = rlassoATE(formExt, data = pension) pension.atet =

# rlassoATET(formExt, data = pension) pension.late = rlassoLATE(formZExt, data =

# pension) pension.latet = rlassoLATET(formZExt, data = pension)

table = matrix(0, 4, 2)

table[1, ] = summary(pension.ate)[, 1:2]

table[2, ] = summary(pension.atet)[, 1:2]

table[3, ] = summary(pension.late)[, 1:2]

table[4, ] = summary(pension.latet)[, 1:2]

colnames(table) = c("Estimate", "Std. Error")

rownames(table) = c("ATE", "ATET ", "LATE", "LATET")

tab = xtable(table, digits = c(2, 2, 2))

This gives the following results:

Estimate Std. Error

ATE 8491.99 1902.92

ATET 9021.60 2547.89

LATE 12249.51 2744.92

LATET 12805.53 3616.55

7. The Lasso Methods for Discovery of Significant Causes amongst Many Potential

Causes, with Many Controls

Here we consider the model

Yi︸︷︷︸
Outcome

=

p1∑
l=1

Dilα`︸ ︷︷ ︸
Causes

+

p2∑
j=1

Wijβj︸ ︷︷ ︸
Controls

+ εi︸︷︷︸
Noise

where the number of potential causes p1 could be very large and the number of controls p2 could also

be very large. The causes are randomly assigned conditional on controls.
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Under approximate sparsity of α = (αl)
p1
l=1 and β = (βl)

p2
l=1, we can use Lasso-based method of

Belloni, Chernozhukov, and Kato (2014) for estimating (αl)
p1
l=1 and constructing a joint confidence

band on (αl)
p1
l=1 and then checking which αl’s are significantly different from zero. The approach

is based on buliding orthogonal estimating equations for each of (αl)
p1
l=1, and can be interpreted as

doing Frisch-Waugh procedure for each coefficient of interest, where we do partialling out via Lasso or

OLS-after-Lasso.

This procedure is implemented in the R package hdm. Here is an example in which n = 100, p1 = 20,

and p2 = 20, so that total number of regressors is p = p1 + p2 = 40. In this example α1 = 5 and

β1 = 5, i.e. there is only one true cause Di1, among the large number of causes, Di1, ..., Di20, and only

one true control Wi1. This example is made super-simple for clarity sake. The Belloni, Chernozhukov,

and Kato (2014) procedure, implemented by rlasso.effects command in R package hdm.

# library(hdm) library(stats)

set.seed(1)

n = 100

p1 = 20

p2 = 20

D = matrix(rnorm(n * p1), n, p1) # Causes

W = matrix(rnorm(n * p2), n, p2) # Controls

X = cbind(D, W) # Regressors

Y = D[, 1] * 5 + W[, 1] * 5 + rnorm(n) #Outcome

confint(rlassoEffects(X, Y, index = c(1:p1)), joint = TRUE)

## 2.5 % 97.5 %

## V1 4.49587520 5.23301752

## V2 -0.33085119 0.32150677

## V3 -0.36683077 0.20120862

## V4 -0.26872791 0.30187401

## V5 -0.29136511 0.29105669

## V6 -0.33793308 0.31069235

## V7 -0.24034940 0.31504038

## V8 -0.06128767 0.48759729

## V9 -0.20198889 0.40566053

## V10 -0.25064317 0.27751938

## V11 -0.32872696 0.22347654

## V12 -0.32456542 0.28109663

## V13 -0.18888987 0.39155950

## V14 -0.34253431 0.40439254

## V15 -0.33896086 0.33010937

## V16 -0.28088819 0.34694469

## V17 -0.19515134 0.43290505

## V18 -0.38045741 0.05809196

## V19 -0.12070914 0.40708597
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## V20 -0.22831837 0.26803853

# BCK Joint Confidence Band for Reg Coefficients 1 to 20

As you can see the procedure correctly tells that only the first cause Di1, among the large number

of causes, Di1, ..., Di20, is a statistically significant cause of Y (see the confidence interval for variable

V1).

8. Conclusion

We have provided an introduction to some of the capabilities of the R package hdm. Inevitably,

new applications will demand new features and, as the project is in its initial phase, unforeseen

bugs will show up. In either case comments and suggestions of users are highly appreciated. We

shall update the documentation and the package periodically. The most current version of the R

package and its accompanying vignette will be made available at the homepage of the maintainer and

cran.r-project.org. See the R command vignette() for details on how to find and view vignettes

from within R .
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Appendix A. Data Sets

In this section we describe briefly the data sets which are contained in the package and used afterwards.

They might also be of general interest either for illustrating methods or for classroom presentation.

A.1. Pension Data. In the United States 401(k) plans were introduced to increase private individual

saving for retirement. They allow the individual to deduct contributions from taxable income and

allow tax-free accrual of interest on assets held within the plan (within an account). Employers

provide 401(k) plans, and employers may also match a certain percentage of an employee’s contribution.

Because 401(k) plans are provided by employers, only workers in firms offering plans are eligible for

participation. This data set contains individual level information about 401(k) participation and

socio-economic characteristics.

The data set can be loaded with

data(pension)

A description of the variables and further references are given in Chernozhukov and Hansen (2004)

and at the help page, for this example called by

help(pension)

The sample is drawn from the 1991 Survey of Income and Program Participation (SIPP) and consists

of 9,915 observations. The observational units are household reference persons aged 25-64 and spouse

if present. Households are included in the sample if at least one person is employed and no one is

self-employed. All dollar amounts are in 1991 dollars. The 1991 SIPP reports household financial

data across a range of asset categories. These data include a variable for whether a person works for

a firm that offers a 401(k) plan. Households in which a member works for such a firm are classified

as eligible for a 401(k). In addition, the survey also records the amount of 401(k) assets. Households

with a positive 401(k) balance are classified as participants, and eligible households with a zero balance

are considered nonparticipants. Available measures of wealth in the 1991 SIPP are total wealth, net

financial assets, and net non-401(k) financial assets. Net non-401(k) assets are defined as the sum

of checking accounts, U.S. saving bonds, other interest-earning accounts in banks and other financial

institutions, other interest-earning assets (such as bonds held personally), stocks and mutual funds less

non-mortgage debt, and IRA balances. Net financial assets are net non-401(k) financial assets plus

401(k) balances, and total wealth is net financial assets plus housing equity and the value of business,

property, and motor vehicles.

A.2. Growth Data. Understanding what drives economic growth, measured in GDP, is a central

question of macroeconomics. A well-known data set with information about GDP growth for many

countries over a long period was collected by Barro and Lee (1994). This data set can be loaded by

data(GrowthData)

This data set contains the national growth rates in GDP per capita (Outcome) for many countries with

additional covariates. A very important covariate is gdpsh465, which is the initial level of per-capita

GDP. For further information we refer to the help page and the references herein, in particular the

online descriptions of the data set.
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A.3. Institutions and Economic Development – Data on Settler Mortality. This data set

was collected by Acemoglu, Johnson, and Robinson (2001) to analyse the effect of institutions on

economic development. The data can be loaded with

data(AJR)

The data set contains measurements of GDP, settler morality, an index measuring protection against

expropriation risk and geographic information (latitude and continent dummies). There are 64 obser-

vations on 11 variables.

A.4. Data on Eminent Domain. Eminent domain refers to the government’s taking of private

property. This data set was collected to analyse the effect of the number of pro-plaintiff appellate

takings decisions on economic outcome variables such as house price indices.

The data set is loaded into R by

data(EminentDomain)

The data set consists of four “sub data sets”which have the following structure:

• y: outcome variable, a house price index or a local GDP index,

• d: the treatment variable, represents the number of pro-plaintiff appellate takings decisions in

federal circuit court c and year t

• x: exogenous control variables that include a dummy variable for whether there were relevant

cases in that circuit-year, the number of takings appellate decisions, and controls for the

distribution of characteristics of federal circuit court judges in a given circuit-year

• z: instrumental variables, here characteristics of judges serving on federal appellate panels

The four data sets differ mainly in the dependent variable, which can be repeat-sales FHFA/OFHEO

house price index for metro (FHFA) and non-metro (NM) areas , the Case-Shiller home price index

(CS), and state-level GDP from the Bureau of Economic Analysis.

A.5. BLP data. This data set was analyzed in the seminal contribution of Berry, Levinsohn, and

Pakes (1995) and stems from annual issues of the Automotive News Market Data Book. The data

set inlcudes information on all models marketed during the the periord beginning 1971 and ending in

1990 cotaining 2217 model/years from 997 distinct models. A detailed description is given in Berry,

Levinsohn, and Pakes (1995), p. 868–871. The function constructIV constructs instrumental variables

along the lines described and used in Berry, Levinsohn, and Pakes (1995). The data set is loaded by

data(BLP)

It contains information on the price (in logartihm), the market share, and car characteristics like miles

per gallon, miles per dollar, horse power per weight, space and air conditioning.

A.6. CPS data. The CPS is a monthly U.S. household survey conducted jointly by the U.S. Census

Bureau and the Bureau of Labor Statistics. The data were collected for the year 2012. The sample

comprises white non-hipanic, ages 25-54, working full time full year (35+ hours per week at least 50

weeks), exclude living in group quarters, self-employed, military, agricultural, and private household

sector, allocated earning, inconsistent report on earnings and employment, missing data. It can be

inspected with the command
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data(cps2012)
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