
Introduction to the ”geosphere” package

(Version 1.5-8)

Robert J. Hijmans

April 5, 2018

1 Introduction

This vignette describes the R package ’geosphere’. The package implements
spherical trigonometry functions for geographic applications. Many of the func-
tions have applications in navigation, but others are more general, or have no
relation to navigation at all.

There is a number of functions to compute distance and direction (= bearing,
azimuth, course) along great circles (= shortest distance on a sphere, or ”as the
crow flies”) and along rhumb lines (lines of constant bearing).

There are also functions that compute distances on a spheroid.
Other functions include the computation of the location of an object at a

given direction and distance; and the area, perimeter, and centroid of a spherical
polygon.

Geographic locations must be specified in longitude and latitude (and in that
order!) in degrees (i.e., NOT in radians). Degrees are (obviously) in decimal
notation. Thus 12 degrees, 10 minutes, 30 seconds = 12 + 10/60 + 30/3600 =
12.175 degrees. The southern and western hemispheres have a negative sign.

The default unit of distance is meter; but this can be adjusted by supplying
a different radius ’r’ to functions. Directions are expressed in degrees (N = 0
and 360, E = 90, S = 180, and W = 270 degrees). If arguments of functions
that take several arguments (e.g. points, bearings, radius of the earth), do not
have the same length (for vectors) or number of rows (for matrices) the shorter
arguments are re-cycled.

Many functions in this package are based on formulae provided by Ed Williams
(http://www.edwilliams.org/ftp/avsig/avform.txt, and partly on javascript
implementations of these formulae by Chris Veness (http://www.movable-type.
co.uk/scripts/latlong.html)

Most geodesic computations (for a spheroid rather than a sphere) use the
GeographicLib by C.F.F. Karney (http://geographiclib.sourceforge.net/.

1

http://www.edwilliams.org/ftp/avsig/avform.txt
http://www.movable-type.co.uk/scripts/latlong.html
http://www.movable-type.co.uk/scripts/latlong.html
http://geographiclib.sourceforge.net/

2 Great circle distance

There are four different functions to compute distance between two points.
These are, in order of increasing complexity of the algorithm, the ’Spherical
law of cosines’, ’Haversine’ (Sinnott, 1984), ’Vincenty Sphere’ and ’Vincenty
Ellipsoid’ (Vincenty, 1975) methods. The first three assume the earth to be a
sphere, while the ’Vincenty Ellipsoid’ assumes it is an ellipsoid (which is closer
to the truth).

The results from the first three functions are identical for practical purposes.
The Haversine (’half-versed-sine’) formula was published by R.W. Sinnott in
1984, although it has been known for much longer. At that time computational
precision was lower than today (15 digits precision). With current precision, the
spherical law of cosines formula appears to give equally good results down to
very small distances. If you want greater accuracy, you could use the distVin-
centyEllipsoid method.

Below the differences between the three spherical methods are illustrated. At
very short distances, there are small differences between the ’law of the Cosine’
and the other two methods. There are even smaller differences between the
’Haversine’ and ’Vincenty Sphere’ methods at larger distances.

> library(geosphere)

> Lon <- c(1:9/1000, 1:9/100, 1:9/10, 1:90*2)

> Lat <- c(1:9/1000, 1:9/100, 1:9/10, 1:90)

> dcos <- distCosine(c(0,0), cbind(Lon, Lat))

> dhav <- distHaversine(c(0,0), cbind(Lon, Lat))

> dvsp <- distVincentySphere(c(0,0), cbind(Lon, Lat))

> par(mfrow=(c(1,2)))

> plot(log(dcos), dcos-dhav, col='red', ylim=c(-1e-05, 1e-05),

+ xlab="Log 'Law of Cosines' distance (m)",

+ ylab="Law of Cosines minus Haversine distance")

> plot(log(dhav), dhav-dvsp, col='blue',
+ xlab="Log 'Haversine' distance (m)",

+ ylab="Vincenty Sphere minus Haversine distance")

2

The difference with the ’Vincenty Ellipsoid’ method is more pronounced. In
the example below (using the default WGS83 ellipsoid), the difference is about
0.3

> dvse <- distVincentyEllipsoid(c(0,0), cbind(Lon, Lat))

> plot(dvsp/1000, (dvsp-dvse)/1000, col='blue', xlab='Vincenty Sphere Distance (km)',
+ ylab="Difference between 'Vincenty Sphere' and 'Vincenty Ellipsoid' methods (km)")

3

For the most precise distance computation use the ’distGeo’ function.

3 Points on great circles

Points on a great circle are returned by the function ’greatCircle’, using two
points on the great circle to define it, and an additional argument to indicate
how many points should be returned. You can also use greatCircleBearing, and
provide starting points and bearing as arguments. gcIntermediate only returns
points on the great circle that are on the track of shortest distance between the
two points defining the great circle; and midPoint computes the point half-way
between the two points. You can use onGreatCircle to test whether a point is
on a great circle between two other points.

> LA <- c(-118.40, 33.95)

> NY <- c(-73.78, 40.63)

> data(wrld)

> plot(wrld, type='l')
> gc <- greatCircle(LA, NY)

> lines(gc, lwd=2, col='blue')
> gci <- gcIntermediate(LA, NY)

> lines(gci, lwd=4, col='green')
> points(rbind(LA, NY), col='red', pch=20, cex=2)

4

> mp <- midPoint(LA, NY)

> onGreatCircle(LA,NY, rbind(mp,c(0,0)))

[1] FALSE FALSE

> points(mp, pch='*', cex=3, col='orange')
> greatCircleBearing(LA, brng=270, n=10)

lon lat

[1,] -144 31.210677

[2,] -108 33.532879

[3,] -72 25.004950

[4,] -36 5.254184

[5,] 0 -17.620746

[6,] 36 -31.210677

[7,] 72 -33.532879

[8,] 108 -25.004950

[9,] 144 -5.254184

[10,] 180 17.620746

5

4 Point at distance and bearing

Function destPoint returns the location of point given a point of origin, and
a distance and bearing. Its perhaps obvious use in georeferencing locations of
distant sitings. It can also be used to make circular polygons (with a fixed
radius, but in longitude/latitude coordinates)

> destPoint(LA, b=65, d=100000)

lon lat

[1,] -117.4152 34.32706

> circle=destPoint(c(0,80), b=1:365, d=1000000)

> circle2=destPoint(c(0,80), b=1:365, d=500000)

> circle3=destPoint(c(0,80), b=1:365, d=100000)

> plot(circle, type='l')
> polygon(circle, col='blue', border='black', lwd=4)

> polygon(circle2, col='red', lwd=4, border='orange')
> polygon(circle3, col='white', lwd=4, border='black')

6

5 Maximum latitude on a great circle

You can use the functions illustrated below to find out what the maximum
latitude is that a great circle will reach; at what latitude it crosses a specified
longitude; or at what longitude it crosses a specified latitude. From the map
below it appears that Clairaut’s formula, used in gcMaxLat is not very accurate.
Through optimization with function greatCircle, a more accurate value was
found. The southern-most point is the antipode (a point at the opposite end of
the world) of the northern-most point.

> ml <- gcMaxLat(LA, NY)

> lat0 <- gcLat(LA, NY, lon=0)

> lon0 <- gcLon(LA, NY, lat=0)

> plot(wrld, type='l')
> lines(gc, lwd=2, col='blue')
> points(ml, col='red', pch=20, cex=2)

> points(cbind(0, lat0), pch=20, cex=2, col='yellow')
> points(t(rbind(lon0, 0)), pch=20, cex=2, col='green')

> f <- function(lon){gcLat(LA, NY, lon)}

> opt <- optimize(f, interval=c(-180, 180), maximum=TRUE)

> points(opt$maximum, opt$objective, pch=20, cex=2, col='dark green')

> anti <- antipode(c(opt$maximum, opt$objective))

> points(anti, pch=20, cex=2, col='dark blue')

7

6 Great circle intersections

Points of intersection of two great circles can be computed in two ways. We
use a second great circle that connects San Francisco with Amsterdam. We
first compute where they cross by defining the great circles using two points on
it (gcIntersect). After that, we compute the same points using a start point
and initial bearing (gcIntersectBearing). The two points where the great circles
cross are antipodes. Antipodes are connected with an infinite number of great
circles.

> SF <- c(-122.44, 37.74)

> AM <- c(4.75, 52.31)

> gc2 <- greatCircle(AM, SF)

> plot(wrld, type='l')
> lines(gc, lwd=2, col='blue')
> lines(gc2, lwd=2, col='green')
> int <- gcIntersect(LA, NY, SF, AM)

> int

lon1 lat1 lon2 lat2

[1,] 52.62562 -30.15099 -127.3744 30.15099

> antipodal(int[,1:2], int[,3:4])

[1] TRUE

> points(rbind(int[,1:2], int[,3:4]), col='red', pch=20, cex=2)

> bearing1 <- bearing(LA, NY)

> bearing2 <- bearing(SF, AM)

> bearing1

[1] 65.93893

> bearing2

[1] 29.75753

> gcIntersectBearing(LA, bearing1, SF, bearing2)

lon lat lon lat

[1,] 52.63076 -30.16041 -127.3692 30.16041

8

7 Triangulation

Below is triangulation example. We have three locations (NY, LA, MS) and
three directions (281, 60, 195) towards a target. Because we are on a sphere,
there are two (antipodal) results. We only show one here (by only using int[,1:2]).
We compute the centroid from the polygon defined with the three points. To
accurately draw a spherical polygon, we can use makePoly. This function inserts
intermediate points along the paths between the vertices provided (default is one
point every 10 km).

> MS <- c(-93.26, 44.98)

> gc1 <- greatCircleBearing(NY, 281)

> gc2 <- greatCircleBearing(MS, 195)

> gc3 <- greatCircleBearing(LA, 55)

> plot(wrld, type='l', xlim=c(-125, -70), ylim=c(20, 60))

> lines(gc1, col='green')
> lines(gc2, col='blue')
> lines(gc3, col='red')
> int <- gcIntersectBearing(rbind(NY, NY, MS),

+ c(281, 281, 195), rbind(MS, LA, LA), c(195, 55, 55))

> int

9

lon lat lon lat

[1,] -94.40975 41.77229 85.59025 -41.77229

[2,] -102.91692 41.15816 77.08308 -41.15816

[3,] -93.63298 43.97765 86.36702 -43.97765

> distm(rbind(int[,1:2], int[,3:4]))

[,1] [,2] [,3] [,4] [,5]

[1,] 0.0 713665.0 253077.7 20003931.5 19308947.3

[2,] 713665.0 0.0 823532.8 19308947.3 20003931.5

[3,] 253077.7 823532.8 0.0 19751854.8 19195862.0

[4,] 20003931.5 19308947.3 19751854.8 0.0 713665.0

[5,] 19308947.3 20003931.5 19195862.0 713665.0 0.0

[6,] 19751854.8 19195862.0 20003931.5 253077.7 823532.8

[,6]

[1,] 19751854.8

[2,] 19195862.0

[3,] 20003931.5

[4,] 253077.7

[5,] 823532.8

[6,] 0.0

> int <- int[,1:2]

> points(int)

> poly <- rbind(int, int[1,])

> centr <- centroid(poly)

> poly2 <- makePoly(int)

> polygon(poly2, col='yellow')
> points(centr, pch='*', col='dark red', cex=2)

10

8 Bearing

Below we first compute the distance and bearing from Los Angeles (LA) to
New York (NY). These are then used to compute the point from LA at that
distance in that (initial) bearing (direction). Bearing changes continuously when
traveling along a Great Circle. The final bearing, when approaching NY, is also
given.

> d <- distCosine(LA, NY)

> d

[1] 3977614

> b <- bearing(LA, NY)

> b

[1] 65.93893

> destPoint(LA, b, d)

lon lat

[1,] -73.83063 40.63262

11

> NY

[1] -73.78 40.63

> finalBearing(LA, NY)

[1] 93.90995

9 Getting off-track

What if we went off-course and were flying over Minneapolis (MS)? The clos-
est point on the planned route (p) can be computed with the alongTrackDistance
and destPoint functions. The distance from ’p’ to MS can be computed with
the dist2gc (distance to great circle, or cross-track distance) function. The light
green line represents the along-track distance, and the dark green line represents
the cross-track distance.

> atd <- alongTrackDistance(LA, NY, MS)

> p <- destPoint(LA, b, atd)

> plot(wrld, type='l', xlim=c(-130,-60), ylim=c(22,52))

> lines(gci, col='blue', lwd=2)

> points(rbind(LA, NY), col='red', pch=20, cex=2)

> points(MS[1], MS[2], pch=20, col='blue', cex=2)

> lines(gcIntermediate(LA, p), col='green', lwd=3)

> lines(gcIntermediate(MS, p), col='dark green', lwd=3)

> points(p, pch=20, col='red', cex=2)

> dist2gc(LA, NY, MS)

[1] 549733.7

> distCosine(p, MS)

[1] 548738.9

12

10 Distance to a polyline

The two function describe above are used in the dist2Line function that
computes the shortest distance between a set of points and a set of spherical
poly-lines (or polygons).

> line <- rbind(c(-180,-20), c(-150,-10), c(-140,55), c(10, 0), c(-140,-60))

> pnts <- rbind(c(-170,0), c(-75,0), c(-70,-10), c(-80,20), c(-100,-50),

+ c(-100,-60), c(-100,-40), c(-100,-20), c(-100,-10), c(-100,0))

> d = dist2Line(pnts, line)

> plot(makeLine(line), type='l')
> points(line)

> points(pnts, col='blue', pch=20)

> points(d[,2], d[,3], col='red', pch='x', cex=2)

> for (i in 1:nrow(d)) lines(gcIntermediate(pnts[i,], d[i,2:3], 10), lwd=2, col='green')

13

11 Rhumb lines

Rhumb (from the Spanish word for course, ’rumbo’) lines are straight lines
on a Mercator projection map (and at most latitudes pretty straight on an
equirectangular projection (=unprojected lon/lat) map). They were used in
navigation because it is easier to follow a constant compass bearing than to
continually adjust direction as is needed to follow a great circle, even though
rhumb lines are normally longer than great-circle (orthodrome) routes. Most
rhumb lines will gradually spiral towards one of the poles.

> NP <- c(0, 85)

> bearing(SF, NP)

[1] 5.15824

> b <- bearingRhumb(SF, NP)

> b

[1] 41.45714

> dc <- distCosine(SF, NP)

> dr <- distRhumb(SF, NP)

> dc / dr

14

[1] 0.8730767

> pr <- destPointRhumb(SF, b, d=round(dr/100) * 1:100)

> pc <- rbind(SF, gcIntermediate(SF, NP), NP)

> par(mfrow=c(1,2))

> data(wrld)

> plot(wrld, type='l', xlim=c(-140,10), ylim=c(15,90), main='Equirectangular')
> lines(pr, col='blue')
> lines(pc, col='red')
> data(merc)

> plot(merc, type='l', xlim=c(-15584729, 1113195),

+ ylim=c(2500000, 22500000), main='Mercator')
> lines(mercator(pr), col='blue')
> lines(mercator(pc), col='red')

12 Characterizing polygons

The package has functions to compute the area, perimeter, centroid, and
’span’ of a spherical polygon. One approach to compute these measures is to
project the polygons first. Here we directly compute them based on spherical
coordinates (longitude / latitude), except for centroid, which is computed by

15

projecting the data to the Mercator projection (and inversely projecting the re-
sult). The function makePoly inserts additional vertices into a spherical polygon
such that it can be plotted (perhaps after first projecting it) more correctly in a
plane. Vertices are inserted, where necessary, at a specified distance. The func-
tion is only beneficial for polygons with large inter-vertex distances (in terms of
longitude), particularly at high latitudes.

> pol <- rbind(c(-120,-20), c(-80,5), c(0, -20), c(-40,-60), c(-120,-20))

> areaPolygon(pol)

[1] 4.903757e+13

> perimeter(pol)

[1] 27336557

> centroid(pol)

lon lat

[1,] -57.54653 -28.96994

> span(pol, fun=max)

lon lat

[1,] 9040759 7187331

> nicepoly = makePoly(pol)

> plot(pol, xlab='longitude', ylab='latitude', cex=2, lwd=3, xlim=c(-140, 0))

> lines(wrld, col='grey')
> lines(pol, col='red', lwd=2)

> lines(nicepoly, col='blue', lwd=2)

> points(centroid(pol), pch='*', cex=3, col='dark green')
> text(centroid(pol)-c(0,2.5), 'centroid')
> legend(-140, -48, c('planar','spherical'), lty=1, lwd=2,

+ col=c('red', 'blue'), title='polygon type')

16

13 Sampling

Random or regular sampling of longitude/latitude values on the globe needs
to consider that the globe is spherical. That is, if you would take random points
for latitude between -90 and 90 and for longitude between -180 and 180, the
density of points would be higher near the poles than near the equator. In con-
trast, functions ’randomCoordinates’ and ’randomCoordinates’ return samples
that are spatially balanced.

> plot(wrld, type='l', col='grey')
> a = randomCoordinates(500)

> points(a, col='blue', pch=20, cex=0.5)

> b = regularCoordinates(3)

> points(b, col='red', pch='x')

17

14 Daylength

You can compute daylenght according to the formula by Forsythe et al.
(1995). For any day of the year (an integer between 1 and 365; or a ’Date’
object.

> as.Date(80, origin='2009-12-31')

[1] "2010-03-21"

> as.Date(172, origin='2009-12-31')

[1] "2010-06-21"

> plot(0:90, daylength(lat=0:90, doy=1), ylim=c(0,24), type='l', xlab='Latitude',
+ ylab='Daylength', main='Daylength by latitude and day of year', lwd=2)

> lines(0:90, daylength(lat=0:90, doy=80), col='green', lwd=2)

> lines(0:90, daylength(lat=0:90, doy=172), col='blue', lwd=2)

> legend(0,24, c('1','80','172'), lty=1, lwd=2, col=c('black', 'green', 'blue'),
+ title='Day of year')

18

15 References

Forsythe, W.C., E.J. Rykiel Jr., R.S. Stahl, H. Wu and R.M. Schoolfield, 1995.
A model comparison for daylength as a function of latitude and day of
the year. Ecological Modeling 80:87-95.

Sinnott, R.W, 1984. Virtues of the Haversine. Sky and Telescope 68(2): 159
Vincenty, T. 1975. Direct and inverse solutions of geodesics on the ellipsoid

with application of nested equations. Survey Review 23(176): 88-93.
Available here: http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf

19

http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf

	Introduction
	Great circle distance
	Points on great circles
	Point at distance and bearing
	Maximum latitude on a great circle
	Great circle intersections
	Triangulation
	Bearing
	Getting off-track
	Distance to a polyline
	Rhumb lines
	Characterizing polygons
	Sampling
	Daylength
	References

