
Defining Effect Methods for Other Models

John Fox and Sanford Weisberg

June 10, 2018

The effects package in R is designed primarily to draw graphs that visualize
a fitted response surface of a fitted model in problems with a linear predictor.
Many modeling paradigms that can be fit with base R or contributed packages
fit into this framework, including methods for linear, multivariate linear, and
generalized linear models fit by the standard lm and glm functions and by the
svyglm function in the survey package (Lumley, 2004); linear models fit by
generalized least squares using the gls function in the nlme package (Pinheiro
et al., 2016); multinomial regression models fit by multinom in the nnet package
(Venables and Ripley, 2002); ordinal regression models using polr from the
MASS package (Venables and Ripley, 2002) and clm and clm2 from the ordinal

package (Christensen, 2015); linear and generalized linear mixed models using
the lme function in the nlme package (Pinheiro et al., 2016) and the lmer and
glmer functions in the lme4 package (Bates et al., 2015); and latent class models
fit by poLCA in the poLCA package (Linzer and Lewis, 2011). This is hardly an
exhaustive list of fitting methods that are based on a linear predictor, and we
have been asked from time to time to write functions to use effects with this
other fittig methods.

The default Effect.default may work with some modeling functions, as
would objects of the class gls that we describe below in Section 1. This will will
work if your function recognizes the defaults for the arguments in the sources

list described in Section 1. If the defaults don’t work, you will need to create your
own Effect method or call Effect.default with your own value of sources.

The effect package has five functions that create the information needed for
drawing effects plots, Effect, allEffects, effect and predictorEffect and
predictorEffects. To add new modeling to the package only Effect needs to
be written; the package will take care of all the other functions.

All the functions described below are included in the effects package. These
can be used as templates for adding methods for other modeling types.

1 Generalized Least Squares (nlme package)

The gls function in the nlme package (Pinheiro et al., 2018) fits linear models
via generalized least squares. A call to gls creates an object of class gls. The
following function will allow usage of such objects with the effects package.

1

Effect.gls <- function(focal.predictors, mod, ...){

args <- list(

type = "glm",

call = mod$call,

formula = formula(mod),

family = family(mod),

coefficients = coef(mod),

vcov = as.matrix(vcov(mod)))

Effect.default(focal.predictors, mod, ..., sources=args)

}

This function sets an argument sources that is then passed to the default Ef-
fect.default. The argument focal.predictors will be used to pass the focal
predictors to other methods. The mod argument is the name of the regression
object that has been created. The ... argument allows passing other arguments
to the default method.

The primary purpose of the function shown above is to set the list sources
to be sent to Effect.default. The sources list has up to six named values:

type The effects package has three basic modeling functions: type = "glm",
the default, is used for functions with a univariate response and a linear
predictor and possibly a link function. This class includes linear models,
generalized linear models, robust regression, generalized least squares fit-
ting, linear and generalized linear mixed effects models and many others.
The type = "polr" is used for ordinal regression models, as in the polr

function in the MASS package, and similar methods described below in
Section 6. The The type = "multinom" for multinomial log-linear mod-
els as fit by the multinom function in nnet, and to polytomous latent class
models created with the poLCA function in the poLCA package.

call The Effect.default method uses the call to harvest additional argu-
ments that it needs. For type="glm", these arguments are formula, data,
contrasts, subset, family, and offset. The default is mod$call for S3
objects and mod@call for S4 objects.

formula In most cases the formula for the linear predictor is returned by for-

mula(mod), the default, but if this is not the case the value of this argu-
ment should be the value of the formula for fixed effects.

family GLM-like models include a family specifying both an error distrubtion
and a link function. If the family is returned by family(mod), you do
not need to specify this argument. See the betareg example in Section 5
below for an example of using this argument.

coefficients In many cases the (fixed-effect) coefficient estimates are returned
by coef(mod), the default, but if this is not the case then the value of this
argument should be the estimates of the coefficients in the linear predictor.
The functions in the effects package do not use estimates of random
effects.

2

vcov In many cases the estimated covariance matrix of the (fixed-effect) coeffi-
cient estimates is returned by vcov(mod), the default, but if this is not the
case then the value of this argument should be the estimated covariance
matrix of the (fixed-effect) coefficient estimates in the linear predictor.

Since the values of all the arguments in sources are default values for the gls

function, there is no need to have written the Effect.gls method, as the default
method would work.

2 Mixed Effects with lme (nlme package)

The lme function in the nlme package (Pinheiro et al., 2018) fits linear mixed
models. The required function for fitted objects from this function to be used
with effects functions is

Effects.lme <- function(focal.predictors, mod, ...){

args <- list(

formula = mod$call$fixed,

coefficients = mod$coefficients$fixed,

vcov = mod$varFix)

Effect.default(focal.predictors, mod, ..., sources=args)

}

The formula, coefficients and vcov arguments are set to non-default values.
The remaining arguments are default values.

3 Mixed Effects with the lmer (lme4 package)

The lme4 package (Bates et al., 2015) fits linear and generalized linear mixed ef-
fects models with the lmer and glmer functions, respectively. The same Effect
function can be used for lmer and glmer models.

The following method is a little more complicated because it contains an
additional argument KR to determine if the Kenward-Roger coefficient covariance
matrix is to be used to compute effect standard errors. The default is FALSE

because the computation is very slow. If KR = TRUE, the function also checks if
the pbkrtest package is present.

Effect.merMod <- function(focal.predictors, mod, ..., KR=FALSE){

if (KR && !requireNamespace("pbkrtest", quietly=TRUE)){

KR <- FALSE

warning("pbkrtest is not available, KR set to FALSE")}

fam <- family(mod)

args <- list(

call = mod@call,

coefficients = lme4::fixef(mod),

vcov = if (fam == "gaussian" && fam$link == "identity" && KR)

3

as.matrix(pbkrtest::vcovAdj(mod)) else as.matrix(vcov(mod)))

Effect.default(focal.predictors, mod, ..., sources=args)

}

Because lmer is an S4 object (tested using the isS4 function), the default for
call is mod@call, and this argument would have been set automatically had we
not included it in the above fucntion. The coefficient for an object created
by a call to lmer or glimer are not returned by coef(mod), so the value of
coefficients is the value returned by lme4::fixef(mod). The vcov estimate
contains its estimated variance covariance matrix of the fixed effects.

The formula for a mixed-effects model in the lme4 package specifies both the
linear predictor in the mean function and the linear predictor(s) in the variance
functions in terms with parentheses and and vertical bars such as (1 + age |

subject). The effects code will automatically remove any terms like these in
any formula.

4 Robust Linear Mixed Models (robustlmm pack-
age)

The rlmer function in the robustlmm package (Koller, 2016) fits linear mixed
models with a robust estimation method. As rlmer closely parallels the lmer

function, an object created by rlmer is easily used with effects:

Effect.rlmerMod <- function(focal.predictors, mod, ...){

args <- list(

coefficients = lme4::fixef(mod))

Effect.default(focal.predictors, mod, ..., sources=args)

}

5 Beta Regression

The betareg function in the betareg package (Grün et al., 2012) fits regressions
with a link function but with Beta distributed errors.

Effect.betareg <- function(focal.predictors, mod, ...){

coef <- mod$coefficients$mean

vco <- vcov(mod)[1:length(coef), 1:length(coef)]

betareg uses beta errors with mean link given in mod$link$mean.

We construct a family function based on the binomial() family with

fam <- binomial(link=mod$link$mean)

adjust the varince function to account for beta variance

fam$variance <- function(mu){

f0 <- function(mu, eta) (1-mu)*mu/(1+eta)

do.call("f0", list(mu, mod$coefficient$precision))}

fam$initialize <- expression({mustart <- y})

4

fam$aic <- function(...) NULL

args <- list(

call = mod$call,

formula = formula(mod),

family=fam,

coefficients = coef,

vcov = vco)

Effect.default(focal.predictors, mod, ..., sources=args)

}

Beta regression has a response y ∈ [0, 1], with the connection between the mean
µ of the Beta and a set for predictors x through a link function x′β = g(µ).
The variance function for the beta is var(y) = µ(1− µ)/(1 + φ), for a precision
parameter φ estimated by betareg.

The call to betareg does not have a family argument, although it does have
a link stored in mod$link$mean. For use with Effect.default, the function
above creates a family from the binomial family generator. It then adjusts
this family by changing from binomial variance to the variance for the beta
distribtuion. Since the glm function expects a variance that is a function of
only one parameter, we fix the value of the precision φ at its estimator from
the betareg fit, as shown in the funciton. We need to replace the initialize

function to one appropriate for y ∈ [0, 1]. Finally, although the aic function
is not used for computing effects, it is accessed by the call to glm. The aic

function for the binomial depends on named parameters not present in the beta
regression, and so we substitute a dummy function for binomial version.

6 Ordinal Models (ordinal package)

Proportional odds logit and probit regression models fit with the polr function
in the MASS package (Venables and Ripley, 2002) are supported in the effects

package. The ordinal package, (Christensen, 2015) contains three functions
that are very similar to polr. The clm and clm2 functions allow more link
functions and a number of other generalizations. The clmm function allows
including random effects.

6.1 clm

Effect.clm <- function(focal.predictors, mod, ...){

if (requireNamespace("MASS", quietly=TRUE)){

polr <- MASS::polr}

if(mod$link != "logit")

stop("Effects only supports the logit link")

if(mod$threshold != "flexible")

stop("Effects only supports the flexible threshold")

if(is.null(mod$Hessian)){

message("\nRe-fitting to get Hessian\n")

5

mod <- update(mod, Hess=TRUE)}

numTheta <- length(mod$Theta)

numBeta <- length(mod$beta)

or <- c((numTheta+1):(numTheta + numBeta), 1:(numTheta))

args <- list(

type = "polr",

coefficients = mod$beta,

vcov = as.matrix(vcov(mod)[or, or]))

Effect.default(focal.predictors, mod, ..., sources=args)

}

This function first checks that the MASS package is available. Since the clm func-
tion allows suppressing the computation of the Hessian, the function checks and
computes it if needed to get the estimated covariance matix. The clm function
orders the parameters in the order (threshold parameters, linear predictor pa-
rameters), so the next few lines identify the elements of vcov that are needed by
Effects. Since the polr function does not allow thresholds other thab flex-

ible, we don’t allow them either. Simiarly, we have only implemented effects
for the default logit link.

6.2 clm2

Effect.clm2 <- function(focal.predictors, mod, ...){

if (requireNamespace("MASS", quietly=TRUE)){

polr <- MASS::polr}

if(is.null(mod$Hessian)){

message("\nRe-fitting to get Hessian\n")

mod <- update(mod, Hess=TRUE)}

if(mod$link != "logistic")

stop("Effects only supports the logit link")

if(mod$threshold != "flexible")

stop("Effects only supports the flexible threshold")

numTheta <- length(mod$Theta)

numBeta <- length(mod$beta)

or <- c((numTheta+1):(numTheta + numBeta), 1:(numTheta))

args <- list(

type = "polr",

formula = mod$call$location,

coefficients = mod$beta,

vcov = as.matrix(vcov(mod)[or, or]))

Effect.default(focal.predictors, mod, ..., sources=args)

}

The syntax for clm2 is not the same as clm, so a separate method is required.

6

6.3 clmm

This function allows for random effects in an ordinal model.

Effect.clmm <- function(focal.predictors, mod, ...){

if (requireNamespace("MASS", quietly=TRUE)){

polr <- MASS::polr}

if(is.null(mod$Hessian)){

message("\nRe-fitting to get Hessian\n")

mod <- update(mod, Hess=TRUE)}

if(mod$link != "logit")

stop("Only the logistic link is supported by Effects")

if(mod$threshold != "flexible")

stop("Only threshold='flexible supported by Effects")

numTheta <- length(mod$Theta)

numBeta <- length(mod$beta)

or <- c((numTheta+1):(numTheta + numBeta), 1:(numTheta))

skip <- length(unique(model.frame(mod)[,1])) - 1

vcov <- matrix(NA, nrow=numBeta + skip, ncol=numBeta + skip)

sel <- rownames(vcov(mod)) %in% names(mod$beta)

vcov[1:numBeta, 1:numBeta] <- vcov(mod)[sel, sel]

args <- list(

type = "polr",

formula = fixFormula(as.formula(mod$formula)),

coefficients = mod$beta,

vcov = as.matrix(vcov))

Effect.default(focal.predictors, mod, ..., sources=args)

}

Complications here come from getting the right elements of vcov(mod) corre-
sponding to the fixed effects.

6.4 Others

The poLCA function in the poLCA package (Linzer and Lewis, 2011) fits polyto-
mous variable latent class models, which uses the multinomial effects plots.

The svyglm function in the survey package (Lumley, 2004, 2016) fits gen-
eralized linear models using survey weights.

References

Bates, D., M. Mächler, B. Bolker, and S. Walker (2015). Fitting linear mixed-
effects models using lme4. Journal of Statistical Software 67 (1), 1–48.

Christensen, R. H. B. (2015). ordinal—Regression Models for Ordinal Data.
R package version 2015.6-28.

7

Grün, B., I. Kosmidis, and A. Zeileis (2012). Extended beta regression in
R: Shaken, stirred, mixed, and partitioned. Journal of Statistical Soft-
ware 48 (11), 1–25.

Koller, M. (2016). robustlmm: An R package for robust estimation of linear
mixed-effects models. Journal of Statistical Software 75 (6), 1–24.

Linzer, D. A. and J. B. Lewis (2011). poLCA: An˚package for polytomous
variable latent class analysis. Journal of Statistical Software 42 (10), 1–29.

Lumley, T. (2004). Analysis of complex survey samples. Journal of Statistical
Software 9 (1), 1–19. R package version 2.2.

Lumley, T. (2016). survey: analysis of complex survey samples. R package
version 3.32.

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team (2016). nlme:
Linear and Nonlinear Mixed Effects Models. R package version 3.1-127.

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team (2018). nlme:
Linear and Nonlinear Mixed Effects Models. R package version 3.1-137.

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S (4th
ed.). New York: Springer-Verlag.

8

	Generalized Least Squares (45nlme package)
	Mixed Effects with 45lme (45nlme package)
	Mixed Effects with the 45lmer (45lme4 package)
	Robust Linear Mixed Models (45robustlmm package)
	Beta Regression
	Ordinal Models (45ordinal package)
	45clm
	45clm2
	45clmm
	Others

