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AUC curves are used to measure the accurary of a classification of two groups X and Y :

X1, . . . , XnX ∼ N (µX , σ
2
X)

Y1, . . . , YnY ∼ N (µY , σ
2
Y )

Y could be denoted as the healthy controls and X the cases with a particular disease.
When having small sample size (and therefore small values in the contingency table) the
confidence interval given with Wald (as in function biostatUZH::confIntAUC) will not perfom
well (fails). Hence, another way has to be found to compute the confidence interval. Pepe
(2003) illustrates how AUC curves can be described using the normal distribution:

a =
µY − µX
σY

b =
σX
σY

AUC = Φ
( a√

1 + b2

)
Assumption: equal variances

Under the assumption that both variances σX and σY are equal and known, the equations
take a much simpler form:

σ = σX = σY

a =
µY − µX

σ

b =
σX
σY

= 1

AUC = Φ
( a√

1 + b2

)
= Φ

( a√
2

)

The expected value of X and Y is estimated using the average and variance: µ̂X = x,
µ̂Y = y.
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To calculate the confidence interval, the SE(â) is needed. Given that µ̂X ∼ N (µX , σ
2/nX)

and µ̂Y ∼ N (µY , σ
2/nY )

SE(â) = SE
( µ̂X − µ̂Y

σ

)
=

√
V̂ ar

( µ̂X − µ̂Y
σ

)
=

√
V̂ ar

( µ̂X
σ

)
+ V̂ ar

( µ̂Y
σ

)
=

√
1

nX
+

1

nY
.

The (1− α)-confidence interval for a has the following form:

from alower = a− z · SE(â)

to aup = a+ z · SE(â)

where z refers to the (1-α/2)-quantile of the standard normal distribution.
The confidence interval limits of AUC are derived by calculating the percentile of the

confidence interval limits of â:

from Φ
(alower√

2

)
to Φ

(aup√
2

)
Assumption: not equal variances

If the assumption of equal variances would not hold, the standard error of AUC could be
derived using the multivariate delta method.
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