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1 Introduction

The SuperCurve package provides tools for the analysis of reverse-phase protein
arrays (RPPAs), which are also known as “tissue lysate arrays” or simply “lysate
arrays”.

1.1 The Biology of RPPAs

RPPAs resulted from an attempt to extend the microarray approach to the
measurement of proteins. A microarray is “forward-phase” in that it simulta-
neously measures the expression levels of many genes in one biological sample.
An RPPA is “reverse-phase” in that it simultaneously measures the expression
levels of one protein in many biological samples.

The biological samples of interest are lysed, producing a homogeneous mix-
ture (lysate), and these lysates are printed onto an array according to a dilution
series. The arrays are typically glass with a nitrocellulose membrane on one
side; the lysates are printed on the nitrocellulose.

In order to measure the protein of interest, the array is first interrogated with
an antibody specific to the protein of interest (the primary antibody, typically
derived from a mouse, rabbit or goat). This is allowed to bind, and loose
material is washed away. The array is then interrogated with a labeled antibody
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(a secondary antibody, such as anti-goat immunoglobulin) which recognizes the
primary antibody. This is allowed to bind, and loose material is washed away.
In the most common labeling approach, the secondary antibody is linked to an
enzyme, as with enzyme-linked immunosorbent assays (ELISAs). The enzyme
substrate is then introduced. The enzyme reacts with its substrate, causing
precipitate to build up near the site of the reaction: more of the protein of
interest at a spot means more enzyme should bind and more precipitate should
form. After a short period, the loose substrate is washed away. After drying, the
array is then imaged, typically with a flatbed scanner, producing a TIF image
file. (Ideally, the TIF file should be 16-bit grayscale. We have encountered
cases where the files were exported as true color (24-bit), and then converted
to grayscale afterwards. Depending on the software used, this latter step can
introduce substantial distortions.) The printed spots visible in the image file
are then quantified using software developed for cDNA microarrays.

Several other methods of labeling the secondary antibody have been tried,
including fluorescent dyes and quantum dots, but all methods still yield a TIF
image file which is then quantified.

1.2 The SuperCurve Model

A key distinction between reverse-phase and forward-phase assays is that for
reverse-phase assays the hybridization kinetics should be the same at every
spot, as all samples are being queried for the same protein. Thus, in the case
of lysate arrays, we expect there to be a single common dose-response curve,
instead of a separate one for each sample. In particular, we can borrow strength
across samples for the estimation of baseline and saturation intensity.

We assume that the observed intensity for sample i, dilution step j, replicate
k can be fit as

yijk = α+ β ∗ g(γ(δi + xij)) + εijk,

where g(x) = ex/(1 + ex). The shape parameters of the logistic response curve,
α, β, and γ are common for all samples. The xij are known offsets from the
level of interest, such as the undiluted or “neat” state. We typically use log2

units for xij , letting the adjustment to base e be subsumed into γ. The δi
terms represent the unknown true protein concentration at the reference level
for sample i. Finally, εijk is taken to be white noise.

We fit the above model using nls iteratively, alternating between fitting the
shape parameters and the sample concentrations.

1.3 The Classes

There are 3 key classes in the SuperCurve package:

• RPPA, representing the quantification of an array,

• RPPADesign, specifying where each sample/dilution step combination is
printed on the array, and
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• RPPAFit , the results of fitting the SuperCurve model to an RPPA, RP-
PADesign combination.

More details can be found in the documentation for RPPA, RPPA-class, RP-
PADesign, RPPADesign-class, RPPAFit , and RPPAFit-class, but we will at-
tempt to cover the high points below.

2 A Detailed Example: Breast Cancer Cell Lines

We begin with an example where we were attempting to measure the relative
abundances of several proteins within a panel of 40 breast cancer cell lines.
The proteins were chosen largely from the PI3K pathway, which is frequently
disregulated in tumors. We’re going to focus on 3 arrays from this study, corre-
sponding to the proteins AKT, β-catenin, and ERK2. These data are included
as the rppaCell dataset, described as data?rppaCell.

2.1 Getting Started

> library(SuperCurve)

> data(rppaCell)

> ls()

[1] "akt" "c.erk2" "ctnnb1" "design40"

There are two types of objects in the data file. First, we have an RPPADesign
object, design40, giving the layout of the array. For each spot, this specifies
what sample has been printed, and what the dilution level offset of that spot is
(in log2 units) relative to the reference level we’re trying to estimate. Second, we
have several RPPA objects, akt, c.erk2, and ctnnb1, each containing the spot-
level quantifications supplied by the microarray image quantification software.
These arrays were quantified using MicroVigene.

2.2 RPPA Details

If you’d like to take a look at the initial text files with the quantifications, feel
free; these are also included. These also allow us to illustrate how an RPPA
object can be constructed from a MicroVigene .txt file:

> extdata.dir <- system.file("extdata", package="SuperCurveSampleData");

> rawdata.dir <- file.path(extdata.dir, "rppaCellData");

> filename <- "Akt.txt";

> aktTake2 <- RPPA(file=filename, path=rawdata.dir);

> class(aktTake2);

[1] "RPPA"

attr(,"package")

[1] "SuperCurve"
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> isTRUE(all.equal(akt, aktTake2, check.attributes=FALSE));

[1] TRUE

This RPPA object is the same as akt. Now, there’s really not that much to an
RPPA object:

> slotNames(aktTake2);

[1] "data" "file" "antibody"

> aktTake2@file;

[1] "Akt.txt"

just the data frame containing the quantifications and the file the data was
acquired from.

Now, we’ve seen what the file slot contains, but what about the data

slot? As mentioned above, it’s simply a data frame, with named components
corresponding for the most part to measurements associated with each spot.
Several of the functions that act on RPPA objects have a measure argument,
and they’re simply looking for the name of the appropriate component. What
do we have here?

> summary(aktTake2)

An RPPA object loaded from file âĂIJAkt.txtâĂI

antibody: Akt

Main.Row Main.Col Sub.Row Sub.Col

4 10 4 4

Mean.Net Mean.Total Median.Net Vol.Bkg Vol.Dust

Min. : 279 Min. : 783 Min. : 210 Min. : 23520 Min. :0

1st Qu.: 2506 1st Qu.: 4176 1st Qu.: 2455 1st Qu.: 66936 1st Qu.:0

Median : 6585 Median : 8916 Median : 7119 Median : 88560 Median :0

Mean : 8022 Mean :10210 Mean : 8525 Mean :104179 Mean :0

3rd Qu.:13042 3rd Qu.:15522 3rd Qu.:14078 3rd Qu.:119856 3rd Qu.:0

Max. :22090 Max. :25409 Max. :23008 Max. :594624 Max. :0

> names(aktTake2@data)

[1] "Main.Row" "Main.Col" "Sub.Row" "Sub.Col" "Sample"

[6] "Mean.Net" "Mean.Total" "Median.Net" "Vol.Bkg" "Vol.Dust"

Most of the columns have ready interpretations, but the first six here are special.
An RPPA object must have Main.Row, Main.Col, Sub.Row, and Sub.Col to
specify the position of the spot, Sample to tell us what the software thinks was
printed, and Mean.Net as a background-corrected measure of spot intensity.
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The generator function is tuned for reading MicroVigene files at present.
If we have other types of data files, we can use the software argument of the
RPPA generator to invoke our own function to populate the data manually.
The function must take a connection object and return a data.frame object.

instead. might want to assemble an RPPA object more directly.

> read.user <- function(file) {

+ df <- read.delim(file, skip=4);

+ names(df)[5] <- "Sample";

+ names(df)[6] <- "Mean.Net";

+ return(df);

+ }

> filename <- "Akt.txt";

> aktTake3 <- RPPA(file=filename, path=rawdata.dir, software="user");

> isTRUE(all.equal(akt, aktTake3, check.attributes=FALSE));

[1] TRUE

again, this RPPA object is just the same as the others that we have assembled
for AKT.

Given an RPPA object, one of the first things we can do is simply look at
the data, by checking heatmap images of the quantifications spatially arranged
to match their positioning on the array.

> image(akt);
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Mean.Net:  AKT

File: Akt.txt
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By default, image will use “Mean.Net” as the measure. Different spots on the
array are separated by white lines, and different subgrids (patches) are separated
by black lines. Here, we can see that the top 2 rows in each patch are different
than the bottom 2 rows. To see how big the difference is, let’s add a colorbar:

> image(akt, "Mean.Net", colorbar=TRUE);
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The top 2 rows are decidedly brighter. This pattern is due to the design of the
arrays used in this experiment. Every patch corresponds to a different sample,
and the spots within a patch comprise two replicates of an 8-step dilution series
(protein concentration decreases moving from left to right here). The top 2 rows
are replicates of the first 4 dilution steps, and the bottom 2 rows are replicates
of the last 4. We’ll return to the design shortly.

In addition to measures of foreground intensity such as“Mean.Net”, measures
of background (such as “Vol.Bkg”) can often suggest potential problems. For
example,

> image(akt, "Vol.Bkg", colorbar=TRUE);
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shows that something odd may have happened in the patch at Main.Row 3,
Main.Col 6 (try calling image with “Main.Row” or “Main.Col” as the measure to
get a better feel for the coordinates, if needed). Thus, we’ll pay special attention
to the results from this patch. We note in passing that the numbers for Vol.Bkg
correspond to the estimated background at the spot times the number of pixels
in the spot, and as such aren’t directly comparable to the values from Mean.Net
(especially as the size of the spot can vary). The scaled background values
correspond to the difference between Mean.Total and Mean.Net. If desired, we
can explore the exact relationship further:

> with(akt@data,

+ plot(Vol.Bkg / (Mean.Total - Mean.Net)));

Similar checks of the background for the other RPPA objects show that there
was a problem affecting the bottom edge of the β-catenin slide, ctnnb1.

> image(ctnnb1, "Vol.Bkg", colorbar=TRUE);
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Estimates for samples in these regions are decidedly suspect.

2.3 RPPADesign Details

Now, the RPPA objects are only part of the story; we can’t proceed to quantify
the different samples unless we know the layout of the samples on the array.
This information is contained in an RPPADesign object, here design40. Let’s
take a closer look at that.

> class(design40);

[1] "RPPADesign"

attr(,"package")

[1] "SuperCurve"

> slotNames(design40);

[1] "call" "layout" "alias" "sampleMap" "controls"

> class(design40@layout);

[1] "data.frame"
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The RPPADesign object has four slots: layout, alias, sampleMap, and con-

trols. Of these, the most important is layout, which is a data frame specifying
what is printed at each spot. If we take a look at the contents of the layout,

> names(design40@layout);

[1] "Main.Row" "Main.Col" "Sub.Row" "Sub.Col" "Sample" "Steps" "Series"

most of the terms look familiar. Main.Row, Main.Col, Sub.Row and Sub.Col

specify the position of the spot on the array. Sample gives the name of the
biological sample printed at the spot. Steps gives the dilution step of the spot
within the sample in terms of a log2 offset relative to a reference point within
the series. Finally, Series lets us subset the measurements within a sample, if
desired. To make this clearer, let’s take a look at the first few entries.

> design40@layout[1:17, ];

Main.Row Main.Col Sub.Row Sub.Col Sample Steps Series

1 1 1 1 1 sample1.Rep1 3.5 sample1.Rep1

2 1 1 1 2 sample1.Rep1 2.5 sample1.Rep1

3 1 1 1 3 sample1.Rep1 1.5 sample1.Rep1

4 1 1 1 4 sample1.Rep1 0.5 sample1.Rep1

5 1 1 2 1 sample1.Rep2 3.5 sample1.Rep2

6 1 1 2 2 sample1.Rep2 2.5 sample1.Rep2

7 1 1 2 3 sample1.Rep2 1.5 sample1.Rep2

8 1 1 2 4 sample1.Rep2 0.5 sample1.Rep2

9 1 1 3 1 sample1.Rep1 -0.5 sample1.Rep1

10 1 1 3 2 sample1.Rep1 -1.5 sample1.Rep1

11 1 1 3 3 sample1.Rep1 -2.5 sample1.Rep1

12 1 1 3 4 sample1.Rep1 -3.5 sample1.Rep1

13 1 1 4 1 sample1.Rep2 -0.5 sample1.Rep2

14 1 1 4 2 sample1.Rep2 -1.5 sample1.Rep2

15 1 1 4 3 sample1.Rep2 -2.5 sample1.Rep2

16 1 1 4 4 sample1.Rep2 -3.5 sample1.Rep2

17 1 2 1 1 sample2.Rep1 3.5 sample2.Rep1

For this array, the first 16 spots comprise the patch in the upper left hand
corner, and all of these spots are derived from sample 1. The reference point
was taken to be midway through the 8-step dilution series, so the most intense
(undiluted) spots have a step value of 3.5. The replicate measurements for this
sample have been arbitrarily grouped into two distinct “series”, in part as a
consistency check. When we estimate protein concentrations, we produce an
estimate for each series; series from the same sample should yield similar values.
The pattern shown here is repeated for the other patches on the array.

The trickiest part of constructing an RPPADesign object is often the speci-
fication of the dilution pattern and the grouping into series. For example,
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> steps <- rep(c(rep(8:5, 2), rep(4:1, 2)), 40) - 4.5;

> rep.temp <- factor(paste('Rep', rep(rep(1:2, each=4), 80), sep=''));
> series <- factor(paste(as.character(akt@data$Sample),

+ as.character(rep.temp),

+ sep='.'));
> design40Take2 <- RPPADesign(akt, steps=steps, series=series);

This version of the generator extracts some of the needed layout information
from the RPPA object itself. Now, we can construct an RPPADesign object
using a more low-level approach, such as reading the sample information (and
possibly the dilution levels as well) from a separate file.

> filename <- "Akt.txt";

> aktTemp <- read.delim(file=file.path(rawdata.dir, filename), skip=4);

> names(aktTemp)[5] <- "Sample";

> designColHdrs <- c("Main.Row", "Main.Col", "Sub.Row", "Sub.Col", "Sample");

> aktTemp <- aktTemp[, names(aktTemp) %in% designColHdrs];

> steps <- rep(c(rep(8:5, 2), rep(4:1, 2)), 40) - 4.5;

> rep.temp <- factor(paste('Rep', rep(rep(1:2, each=4), 80), sep=''));
> series <- factor(paste(as.character(aktTemp$Sample),

+ as.character(rep.temp),

+ sep='.'));
> aktLayout <- data.frame(aktTemp, Steps=steps, Series=series);

> aktNames <- levels(aktLayout$Sample);

> aktAlias <- list(Alias=aktNames, Sample=aktNames);

> aktSampleMap <- as.vector(tapply(as.character(aktLayout$Sample),

+ list(series),

+ function(x) x[[1]]));

> names(aktSampleMap) <- levels(aktLayout$Series);

> design40Take3 <- new("RPPADesign", layout=aktLayout,

+ alias=aktAlias, sampleMap=aktSampleMap);

Rather ornate, but it pulls things together.

2.4 RPPAFit Details

Given an RPPA object and an RPPADesign object, we can use a model to
estimate the protein concentrations, producing an RPPAFit object. The fitting
function requires that we specify the measure to be used, in addition to the
RPPA and RPPADesign objects.

> aktFit <- RPPAFit(akt, design40, "Mean.Net");

> class(aktFit);

[1] "RPPAFit"

attr(,"package")

[1] "SuperCurve"
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> slotNames(aktFit);

[1] "call" "rppa" "design" "measure"

[5] "method" "trimset" "model" "concentrations"

[9] "lower" "upper" "conf.width" "intensities"

[13] "ss.ratio" "warn" "version"

> aktFit@call;

RPPAFitFromParams(rppa = rppa, design = design, fitparams = params)

> aktFit@version;

[1] "1.5.17"

This fits the basic SuperCurve model: a logistic dose response curve common
to all samples, with a separate offset term for each series (not sample).

We can get a quick feel for the shape of the curve by looking at a “cloud”
plot showing the observed intensity and estimated log protein concentration for
each spot:

> plot(aktFit); # basic cloud plot
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The data appears to follow a curve pretty well here. We can get a better
idea of how good the fit is by decomposing the observed values into “fitted” +
“residuals”. In looking at the fitted values, we need to keep in mind that the
model we are using results in fitted values for the observations in terms of both
intensity (the default, or “Y”) and log concentration (“X”).

> plot(fitted(aktFit, 'X'), fitted(aktFit)); # the main curve

> plot(fitted(aktFit, 'X'), resid(aktFit)); # residuals
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fitted(aktFit, "X")
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d(
ak

tF
it)

There is clearly an increase in the variability of the residuals as a function of
the estimated log concentrations. This version of the package does not address
this issue.

In any event, there is at least one clear outlier in the residuals. We may be
able to understand this better if we look at the residuals arranged spatially:

> image(aktFit);
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Residuals:  AKT

File: Akt.txt

4 8 12 16 20 24 28 32 36 40

4
8

12
16

The most extreme residuals are located in the patch in Main.Row 3, Main.Col
6, which we had already flagged for attention based on odd behavior in the
background.

We can also look at fits of each individual series to the underlying response
curve:

> oldAsk <- par(ask=TRUE);

> plot(aktFit, type="individual");

> par(oldAsk);

As this produces a lot of figures, we have chosen to not reproduce them here.
So, what was the estimated concentration for the first series? We can find

out in a few different ways.

> aktFit@concentrations[1];

sample1.Rep1

-2.467755

> aktFit@concentrations["sample1.Rep1"];

sample1.Rep1

-2.467755
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Individual elements are named, so we can readily extract information about the
samples of interest. Similarly, we can get the parameters for the fitted model in
a few different ways.

> coefficients(aktFit);

> coef(aktFit);

> aktFit@coefficients;

Now, at this point we’ve computed fits by series. We can use this to give us
some idea of the stability of the results for a sample by doing the equivalent of
an MA-plot, plotting the difference in replicates as a function of their average.

> M1 <- (aktFit@concentrations[seq(2, 80, 2)] -

+ aktFit@concentrations[seq(1, 80, 2)]);

> A1 <- (aktFit@concentrations[seq(2, 80, 2)] +

+ aktFit@concentrations[seq(1, 80, 2)]) / 2;

> plot(A1, M1);
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Eyeballing the fit suggests a standard deviation of about 0.2 (in log2 units).
Given the x-range, this is acceptable. Of course, if we know that replicates
agree fairly well, we’d like to go back and fit the results for each sample without
splitting things up!

The main thing this requires is a slightly different RPPADesign object,
grouping all spots from a single sample together.
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> steps <- rep(c(rep(8:5, 2), rep(4:1, 2)), 40) - 4.5;

> rep.temp <- factor(paste('Rep', rep(rep(1:2, each=4), 80), sep=''));
> series <- akt@data$Sample;

> design40Sample <- RPPADesign(akt, steps=steps, series=series);

Now, we simply rerun the fit

> aktFitSample <- RPPAFit(akt, design40Sample, "Mean.Net");

Note: This document was generated using the Sweave function from the R
tools package. The source file is in the /doc directory of the package SuperCurve.
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