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Abstract

Background and Objective. Surrogate endpoints are attractive for use in clinical trials instead

of well-established endpoints because of practical convenience. To validate a surrogate endpoint,

two important measures can be estimated in a meta-analytic context when individual patient

data are available: the R2
indiv or the Kendall’s τ at the individual level, and the R2

trial at the

trial level. We aimed at providing an R implementation of classical and well-established as well

as more recent statistical methods for surrogacy assessment with failure time endpoints. We

also intended incorporating utilities for model checking and visualization and data generating

methods described in the literature to date.

Methods. In the case of failure time endpoints, the classical approach is based on two steps.

First, a Kendall’s τ is estimated as measure of individual level surrogacy using a copula model.

Then, the R2
trial is computed via a linear regression of the estimated treatment effects; at this

second step, the estimation uncertainty can be accounted for via measurement-error model or

via weights. In addition to the classical approach, we recently developped an approach based

on bivariate auxiliary Poisson models with individual random effects to measure the Kendall’s

τ and treatment-by-trial interactions to measure the R2
trial. The most common data simulation

models described in the literature are based on: copula models, mixed proportional hazard

models, and mixture of half-normal and exponential random variables.

Results. The R package surrosurv implements the classical two-step method with Clayton,

Plackett, and Hougaard copulas. It also allows to optionally adjust the second-step linear

regression for measurement-error. The mixed Poisson approach is implemented with different

reduced models in addition to the full model. We present the package functions for estimating

the surrogacy models, for checking their convergence, for performing leave-one-trial-out cross-

validation, and for plotting the results. We illustrate their use in practice on individual patient

data from a meta-analysis of 4069 patients with advanced gastric cancer from 20 trials of

chemotherapy.

Conclusions. The surrosurv package provides an R implementation of classical and recent

statistical methods for surrogacy assessment of failure time endpoints. Flexible simulation

functions are available to generate data according to the methods described in the literature.
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1. Introduction1

Surrogate endpoints are endpoints which can reliably be used instead of well-established (true)2

endpoints and which yield improved practical convenience in terms of lower cost, more rapid3

occurrence, increased ease of assessment, or reduced invasiveness [4]. Two conditions must be4

fulfilled for surrogate endpoint to be reliable: it must be strongly associatied with the true5

endpoint at the individual level and the effect of the treatment on it must be strongly assciated6

with the effect on the true endpoint. In a meta-analytic context and when the endpoints are7

gaussian [5], the usual measure of individual level surrogacy is the R2
indiv between the endpoints,8

which measures the part of variability of the true endpoint T explained by the surrogate endpoint9

S. At the trial level, the usual measure of surrogacy is given by the R2
trial between the treatment10

effects on the two endpoints, that measures the part of variability of the treatment effect on T11

explained by the treatment effect on S.12

In the case of failure time (survival) endpoints, the classical methods developped for normally-13

distributed endpoints cannot be used because of right censoring. Burzykowski and colleagues14

[3] developped a meta-analytic model for failure time endpoints that measures individual level15

surrogacy in terms of Kendall’s τ [18] and trial level surrogacy in terms of R2
trial. This method is16

largely employed in numerous applications in the medical literature. Because of some limitations17

including convergence issues, the interpretation of the results is difficult in some cases [26, 2].18

Recently, we considered using bivariate mixed proportional hazard models [10], which are the19

most natural adaptation of the above-mentioned meta-analytic approach by Buyse et al. [5] to20

the survival case. We exploited [36] the connection between the proportional hazard models21

and the Poisson log-linear models [40, 20] to build the joint model for the two treatment effects22

adjusted for individual dependence and baseline heterogeneity across trials.23

In the present paper, we show how the classical and more recent models can be fitted by24

use of the R [29] package surrosurv [34]. Model checking can be performed thanks to utilities25

for convergence assessment and leave-one-trial-out crossvalidation. User-friendly functions allow26

the user to clearly show the results of the estimated models. We illustrate the available functions27

using individual data of a meta-analysis of 20 randomized trials of chemotherapy, including 406928

patients with advanced/recurrent gastric cancer [14, 27].29

2. Computational methods and theory30

Let Tij and Sij be the times to the true and the surrogate endpoints, respectively, for patient31

j ∈ {1, . . . , ni} in trial i ∈ {1, . . . , N}. Let Zij be the indicator of the treatment arm to which32

the j-th patient in the i-th trial has been randomized.33

2.1. Two-step copula approach34

The model proposed by Burzykowski et al. [3] for failure time endpoints consists in two steps,35

one for the individual and one for the trial level.36
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Individual-level. At the first step, the bivariate proportional hazard model is defined by means37

of the marginal hazard functions and of the copula function to account for their dependence:38 
hSij(s;Zij) = hSi(s) exp

{
αiZij

}
hT ij(t;Zij) = hT i(t) exp

{
βiZij

}
Cθ(SSij(s), ST ij(t))

(1)

where hSi(s) and hT i(s) are the trial-specific baseline hazards, αi and βi the treatment effects,39

and SSij(s) and ST ij(t) the survival functions associated to hT ij and hT ij . The dependence40

parameter θ is reparametrized into the individual-level Kendall’s τ , according to the copula41

function thanks to the tau() function in the copula package [16, 41].42

In the surrosurv package, Weibull marginal hazards are implemented, together with three43

copula functions:44

� the Clayton copula [7]45

Cθ(u, v) =
(
u−θ + v−θ − 1

)−1/θ
, (2)

with θ > 0 and Kendall’s τ = θ/(θ + 2);46

� the Plackett copula [28]

Cθ(u, v) =
[
Q−R1/2

]
/
[
2(θ − 1)

]
, (3)

Q = 1 + (θ − 1)(u+ v),

R = Q2 − 4θ(θ − 1)uv,

with θ > 0 and Kendall’s τ computed using numerical integration as no analytical expres-47

sion is available;48

� the Hougaard copula [17]49

Cθ(u, v) = exp

(
−
[
(− lnu)1/θ + (− ln v)1/θ

]θ)
, (4)

with θ ∈ (0, 1) and Kendall’s τ = 1− θ.50

Further details on these three copula models can be found in the vignette('copula', package51

= 'surrosurv').52
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Trial level. At the second step, the estimates of the treatment effects obtained at the first step

are assumed to follow the mixed model(
α̂i

β̂i

)
=

(
αi

βi

)
+

(
εai

εbi

)
, (5)(

αi

βi

)
∼ N

((
α

β

)
,D =

(
d2a dadbρtrial

dadbρtrial d2b

))
, (6)(

εai

εbi

)
∼ N

((
0

0

)
,Ωi =

(
ω2
ai ωaiωbiρεi

ωaiωbiρεi ω2
bi

))
. (7)

where (αi, βi)
′ are the true treatment effects and (εai, εbi)

′ the estimation errors.53

The trial-level surrogacy measure is R2
trial = ρ2trial. In practice, we compute the ρtrial via a54

linear regression of the βi’s over the αi’s adjusted by measurement error by fixing the Ωi’s at55

their estimates from the first step [39] by using the mvmeta package [12, 11]. This adjusted56

(for measurement error) model is sometimes computationally challenging and does not always57

converge. The surrosurv package returns also the so-called unadjusted R2
trial, obtained using58

a linear regression — equivalent to fixing all the elements of Ωi equal to 0 — by weigthing the59

observations (αi, βi)
′ by the trial size, in order to account somehow indirectly and approximately60

for estimation uncertainty.61

2.2. One-step mixed Poisson approach62

Let us assume that the bivariate proportional hazard model given by the first two lines of63

equation (1) holds conditionally on an individual random effect uij ∼ N (0, σ2indiv):64 hSij(s | uij) = hSi(s) exp {uij + αiZij}

hT ij(t | uij) = hT i(t) exp {uij + βiZij} .
(8)

Note that this corresponds to a shared frailty model with bivariate clusters [10]. The shared65

frailty term uij accounts for individual level dependence.66

It is well-known (see for instance [40, 9]) that the parameters of Cox models can be estimated67

by fitting a so-called ‘auxiliary’ Poisson log-linear regression model, by dividing the time scale68

into intervals k = 1, . . . ,K. The auxiliary Poisson model provides the same estimator as the69

Cox model if the bounds of the intervals are all the observed event times, and an approximation70

of the Cox estimators otherwise. In the surrogacy assessment context, the parameters of the71

bivariate frailty model (8) can be estimated via a bivariate mixed Poisson model72 log
(
µ
(k)
Sij

)
= µ

(k)
Si + uij + αiZij + log

(
y
(k)
Sij

)
log
(
µ
(k)
T ij

)
= µ

(k)
T i + uij + βiZij + log

(
y
(k)
T ij

) (9)
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with y
(k)
Sj and y

(k)
Tj the time spent at risk by subject i in trial j for each endpoint during the73

period k.74

Individual-level surrogacy. The estimated variance of the shared frailties uij is σ̂2indiv and can75

be used to estimate the Kendall’s τ̂ = 4
∫∞
0 sL(s)L(2)(s)ds − 1, where L(s) and L(2)(s) are76

the Laplace transform of the frailty distribution and its second derivative. As an analytic77

expression of L(s) is not available for the log-normal frailty distribution, we approximated it78

using the Laplace method [15], implemented in the fr.lognormal() function in the parfm79

package [23, 35].80

Trial-level surrogacy. In model (9), the trial-specific treatment effects are again assumed to81

follow the binormal distribution (6). Thus, the correlation ρtrial between the two treatment82

effects provides us with the coefficient of determination R2
trial = ρ2trial, also referred to simply as83

R2.84

Reduced Poisson models. The surrosurv package can compute four reduced versions of the85

full model (9) that may turn out to be useful in case of convergence issues with the full model.86

� Model Poisson T has random trial-treatment interactions αi and βi, but does not incorpo-87

rate individual effects (uij ≡ 0). It assumes common baselines between trials (µ
(k)
Si = µ

(k)
S ,88

µ
(k)
T i = µ

(k)
T , ∀i). This model provides only the trial-level measure of surrogacy R2

trial.89

� Model Poisson I contains individual random effects uij , but not the trial-specific treat-90

ment effects (αi = α, βi = β,∀i) and has common baselines between trials. This model91

provides only the individual-level measure of surrogacy τ .92

� Model Poisson TI incorporates both random trial-treatment interactions (αi, βi)
′ and93

individual random effects uij , but still has common baselines between trials. It provides94

both individual-level and trial-level measures of surrogacy τ and R2
trial.95

� Model Poisson TIa extends the model Poisson TI by accounting for trial-specific baseline96

risks, using shared random effects at the trial level: µSi = µS +mi, µT i = µT +mi, with97

mi ∼ N (0, σ2m).98

3. Program description with a data example99

We illustrate the use of the functions in the surrosurv package on the individual patient data100

of the advanced GASTRIC meta-analysis [14, 27].101

library(surrosurv)

packageVersion('surrosurv')

## [1] '1.1.15'
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Figure 1: Survival curves for overall survival (T ) and progression-free survival S in the advanced
GASTRIC meta-analysis

The individual data of the 4069 patients, already made public by [6], are also available directly102

in R in the surrosurv package:103

data('gastadv')

nrow(gastadv)

## [1] 4069

The data set contains the following variables:104

names(gastadv)

## [1] "timeT" "statusT" "statusS" "timeS" "trialref" "trt"

## [7] "id"

where timeT and timeS are the (possibly censored) times for overall survival (T) and for105

progression-fre survival (S) expressed in days, statusT and statusS are the associated indi-106

cators of censoring (0) or event (1), trialref is the trial indicator (i), trt is the treatment107

arm (-0.5 for control and 0.5 for chemotherapy), and id is the patient indicator (j). Figure 1108

shows the Kaplan–Meier curves for overall survival, the true endpoint T , and progression-free109

survival, the candiddate surrogate S.110
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3.1. Fitting the surrogacy models111

The surrogacy models presented in Section 2 can be fitted via the surrosurv() function.112

The only mandatory argument for the surrosurv() function is data, which has to be a113

data.frame with columns114

� trialref, a factor containing the trial identifier;115

� trt, the treatment arm, coded as -0.5 vs. 0.5;116

� id, a factor containing the patient id;117

� timeT and timeS, two positive-valued numerical variables, containing the observed or118

censored times of the true endpoint T and of the candidate surrogate S, respectively;119

� statusT and statusS, the censoring/event (0/1) indicators of T and S, respectively.120

A second argument, models, can optionally contain the list of the models to fit (any of121

clayton, plackett, hougaard, or poisson). If not specified, all of them are fitted.122

Two further parameters, intWidth and nInts, specify the width and the number of time123

intervals for data Poissonization. These parameters are passed to the function poissonize(),124

described in the Appendix (Sec. A). At most one of them can be specified. By default, nInts125

= 8 which means that the study period is divided into eight periods, the length of which is126

fixed so that 1/8th of the observed events falls in each interval.127

The optimizer used for optimization of the copula models and the Poisson models can be128

passed to the optimx package [24, 25] via the arguments cop.OPTIMIZER and poi.OPTIMIZER.129

The last parameter, verbose, is a logical value stating whether the function should print out130

the model being fitted (default: FALSE).131

The surrogacy models for the advanced GASTRIC cancer meta-analysis are obtained as132

follows:133

allSurroRes <- surrosurv(gastadv, verbose = TRUE)

## Computation may take very long. Please wait...

## - Estimating model: Clayton (5.1 mins)

## - Estimating model: Plackett (4.6 mins)

## - Estimating model: Hougaard (6.7 mins)

## - Data poissonization (3.9 secs)

## - Estimating model: Poisson T (1.2 mins)

## - Estimating model: Poisson I (1.9 mins)

## - Estimating model: Poisson TI (4.2 mins)

## - Estimating model: Poisson TIa (2.2 mins)
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Note that the computation time of the surrogacy model estimation can be long. In this134

example, the computations required 38 mins on a PC with an Intel® quad-core CPU E3-1280135

V2 with 3.60 GHz clock speed and 16GB of RAM. The results are an object of class surrosurv136

and the estimated Kendall’s τ and R2 can be easily displayed:137

allSurroRes

## kTau R2

## Clayton unadj 0.61 0.45

## Clayton adj 0.61 0.41

## Plackett unadj 0.62 0.45

## Plackett adj 0.62 0.4

## Hougaard unadj 0.32 0.45

## Hougaard adj 0.32 0.38

## PoissonT -.-- 1

## PoissonI 0.51 -.--

## PoissonTI 0.51 0.63

## PoissonTIa 0.51 0.83

For each copula model, both the results with measurement error adjustment (adj) and with-138

out adjustment (unadj) are shown.139

3.1.1. Assessing convergence140

The function convergence() checks whether convergence criteria are met by each of the fit-141

ted models. Three convergence criteria are considered. The first criterion, maxSgrad, verifies142

whether the maximum gradient is small enough. The two other criteria, minHev and minREev,143

verify whether the minimum eigenvalue of the Hessian matrix of the fixed parameters (H) and144

of the covariance matrix of the random effects (RE) are big enough, in order to assure the pos-145

itive definitess of the two matrices. Two parameters can be used to tune the thresholds for146

‘small enough’ maximum gradient and for ‘big enough’ minmum eigen value: kkttol (1e-2 by147

default), and kkt2tol (1e-8 by default).148

convergence(allSurroRes)
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## maxSgrad minHev minREev

## Clayton unadj FALSE FALSE ---

## Clayton adj FALSE FALSE TRUE

## Plackett unadj FALSE FALSE ---

## Plackett adj FALSE FALSE TRUE

## Hougaard unadj FALSE TRUE ---

## Hougaard adj FALSE TRUE TRUE

## PoissonT TRUE TRUE FALSE

## PoissonI TRUE TRUE ---

## PoissonTI TRUE TRUE TRUE

## PoissonTIa TRUE FALSE TRUE

If the values of the minimum gradient and of the maximum eigenvalues are needed, the149

function convals() can be used:150

convals(allSurroRes)

## maxSgrad minHev minREev

## Clayton unadj 1.499287e+00 -6.118457e+00 ---

## Clayton adj 1.499287e+00 -6.118457e+00 1.010837e-02

## Plackett unadj 3.842114e+02 -5.235651e+00 ---

## Plackett adj 3.842114e+02 -5.235651e+00 8.895006e-03

## Hougaard unadj 1.416081e+01 7.729161e-01 ---

## Hougaard adj 1.416081e+01 7.729161e-01 8.018467e-03

## PoissonT 2.801471e-05 1.291134e+02 1.116468e-13

## PoissonI 1.128738e-05 6.799117e+01 ---

## PoissonTI 1.541625e-05 6.697215e+01 2.041620e-02

## PoissonTIa 1.995408e-04 -1.456489e+07 1.024375e-01

3.2. Prediction of the treatment effect151

When fitting surrogacy models, an estimate of the treatment effects on the two endpoints is152

computed for each trial. The function predict(), applied to an object of class surrosurv,153

returns the predictions of the treatment effects for each trial. The minimal syntax is predict(154

allSurroRes), but one can be interested in prediction of only one of the fitted models:155

predict(allSurroRes, models = 'PoissonTI')
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Figure 2: Predictions for the advanced GASTRIC meta-analysis as computed by the adjusted
Clayton copula model, which had poor convergence metrics, and by the Poisson TI
model, which was deemed to have converged. HR = hazard ratio.

## Treatment effect prediction for surrosurv object

##

## Poisson TI

## 1 2 3 4 5 6

## Treatment effects on S: -0.52 -0.42 -0.38 -0.08 -0.51 -0.38 ...

## Treatment effects on T: -0.26 -0.08 -0.27 0.41 -0.41 -0.15 ...

This function returns an object of class predictSurrosurv.156

The predicted treatment effects can also be vizualied graphically using the linear regression157

of the effect on T given the effect on S. The usual surrogacy plot is obtained using the function158

plot() for the classes surrosurv and predictSurrosurv. For example, the surrogacy plots159

for the adjusted Clayton copula and the Poisson TI models in the advanced GASTRIC meta-160

analysis (Fig. 2) can be obtained as follows:161

plot(allSurroRes, c('Clayton adj', 'PoissonTI'))

The argument surro.stats controls whether the estimated Kendall’s τ and R2 must be162

displayed on the plots; pred.ints controls whether the prediction intervals must be plotted;163

show.ste controls whether the surrogate threshold effect (STE) must be displayed on the plots.164
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The STE is the minimal treatment effect to be observed on the surrogate endpoint S to predict165

a statistically significant effect on the true endpoint T [1]. The value of the STE estimated166

by each surrogacy model can be obtained via the function ste(), both in terms of regression167

parameter (beta) and in terms of hazard ratio (HR):168

ste(allSurroRes)

## beta HR

## Clayton.unadj -0.61 0.54

## Clayton.adj -0.44 0.65

## Plackett.unadj -0.61 0.54

## Plackett.adj -4.15 0.02

## Hougaard.unadj -0.61 0.54

## Hougaard.adj -1.30 0.27

## PoissonT -0.17 0.84

## PoissonTI -0.65 0.52

## PoissonTIa -1.16 0.31

3.2.1. Leave-one-trial-out cross-validation169

One technique used to assess the validity of the surrogacy model is to apply the leave-one-170

out principle to the trials in the meta-analysis. This means that, for each trial, the observed171

treatment effect on S is compared to its prediction obtained by entering the observed effect on172

T in the surrogacy model fitted on the other N − 1 trials. [22, 21, 37]. The function loovc()173

allows performing this evaluation for a given list of models. The cross-validation requires fitting174

as many models as the number of trials N . As each model is usually very time-consuming to175

converge, the function loovc() has been implemented to fit the N models by parallel computing.176

The argument parallel is a logical for allowing or not such a parallelization, whereas nCores177

allows specifying the number of cores to use. By default, parallel = TRUE and nCores is set178

to the minimum between N and the maximum number of cores on the machine.179

loocvRes <- loocv(gastadv, models = c('Clayton', 'PoissonTI'))

## Parallel computing on 20 cores (the total number of trials)

The results of the crossvalidation can be printed180

loocvRes
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##

## Clayton copula (Unadjusted)

## 1 2 3 4 5 6

## obsBeta -0.31 -0.21 -0.09 -0.02 -0.22 -0.34 ...

## predict -0.40 -0.31 -0.07 -0.17 -0.14 -0.27 ...

## lwr -0.76 -0.65 -0.42 -0.51 -0.48 -0.62 ...

## upr -0.05 0.02 0.28 0.17 0.21 0.09 ...

## kTau 0.60 0.60 0.61 0.60 0.60 0.60 ...

## R2 0.49 0.49 0.45 0.46 0.46 0.44 ...

##

## Clayton copula (Adjusted)

## 1 2 3 4 5 6

## obsBeta -0.31 -0.21 -0.09 -0.02 -0.22 -0.342 ...

## predict -0.39 -0.31 -0.09 -0.18 -0.14 -0.261 ...

## lwr -0.69 -0.57 -0.35 -0.41 -0.39 -0.517 ...

## upr -0.09 -0.04 0.17 0.06 0.10 -0.004 ...

## kTau 0.60 0.60 0.61 0.60 0.60 0.605 ...

## R2 0.46 0.45 0.42 0.46 0.43 0.411 ...

##

## Poisson TI

## 1 2 3 4 5 6

## obsBeta -0.31 -0.21 -0.09 -0.02 -0.22 -0.34 ...

## predict -0.69 -0.40 0.08 -0.11 -0.06 -0.38 ...

## lwr -1.22 -1.00 -0.76 -0.68 -0.72 -0.85 ...

## upr -0.15 0.20 0.92 0.47 0.61 0.09 ...

## kTau 0.51 0.52 0.51 0.51 0.52 0.52 ...

## R2 0.70 0.65 0.47 0.60 0.48 0.74 ...

and plotted (Fig. 3) by showing, for each trial, the comparison between the observed treatment181

effect on T , and its prediction interval, based on the observed treatment effect on S for the same182

trial and the surrogacy model fitted on the other N − 1 trials:183

plot(loocvRes)

3.3. Utilities for data simulation184

Few publications present simulation approaches adapted to discuss statistical methods for evalu-185

ating failure time surrogate endpoints [2, 38, 30, 31, 32]. To our knowledge, the data generation186
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Figure 3: Leave-one-trial-out cross-validation results for the advanced GASTRIC meta-analysis.
The symbol ‘X’ means that the surrogacy model could not be fitted due to numerical
problems. Vertical lines are the 95% prediction intervals (PI) of the treatment effect
on overall survival (OS). Dots are the observed treatment effects on OS (green =
within the PI, magenta = out of the PI).
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methods used to date are based either on the use of a Clayton copula or on a mixture of half-187

normal and exponential random variables. Thanks to the surrosurv package, data can be188

generated using these two methods, in addition to an approach based on mixed proportional189

hazard models that we employed recently [36]. These three data generation algorithms are190

detailed here below.191

3.3.1. Data generation based on a Clayton copula192

The data geration method used in [2] and in [31, 32] reflects the data generating process under-193

lying the two-step copula model (Sec. 2.1).194

We implemented this approach for the Clayton family (Eq. (2)), which is available using the195

function simData.cc(). This function generates data as follows:196

� trial-specific random effects are generated from(
mSi

mTi

)
∼ N

((
0

0

)
,

(
σ2S σSσTρm

σSσTρm σ2T

))

� trial-specific treatment effects are generated from(
αi

βi

)
∼ N

((
α

β

)
,

(
d2a dadbρtrial

dadbρtrial d2b

))

� exponentially distributed individual times are simulated for S, conditionally on the ran-

dom effects generated before.

Sij = − log(USij)/λSij , with λSij = exp(µS +mSi + αiZij) and USij ∼ U(0, 1)

� exponentially distributed individual times are simulated for T | S, conditionally on the

random effects generated before and on the value of S

Tij | Sij = − log(U ′T ij)/λT ij , with λT ij = exp(µT +mTi + βiZij),

U ′T ij =
[(
U
−θ/(1+θ)
T ij − 1

)
U−θSij + 1

]−1/θ
, and

UT ij ∼ U(0, 1).

The details of the arguments of the simData.cc() function can be obtained using help(simData197

.cc).198
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3.3.2. Data generation based on a mixture of half-normal and exponential random199

variables200

The data geration method used in [38] and in [30] is based on the results by Cowles [8], which201

showed that a Weibull distribution can be expressed as a scaled mixture of half-normal distri-202

bution and an exponential distribution with unit rate parameter.203

This approach is implemented in the function simData.mx() and generates data as follows:204

� trial-specific random effects are generated from(
mSi

mTi

)
∼ N

((
0

0

)
,

(
σ2S σSσTρm

σSσTρm σ2T

))

� trial-specific treatment effects are generated from(
αi

βi

)
∼ N

((
α

β

)
,

(
d2a dadbρtrial

dadbρtrial d2b

))

� individual half-normal random variables Y ∗ij are generated from the distribution

f(y∗) =
2√
2π

exp

(
−y
∗2

2

)
, y∗ ∈ R+

� unit rate parameter exponential random variables ΛSij and ΛT ij are generated from205

− log(USij)Sij and − log(UT ij), with USij ∼ U(0, 1) and UT ij ∼ U(0, 1)206

� exponentially distributed individual times are simulated for S and T from

Sij =
(
Y ∗ij
√

2ΛSij

)
exp(µS +mSi + αiZij),

Tij =
(
Y ∗ij
√

2ΛT ij

)
exp(µS +mTi + αiZij).

The details of the arguments can be obtained using help(simData.mx).207

3.3.3. Data generation based on mixed proportional hazard models208

Recently we also generated data using individual random effects to control individual-level209

surrogacy [36]. This approach is implemented in the function simData.re() and generates210

data as follows:211

� trial-specific random effects and trial-specific treatment effects were generated as in the212

Clayton copula case213

� individual random effects were generated from uij ∼ N (0, σ2), with σ2 depending on the214

scenario (according to the Kendall’s τ)215
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� exponentially distributed individual times were simulated for S and T , conditionally on the

random effects generated before. We used the inverse transform method, which consists

in transforming a uniform random variable by means of the inverse of the probability

distribution function of the random variable to be generated [see for instance 33, § 2.1.2]

Sij = − log(USij)/λSij , with λSij = exp(µS +mSi + αiZij + uij) and USij ∼ U(0, 1),

Tij = − log(UT ij)/λT ij , with λT ij = exp(µT +mTi + βiZij + uij) and UT ij ∼ U(0, 1).

The details of the arguments can be obtained using help(simData.re).216

4. Mode of availability of the surrosurv package217

The surrosurv package is an open-source project. Stable versions are released via the Com-218

prehensive R Archive Network (CRAN, https://cran.r-project.org/package=surrosurv).219

Source code is available on the R-forge platform (https://r-forge.r-project.org/projects/220

surrosurv/).221
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A. Data poissonization363

Fitting auxiliary Poisson models for estimating the parameters of a proportional hazard model364

[40, 9] needs that data are rearranged in order to provide, for each time period, the number of365

events and the total time passed at risk. The function poissonize() in the surrosurv package366

allows to perform the necesasry data manipulaton. The core of the function has been derived367

from the original code publicly shared by [19].368

The main argument of the poissonize() function is data, a data frame with columns: id,369

the patient identifyier; time, the event/censoring time; status, the event (1) or censoring (0)370

indicator; ..., other factors such like the covariables needed in the regression model.371

The breakpoints between time intervals can be entered in the second argument, all.breaks.372

Otherwise, if all.breaks is not specified, one can specify either the width of the time intervals373

interval.width, or their number nInts (used only if also is.null(interval.width)).374

Any other variables to be kept in the poissonized data frame can be entered in factors. The375

last argument (compress) is a logical value indicating whether the record with the same factor376
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profile should be summarized into one record, i. e. whether the data should be expressed in a377

short form.378

In the advanced GASTRIC cancer example, we first change the column names in order to379

match the ones needed by poissonize():380

gastadv.poi <- gastadv

gastadv.poi$time <- gastadv.poi$timeT / 365.25

gastadv.poi$status <- gastadv.poi$statusT

We fit the proportional hazard model, to which we will compare the results of the auxiliary381

Poisson model382

fitcox <- coxph(Surv(time, status) ~ trt, data = gastadv.poi)

cox.base <- basehaz(fitcox, centered = FALSE)

and we plot the estimated survival curves.383

plot(stepfun(cox.base$time[-nrow(cox.base)],

exp(-cox.base$hazard)),

ylim = 0:1, xlim = c(0, 5), col = 1,

yaxs = 'i', xaxs = 'i', lwd = 2, bty = 'l',

do.points = FALSE, verticals = FALSE,

main = 'Overall Survival\nAdvanced GASTRIC meta-analysis',

xlab = 'Years', ylab = 'Survival probability')

lines(stepfun(cox.base$time[-nrow(cox.base)],

exp(-cox.base$hazard * exp(coef(fitcox)['trt']))),

col = 2, pch = '', lwd = 2)

We ‘possonize’ the data over 10 intervals (the default) and we fit the auxiliary Poisson model.384

385

gastadv.poi <- poissonize(gastadv.poi, nInts = 10, factors = 'trt')
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gastadv.poi

## interval trt m Rt N

## 1 0 -0.5 181 291.80777 1668

## 2 0.1832128678987 -0.5 180 173.32201 1475

## 3 0.30921697467488 -0.5 192 149.06427 1288

## 4 0.435221081451061 -0.5 159 131.90422 1088

## 5 0.567018480492813 -0.5 154 113.92252 912

## 6 0.703885010266941 -0.5 156 108.39170 751

## 7 0.867545516769336 -0.5 157 103.16710 584

## 8 1.07320739219713 -0.5 143 101.42690 414

## 9 1.39328678986995 -0.5 117 96.88784 239

## 10 2.07255030800821 -0.5 60 87.06117 94

## 11 0 0.5 216 420.75398 2401

## 12 0.1832128678987 0.5 221 258.18594 2167

## 13 0.30921697467488 0.5 213 229.38709 1935

## 14 0.435221081451061 0.5 247 207.31889 1706

## 15 0.567018480492813 0.5 237 180.90464 1446

## 16 0.703885010266941 0.5 225 175.99845 1203

## 17 0.867545516769336 0.5 228 170.74776 965

## 18 1.07320739219713 0.5 221 183.46049 715

## 19 1.39328678986995 0.5 211 205.02592 460

## 20 2.07255030800821 0.5 117 170.63711 204

fitpoi <- glm(m ~ -1 + interval + trt + offset(log(Rt)),

data = gastadv.poi, fam = 'poisson')

The function plotsson() can be used to draw the survival curves (or the instantaneous386

hazard) estimated by the auxiliary Poisson model:387

plotsson(fitpoi, 'Surv', add = TRUE, lty = 2, by = 'trt', lwd = 2)

The option add = TRUE is used to add the curves to the plot from the Cox estimates drawn388

previously.389

The treatment effect estimated by the Cox model is −0.14 (SE = 0.03), and it is −0.14 (SE390

= 0.03) when using the auxiliary Poisson model.391
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Figure 4: Overall survival curves in the advanced GASTRIC meta-analysis. (a) Comparison
between the survival probability obtained using the Breslow estimator in the Cox
model (solid lines) and those obtained using the auxiliary Poisson model (dashed
lines). (b) Piecewise constant hazard estimated by the auxiliary Poisson model
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