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1 Introduction

In this document we explain and illustrate how the pim package can be employed to fit
a Probabilistic Index Model (PIM). PIMs are introduced and discussed in detail in Thas
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et al. (2012) and De Neve (2013). We further illustrate the connection between PIMs
and several rank-tests, as discussed in De Neve and Thas (2015). The main focus of
this vignette is to illustrate the usage of the pim package rather than explaining PIMs
in detail.

Let (Y,X) and (Y ′,X ′) be identically and independently distributed random vectors,
where X (X ′) denotes the vector of covariates associated with the univariate outcome
Y (Y ′). A PIM is defined as:

P (Y 4 Y ′ |X,X ′) = g−1[(X ′ −X)Tβ], (1)

with P (Y 4 Y ′) := P (Y < Y ′) + 0.5P (Y = Y ′). Here β denotes the parameter of
interest and g(·) is a link function, e.g. the logit, probit or identity. Model (1) can be
considered as a standard PIM: the right-hand side is fairly simple and we do not impose
restrictions on the values of X and X ′. The theory developed in Thas et al. (2012)
allows constructing more flexible PIMs. These PIMs can also be fitted with the pim

package. However, for didactical purposes, we postpone this discussion to Section 3.

For notational convenience, we will sometimes drop the conditioning statement within
the probability operator so that equation (1) can be simplified to:

P (Y 4 Y ′) = g−1[(X ′ −X)Tβ].

2 Standard PIM

The Childhood Respiratory Disease Study (CRDS) is a longitudinal study following
the pulmonary function in children. We only consider the part of this study provided
by Rosner (1999). The outcome is the forced expiratory volume (FEV), which is an
index of pulmonary function measured as the volume of air expelled after one second of
constant effort. Along with FEV (litres), the AGE (years), HEIGHT (inches), SEX, and
SMOKING status (1 if the child smokes, 0 if the child does not smoke) are provided for
654 children of ages 3−19. See Rosner (1999, p. 41) for more information. The primary
focus is on the analysis of the effect of smoking status on the pulmonary function. The
data are provided with the pim package.

> library("pim")

> data(FEVData)

> head(FEVData)

Age FEV Height Sex Smoke

1 9 1.708 57.0 0 0
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2 8 1.724 67.5 0 0

3 7 1.720 54.5 0 0

4 9 1.558 53.0 1 0

5 9 1.895 57.0 1 0

6 8 2.336 61.0 0 0

To model the effect of AGE and SMOKE on FEV, we consider a PIM with main
effects and logit link:

logit [P (FEV 4 FEV ′)] = β1(AGE
′ − AGE) + β2(SMOKE ′ − SMOKE), (2)

where logit(x) = log[x/(1 − x)]. The function pim() can be used to fit this model and
the syntax is similar to glm().

> pim1 <- pim(formula = FEV ~ Age + Smoke, data = FEVData)

By default the logit-link is considered and the pim() function automatically translates
the formula statement FEV ∼ Age + Smoke to the formula statement of the PIM (2).
More generally, a formula statement of the form Y ∼X will be automatically converted
to a formula statement of the form P (Y 4 Y ′) ∼X ′ −X.

The estimated coefficients can be extracted via coef().

> coef(pim1)

Age Smoke

0.5550350 -0.4575366

Consequently, β̂1 = 0.56 and β̂2 = −0.46. Inference on these parameters is obtained via
the summary() function

> summary(pim1)

pim.summary of following model :

FEV ~ Age + Smoke

Type: difference

Link: logit

Estimate Std. Error z value Pr(>|z|)
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Age 0.55504 0.02808 19.765 <2e-16 ***

Smoke -0.45754 0.24702 -1.852 0.064 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null hypothesis: b = 0

The p-values correspond to the hypotheses H0 : β1 = 0 and H0 : β2 = 0.

The estimated variance-covariance matrix of (β̂1, β̂2) can be obtained with the vcov()
function. For more functions, see help("pim-class").

Thas et al. (2012) argue that the following PIM with an interaction is more appro-
priate:

logit [P (FEV 4 FEV ′)] = β1(AGE
′ − AGE) + β2(SMOKE ′ − SMOKE)

+β3(AGE
′ ∗ SMOKE ′ − AGE ∗ SMOKE). (3)

This model can be fitted via:

> pim2 <- pim(FEV ~ Age*Smoke, data = FEVData)

> summary(pim2)

pim.summary of following model :

FEV ~ Age * Smoke

Type: difference

Link: logit

Estimate Std. Error z value Pr(>|z|)

Age 0.60760 0.03012 20.170 < 2e-16 ***

Smoke 5.30689 1.04423 5.082 3.73e-07 ***

Age:Smoke -0.45539 0.07854 -5.798 6.71e-09 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null hypothesis: b = 0

We end this section with an illustration of the interpretation of the effect of AGE
for model (3). For 2 randomly selected children with the same smoking status (i.e.
SMOKE = SMOKE ′) and a year difference in age (AGE = x and AGE ′ = x + 1),
the probability that the eldest has a higher FEV is estimated by:

expit(0.61− 0.46SMOKE), expit(x) = exp(x)/[1 + exp(x)].
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For non-smokers (SMOKE = 0) this probability is expit(0.61) = 0.65, while for smokers
(SMOKE = 1) this becomes expit(0.61− 0.46) = 0.54.

3 More complicated examples

In its most general form, a PIM is defined as

P (Y 4 Y ′ |X,X ′) = m(X,X ′;β), (X,X ′) ∈ Xn, (4)

where Xn denotes the set of pairs (X,X ′) for which the model is defined. We refer to
Thas et al. (2012) for more details. Model (1) is a special case where m(X,X ′;β) =
g−1[(X ′ −X)Tβ] and Xn does not impose any restrictions on the couples X and X ′.
In Section 3.1 we illustrate how choices of m(X,X ′;β) different form g−1[(X ′−X)Tβ]
can be implemented and in Section 3.2 we illustrate how restrictions imposed by Xn can
be included.

3.1 Customised formulas

To illustrate how PIMs can be fitted with customised formulas, we consider the food
expenditure data set. In this study the food expenditure (FE, in Belgian francs) and the
annual household income (HI, in Belgian francs) for 235 Belgian working-class house-
holds are recorded. Ernst Engel provided these data to support his hypothesis that the
proportion spent on food falls with increasing income, even if actual expenditure on food
rises. The data are also used in Koenker (2005) to illustrate quantile regression and are
available in the pim and quantreg packages (Koenker, 2011).

> data(EngelData)

> head(EngelData)

income foodexp

1 420.1577 255.8394

2 541.4117 310.9587

3 901.1575 485.6800

4 639.0802 402.9974

5 750.8756 495.5608

6 945.7989 633.7978

Figure 1 indicates that the variability in food expenditure increases with increasing
household income. To account for this heteroscedasticity, Thas et al. (2012) proposed
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Figure 1: Food expenditure as a function of annual household income.
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the following PIM:

logit [P (FE 4 FE ′)] = β
HI ′ −HI√
HI ′ +HI

. (5)

We refer to Thas et al. (2012) for the motivation of this model.

Because the right hand side of model (5) is not of the form g−1[(X ′−X)Tβ], we need
to specify this explicitly in the formula statement upon using functions L() and R() to
indicate HI and HI ′ respectively. Here L() stands for the covariate associated with the
outcome at the left-hand side of the 4-sign in P (Y 4 Y ′ |X,X ′), so X. On the other
hand, R() stands for the covariate associated with the outcome at the right-hand side
of the 4-sign in P (Y 4 Y ′ |X,X ′), so X ′.

To improve readability, we shorten the names of the variables in the dataset.

> names(EngelData) <- c("HI", "FE")

> form <- FE ~ I( (R(HI) - L(HI))/sqrt(R(HI) + L(HI)) )

> pim3 <- pim(formula = form, data = EngelData)

> coef(pim3)

I((R(HI) - L(HI))/sqrt(R(HI) + L(HI)))

0.3897054

Similar as in glm() the I() function must be used in the formula statement to include
mathematical operations.

It follows that β̂ = 0.39 for model (5). We briefly illustrate the interpretation. If the
household income is 500 Belgian francs, the probability of larger food expenditure with
a household income of 600 Belgian francs is estimated as:

P̂ (FE 4 FE ′ | HI = 500, HI ′ = 600) = expit

[
0.39

100√
500 + 600

]
= 0.76.

If we compare household incomes of 2000 and 2100 (for which the difference is also 100
Belgian francs), this effect decreases to:

P̂ (FE 4 FE ′ | HI = 2000, HI ′ = 2100) = expit

[
0.39

100√
2000 + 2100

]
= 0.65.

3.2 Restricted comparisons of the regressors

To illustrate how the Xn option of model (4) can be implemented, we reconsider the
Childhood Respiratory Disease Study (CRDS) of Section 2. Suppose, for the sake of
illustration, that one is only interested in the probability:

P (FEV 4 FEV ′ | SMOKE = 0, SMOKE ′ = 1, AGE = AGE ′) ,
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i.e. one wants to quantify the association between the smoking status and the pulmonary
function while keeping the age fixed. Consider the PIM

P (FEV 4 FEV ′) = expit[γ1 + γ2(AGE
′ − AGE)], (6)

where Xn denotes the set of pairs of children for which the first is a non-smoker, and the
second is a smoker, i.e.

Xn =
{

({SMOKE,AGE}, {SMOKE ′, AGE ′}) | SMOKE = 0, SMOKE ′ = 1
}
. (7)

Note that PIM (6) is a submodel of PIM (2), but is computationally less demanding
since less children have to be compared. We refer to Thas et al. (2012) for more details
on Xn and the estimation of PIMs.

We start by construction Xn given by (2).

> id.nonsmokers <- which(FEVData$Smoke == 0)

> id.smokers <- which(FEVData$Smoke == 1)

> compare <- expand.grid(id.nonsmokers, id.smokers)

Next with fit the PIM (6) and give in Xn via the option compare:

> pim4 <- pim(formula = FEV ~ +1 + Age, data = FEVData, compare = compare)

> summary(pim4)

pim.summary of following model :

FEV ~ +1 + Age

Type: difference

Link: logit

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.05040 0.19900 0.253 0.8

Age 0.33513 0.03493 9.595 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null hypothesis: b = 0

Note that we explicitly have to specify the intercept. It follows that γ̂1 = 0.05 and
γ̂2 = 0.34.

8



4 Relationship to rank tests

In this section we illustrate how several rank tests can be implemented and extended
through the pim package. The content of this section is worked out in the appendix of
De Neve and Thas (2015) using a previous, but no longer compatible, version of the
package. In De Neve and Thas (2015) it is explained how the PIM can be related to well
known rank tests in factorial designs and how it can be used to construct new rank tests.
We start by introducing the notation used in De Neve and Thas (2015). For the factorial
design with a single factor and a blocking factor we write X = (X,B), where X is a
factor referring to groups or treatments of interest, and B is a blocking factor. Without
loss of generality we say that X takes values 1, . . . , K, and B takes values 1, . . . , L. The
number of replicates for X = k and B = l is denoted by nkl and the total sample size is
given by N =

∑K
k=1

∑L
l=1 nkl. Let Fkl denote the distribution function of Y given X = k

and B = l. In the absence of blocks, set B = 1 and we use the simplified notation nk

for the number of replicates for X = k and Fk for the distribution function of Y given
X = k.

Sometimes it will be convenient to work with the classical ANOVA notation. Through-
out the vignette it will be clear from the context which notation is used. In particular,
forX = (X,B), Ykl denotes a random response variable in treatment group k = 1, . . . , K
and block l = 1, . . . , L. The index l becomes obsolete in the absence of blocks. We use
Y.l to denote the random response variable whose distribution is marginalized over the
treatment groups, but still conditional on block l. To distinguish between the notation
and model as in (4) and the ANOVA form, we refer to the former as the regression
model, whereas models with the ANOVA notation will be referred to as the ANOVA
model. Just like with classical linear regression models, the estimation of the param-
eters requires that ANOVA models are translated into regression models with dummy
regressors for the coding of the factors.

4.1 Connection with the Kruskal–Wallis rank test

As a first model we define the marginal PIM for the K-sample layout in the absence of
blocks. It is marginal in the sense that we only condition on one treatment within the
PI, i.e. P (Yi 4 Yj | Xj). This PI refers to the distribution of the response of observation
j conditional on its regressor, i.e. Yj | Xj, and the marginal response distribution of an
observation i, i.e. Yi. In terms of the ANOVA notation and if Xj = k, this becomes
P (Y. 4 Yk), with Yk a random response with distribution Fk and Y. a random response
with distribution F. =

∑K
k=1 λkFk with λk = limN→∞ nk/N where we assume λk > 0.

Consider the marginal PIM in ANOVA form,

P (Y. 4 Yk) = αk. (8)
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The interpretation of αk is immediate: it is the probability that a random observation of
group k exceeds a random observation of the marginal distribution. The corresponding
PIM regression model is obtained upon defining

ZT
ij =

(
I (Xj = 1) , . . . , I (Xj = K)

)
, (9)

for all pairs of regressors (Xi, Xj). Let αT = (α1, . . . , αK). Model (8) now becomes

P (Yi 4 Yj | Xj) = ZT
ijα, (10)

with Xn = {(Xi, Xj) | i, j = 1, . . . , N}, i.e. we consider all N2 pairs of observations.

We illustrate how model (10) can fitted to a subset of the chick weight dataset as
described in Crowder and Hand (1990). Chicks are randomly allocated to one of four
diets: a normal diet (referred to as diet 1) or one of three specific diets with respectively
10%, 20% or 40% protein replacement (referred to as diets 2, 3 or 4, respectively). The
weights (in gram) of the chicks are measured on alternate days for the first three weeks
after birth, but we only look at the weight measured at day 6 together with the weight
at baseline.

> data(ChickWeight)

> Data <- subset(ChickWeight, Time == 6)[,-2]

> Data$baseline <- subset(ChickWeight, Time == 0)$weight[

+ is.element(subset(ChickWeight, Time == 0)$Chick, Data$Chick)]

> head(Data)

weight Chick Diet baseline

4 64 1 1 42

16 72 2 1 40

28 67 3 1 43

40 67 4 1 42

52 60 5 1 41

64 74 6 1 41

Model (10) is fitted via:

> pim.score <- pim(formula = weight ~ R(Diet) - 1, data = Data,

+ compare = "all",

+ link = "identity",

+ vcov.estim = score.vcov)

> summary(pim.score)
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pim.summary of following model :

weight ~ R(Diet) - 1

Type: difference

Link: identity

Estimate Std. Error z value Pr(>|z|)

R(Diet)1 0.24507 0.05344 4.586 4.52e-06 ***

R(Diet)2 0.52396 0.08398 6.239 4.41e-10 ***

R(Diet)3 0.63125 0.08398 7.517 5.63e-14 ***

R(Diet)4 0.82917 0.08398 9.873 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null hypothesis: b = 0

The option compare = "all" indicates that all N2 comparisons should be considered
as defined by Xn in (10) and vcov.estim = score.vcov indicates that score variance-
covariance matrix should be computed (i.e. the variance-covariance under the null-
hypothesis H0 : F1 = . . . = FK). The option link = "identity" indicates that we fit
a PIM with identity link function.

The parameters in model (8) are estimated by α̂1 = 0.25, α̂2 = 0.52, α̂3 = 0.63
and α̂4 = 0.83. Note that the p-values are associated with H0 : αi = 0 which are not
relevant, since they correspond to H0 : P (Y. 4 Yi) = 0. More relevant hypotheses are
H0 : αi = 0.5 and the corresponding p-values are obtained via:

> z.score <- (coef(pim.score) - 0.5)/sqrt(diag(vcov(pim.score)))

> 1 - pchisq(z.score^2, 1)

R(Diet)1 R(Diet)2 R(Diet)3 R(Diet)4

1.834963e-06 7.754297e-01 1.180908e-01 8.873374e-05

The connection with the Kruskal–Wallis rank test is established as follows (we refer
to De Neve and Thas (2015) for details):

> library(MASS)

> t(coef(pim.score) - 0.5)%*%ginv(vcov(pim.score))%*%c(coef(pim.score) - 0.5)

[,1]

[1,] 28.17106
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> kruskal.test(weight ~ Diet, data = Data)$stat

Kruskal-Wallis chi-squared

28.25611

The differences in both test statistics is due to ties. A Wald-type Kruskal–Wallis test
statistic (using a sandwich estimator for the variance-covariance matrix of α̂) can be
obtained with the option vcov.estim = sandwich.vcov:

> pim.wald <- pim(formula = weight ~ R(Diet) - 1, data = Data,

+ compare = "all",

+ link = "identity",

+ vcov.estim = sandwich.vcov)

> t(coef(pim.wald) - 0.5)%*%ginv(vcov(pim.wald))%*%c(coef(pim.wald) - 0.5)

[,1]

[1,] 156.7046

4.2 Connection with the Jonckheere–Terpstra rank test

The following PIM establishes a connection with the Jonckheere–Terpstra rank test.

P (Yi 4 Yj | Xi, Xj) = 0.5 + α[I(Xi < Xj)− I(Xi > Xj)],

with indicator function I(A) = 1 if A is true and zero otherwise. This model can be
fitted employing the R() and L() arguments in the formula statement. We first order
the diets.

> Data$Diet <- factor(Data$Diet, ordered = TRUE)

> JT.formula <- weight ~ I((L(Diet) < R(Diet)) - (L(Diet) > R(Diet))) + 1

> pim.JT <- pim(formula = JT.formula, data = Data,

+ link = "identity", vcov.estim = score.vcov,

+ compare = "all")

> summary(pim.JT)

pim.summary of following model :

weight ~ I((L(Diet) < R(Diet)) - (L(Diet) > R(Diet))) + 1

Type: difference

Link: identity
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Estimate Std. Error z value

(Intercept) 5.000e-01 1.317e-09 3.796e+08

I((L(Diet) < R(Diet)) - (L(Diet) > R(Diet))) 3.678e-01 6.365e-02 5.779e+00

Pr(>|z|)

(Intercept) < 2e-16 ***

I((L(Diet) < R(Diet)) - (L(Diet) > R(Diet))) 7.54e-09 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null hypothesis: b = 0

It follows that P (Yi 4 Yj | Xi < Xj) is estimated by 0.5 + α̂ = 0.87.

4.3 Connection with the Friedman rank test

The marginal PIM can be extended to block designs. In ANOVA notation this becomes

P (Y.l 4 Ykl) = αk, (11)

where k = 1, . . . , K refers to the treatment group and l = 1, . . . , L to the block. The
interpretation of αk is immediate: it is the probability that a random observation of
group k exceeds a random observation of the marginal distribution within the same
block. Let Zij as in (9) and α as before. Model (11) in regression notation becomes

P (Yi 4 Yj | Bi, Xj, Bj) = ZT
ijα, (12)

which is now only defined for (X i,Xj) ∈ Xn = {(X i,Xj) | Bi = Bj, i, j = 1, . . . , N},
i.e. we restrict the PI to comparisons within blocks. We refer to De Neve and Thas
(2015) for more details.

To illustrate the relationship with the Friedman rank test, we consider the warpbreaks
data where we consider tension as a block. This data set gives the number of warp breaks
per loom, where a loom corresponds to a fixed length of yarn, we refer to the help page
of warpbreaks for more information. The outcome denotes the number of breaks, while
the factor of interest the type of wool. The levels of tension are considered as blocks.

> # modify data for the sake of illustration

> wb <- aggregate(warpbreaks$breaks,

+ by = list(w = warpbreaks$wool,

+ t = warpbreaks$tension),
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+ FUN = mean)

> colnames(wb) = c("wool", "tension", "breaks")

> # all possible comparisons

> comp <- expand.grid(1:nrow(wb), 1:nrow(wb))

> # restrict comparisons within block

> compare <- comp[wb$tension[comp[,1]] == wb$tension[comp[,2]],]

> pim.F <- pim(breaks ~ wool, data = wb, compare = compare,

+ link = "identity", vcov.estim = score.vcov)

> summary(pim.F)

pim.summary of following model :

breaks ~ wool

Type: difference

Link: identity

Estimate Std. Error z value Pr(>|z|)

woolB -0.1667 0.2887 -0.577 0.564

Null hypothesis: b = 0

> friedman.test(breaks ~ wool | tension, data = wb)

Friedman rank sum test

data: breaks and wool and tension

Friedman chi-squared = 0.33333, df = 1, p-value = 0.5637

5 Remarks

Note that for a sample size of n a total n(n− 1)/2 comparisons are considered. Conse-
quently for large sample sizes the function goes quite slow. Bugs/comments/suggestions
are welcome at Jan.DeNeve@UGent.be or Joris.Meys@UGent.be.
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