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Abstract

This is the tutorial on the analysis of growth curves and other user-defined kinetics
with the opm package in the version of February 20, 2016. It is explained how any
kinds of growth or respiration measurements can be input into opm. Data without a
real structuring into plates and wells can nevertheless be studied with opm by using a
virtual arrangement into plates and wells. This convention is not an oddity but rather
the appropriate means to enable the visual and statistical comparisons of interest and to
disable those that make no sense for the data. We also show how Phenotype Microarray
(PM) data with user-defined plate types can be analysed. These include plates suitable for
an OmniLog➤ PM system but measured with another instrument. Analysing such data
visually and statistically requires in some cases adaptations of function arguments whose
defaults are targeting PM data. (For instance, the specific growth rate can be estimated
after log-transforming cell-count data.) All these practically relevant issues are explained
in detail.

Keywords: Growth Kinetics.

1. Introduction

A detailed description of the OmniLog➤ Phenotype Microarray (PM) system, its measur-
ing procedure and data characteristics are found in the vignette “opm: An R Package for
Analysing Phenotype Microarray and Growth Curve Data” (called “main tutorial” in the
following). How substrate information stored within opm (Vaas, Sikorski, Hofner, Fiebig,
Buddruhs, Klenk, and Göker 2013a) can be accessed and used for advanced visual and sta-
tistical analyses is explained in the vignette “Working with substrate information in opm”
(called “substrate tutorial” in the following). The description of the methods below do not
presuppose that the user is already familiar with the usage of opm. But for details on its
approaches to visualisation and statistical analysis we will refer to the main tutorial, the
substrate tutorial as well as the entries of the opm manual. Especially the concepts behind
the different classes of opm objects are only explained in the main tutorial, and the methods
available for these classes are only explained in the main and substrate tutorial.

In addition to visual inspection (Vaas, Sikorski, Michael, Göker, and Klenk 2012) or statistical
comparative analyses (Hofner, Boccuto, and Göker 2015) of PM data, as described in the
main tutorial and the substrate tutorial, users might be interested in analysing data other
than PM data, or analysing PM with user-defined plate types. To work with user-defined
PM plates only requires registering these plates, i.e. storing a mapping from well coordinates
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to substrate names, and optionally also a full, descriptive name for the plate. The analysis
of data other than PM data, such as growth curves, additionally requires inputting these
data and converting them to OPMX objects. If these data are not really structured into
plates and wells, a virtual arrangement into plates and wells must be established, as well as
a virtual positioning of the plates in a reader, which is used for identifying each plate. This
nomenclature may be unusual for data that have not been measured in plate readers, but
presents no problems in practice. Users should be aware, however, which kinds of comparisons
can be made within and between plates of the same plate type. Indeed, the arrangement into
virtual plates and wells is the appropriate means to ensure that the visual and statistical
comparisons of interest for the data are enabled and those that make no sense are disabled.
Note that some defaults of the plotting functions are only suitable for PM data. Hence, the
functions should be called slightly distinctly.

Besides these slight restrictions, which are illustrated with examples below, non-PM data can
be analysed with opm almost like PM data.

Plates suitable for an OmniLog➤ PM system but measured with another instrument also
need special care when inputting, even though it is obvious that they are structured into
plates and wells. An according example is also included in this tutorial.

2. Preparation

As usual, opm must be loaded before any analysis can begin:

R> if ("package:opm" %in% search())

detach(name = package:opm, unload = TRUE)

R> library("opm")

3. Growth-curve data input

3.1. User-entered data frames

In the following we will use the growth-measurements data set from Vaas, Marheine, Sikorski,
Göker, and Schumacher (2013b) as exemplar. These data have been entered by hand and then
input into R with one of the functions for reading Comma-Separated Values (CSV), yielding
a data frame that comes with opm:

R> data(potato)

R> head(potato)

Genotype Treatment Replicate Time FM DM

1 07-08-1 0.16M NaCl 1 2 597 44

2 07-08-1 0.16M NaCl 2 2 550 40

3 07-08-1 0.16M NaCl 3 2 633 48

4 07-08-1 0.16M NaCl 4 2 490 31

5 07-08-1 0.16M NaCl 5 2 617 47

6 07-08-1 0.16M NaCl 1 4 585 55
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The measurements are in “long” format and must be reshaped using the eponymous function
into “wide” format. The “long” format was deliberately chosen for demonstrating the use of
the reshape function. We reshape separately for the Dry Mass (DM) and Fresh Mass (FM)
measurements within the data set:

R> potato.fm <- reshape(data = potato, direction = "wide",

v.names = "FM", drop = "DM",

idvar = c("Genotype", "Treatment", "Replicate"),

timevar = "Time")

R> potato.dm <- reshape(data = potato, direction = "wide",

v.names = "DM", drop = "FM",

idvar = c("Genotype", "Treatment", "Replicate"),

timevar = "Time")

For reshape, “long” format means that each measurement is stored in a separate record with
one entry per row (see above). Thus here for each data point the “Genotype”, “Treatment”
and “Time” entries have to be repeated, resulting in a data frame with 540 rows in 6 columns.
A call to reshape can rearrange the data set into a form where the columns “Genotype”,
“Treatment” and “Replicate” are kept and the columns “Time” and either “FM” or “DM”,
respectively, are merged, resulting in 9 columns representing the measurement times:

R> head(potato.fm)

Genotype Treatment Replicate FM.2 FM.4 FM.6 FM.8 FM.10 FM.12 FM.14 FM.16 FM.18

1 07-08-1 0.16M NaCl 1 597 585 882 844 1291 1847 2232 2560 2808

2 07-08-1 0.16M NaCl 2 550 614 908 1103 1240 1798 2184 2832 2501

3 07-08-1 0.16M NaCl 3 633 570 855 1200 1392 1827 2360 2522 3113

4 07-08-1 0.16M NaCl 4 490 681 1087 994 1478 1921 2315 2317 2761

5 07-08-1 0.16M NaCl 5 617 707 962 849 1446 1853 2335 2564 2426

46 07-08-1 0.32M NaCl 1 395 551 392 342 322 322 368 336 274

Thus the dimensions of the data dwindled to 60 rows in 12 columns. Now the data are in the
right arrangement for the next step, the conversion into OPMX or MOPMX objects. When
entering data manually, users who directly choose a format analogous to the “wide” format
can, of course, skip the conversion with reshape. Thus directly using the “horizontal” input
format of opmx is recommended for manually entering data.

The main function for converting user-defined data frames to OPMX or MOPMX objects is
opmx, which can directly be applied to the objects created in the last step. This works because
the “horizontal” input format of opmx corresponds to the “wide” format of reshape.

R> potato.fm <- opmx(object = potato.fm,

position = c("Genotype", "Replicate"),

well = "Treatment", prefix = "FM.",

full.name = c(fm = "Growth experiment, fresh mass"))

R> potato.dm <- opmx(object = potato.dm,

position = c("Genotype", "Replicate"),

well = "Treatment", prefix = "DM.",

full.name = c(dm = "Growth experiment, dry mass"))
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The data frames passed to opmx contain all substrate information in their“Treatment”column.
Its content will be interpreted as substrate names for wells, which are virtual in our case.
Hence, opm registers the mapping from well coordinates to substrate names on the fly. The
substrate names are taken directly from the data frame in “horizontal” format and registered
after sorting. The plate type must be provided, however. As it is not within the data frame,
the short name of the plate type is taken from the full.name argument, whose main purpose
is to enter the full, descriptive name of the plate type. That is, a virtual plate with virtual
wells, yielding a user-defined plate type, will be registered. The prefix argument helps
identifying the columns with measurements over time.

“Genotype” and “Replicate” go to the metadata of the resulting object and together identify
each plate. In the case of PM data, this is done using the position of the plate within the
OmniLog➤ reader. Thus the relevant argument here is position, which must be supplied
unless there is a column of that name. If so, its content is used literally, otherwise it is newly
constructed from the columns explicitly given in the position argument, yielding a grouping
of plates equivalent to the combination of factor levels in these columns. Hence the “plate
position” is usually also virtual, but just acts as an identifier of the plate.

The registered plate type can be queried as follows:

R> plate_type(TRUE) # shows all existing user-defined plates

[1] "CUSTOM:DM" "CUSTOM:FM"

R> listing(wells(plate = c("CUSTOM:FM", "CUSTOM:DM")))

CUSTOM:FM:

- Growth experiment, fresh mass

- A01: 0.16M NaCl

A02: 0.32M NaCl

A03: 0.5M Sorbitol

A04: Control

CUSTOM:DM:

- Growth experiment, dry mass

- A01: 0.16M NaCl

A02: 0.32M NaCl

A03: 0.5M Sorbitol

A04: Control

Note the prefix “CUSTOM:”, which is used to distinguish user-defined plate types from those
that come with opm. The object resulting from listing can be output with to_yaml or
saveRDS for externally storing plate types in files. Indeed, please keep in mind that the
definition of plate types is only available in the current R session. The definitions will be lost
once the session is terminated. This can be circumvented by placing code for loading opm

and for registering the plates of interest in an .Rprofile file or in the global Rprofile.site
file. See the R documentation on how such files are used. Of course, registering of plates can
always be done at the beginning of an R file that makes use of these plates.

With the resulting potato.dm and potato.fm objects the user can now follow the opm work
flow for processing PM data. Please continue in Section 4 and the following sections for
plotting and statistical analysis of the estimated curve parameters.
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It is possible to first register the plate, as shown in Section 3.2, and then convert the data
via opmx. This makes sense in conjunction with the “horizontal” format if another ordering
of wells should be enforced. Otherwise opmx takes the substrate names directly from the data
frame in “horizontal” format and registers them after sorting.

3.2. Direct registration of plate types

An example input file that comes with opm contains growth-curve data derived from an
experiment with two Escherichia coli strains (Deutsche Sammlung von Mikroorganismen
(DSM) 18039 = K12 and the type strain DSM 30083T) on increasing Glucose concentrations.
Here we are dealing with a real plate with real wells, but the registering procedure would be
the same for virtual plates with virtual wells. Thus, it will here be shown how to prepare
a plate map and register it as a new plate type. Section 3.2 then shows how to import the
data and subsequently convert them to an OPMX or MOPMX object. Each combination of
strain and Glucose concentration was repeated twice on the plate. It will thus be shown how
to define a numbering of these repetitions suitable for later on using the split function to
split the object into one object per repetition.

The opm package offers several ways to set up a user-defined plate layout. The function
register_plate is useful for both customised PM plates and measurements from quite dif-
ferent experiments such as growth curves and other kinds of kinetics.

For small data sets it might be feasible to type the substrate allocation manually into a
character vector, as done in the following. The short name of the plate type will be “growth”,
as simply given by the named function argument. Here two arguments of the same name
are passed to the function for registering the full plate name on the one hand and the well
mapping on the other hand in a single call:

R> register_plate(

growth = c(

A01 = "Negative Control #1", A02 = "10mM Glucose #1",

A03 = "20mM Glucose #1", A04 = "50mM Glucose #1",

A05 = "100mM Glucose #1", A06 = "200mM Glucose #1",

B01 = "Negative Control #2", B02 = "10mM Glucose #2",

B03 = "20mM Glucose #2", B04 = "50mM Glucose #2",

B05 = "100mM Glucose #2", B06 = "200mM Glucose #2",

C01 = "Negative Control #3", C02 = "10mM Glucose #3",

C03 = "20mM Glucose #3", C04 = "50mM Glucose #3",

C05 = "100mM Glucose #3", C06 = "200mM Glucose #3",

D01 = "Negative Control #4", D02 = "10mM Glucose #4",

D03 = "20mM Glucose #4", D04 = "50mM Glucose #4",

D05 = "100mM Glucose #4", D06 = "200mM Glucose #4"

),

growth = "Growth on Glucose"

)

R> listing(wells(plate = "custom:growth"))

However, manually entering the well mapping is error prone and not efficient when dealing
with data sets containing more than a few wells. Alternatively, a user-designed plate can
also be registered with a plate map given as matrix. The matrix then directly represents the
allocation of the used substrates on the plate. Because of the repetitions in the substrate
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names (note the numbering, which is necessary here to generate unique substrate names, and
later on important to split the plate), the texts can be generated with fewer lines of code than
above:

R> # create constant part of the substrate names

R> growth <- c("Negative Control", "10mM Glucose", "20mM Glucose",

"50mM Glucose", "100mM Glucose", "200mM Glucose")

R> # create repetitions and assign according numbers

R> growth <- paste(rep(growth, each = 4), rep(1:4, 4), sep = " #")

R> # create matrix that mirrors the plate layout

R> growth <- matrix(growth, nrow = 4, ncol = 6,

dimnames = list(LETTERS[1:4], 1:6))

R> # register this plate type and show the result

R> register_plate(growth = growth, growth = "Growth on Glucose")

R> listing(wells(plate = "custom:growth"))

Plates with other layouts can be put together in the same way but using other or more or
fewer row or column names. Plates with a distinct repetition structure, or no repetitions of
substrates at all, can be put together in the same way, if the way a substrate numbering is
introduced is either modified or omitted. Instead of a matrix, a data frame could be used
as well. We will try this here after showing how to delete a plate type by providing a NULL

argument:

R> register_plate(growth = NULL)

R> growth <- as.data.frame(growth)

R> register_plate(growth = growth, growth = "Growth on Glucose")

R> listing(wells(plate = "CUSTOM:GROWTH"))

3.3. Input of TECAN data

The E. coli data for which we have registered a full plate name and a mapping from well
coordinates to substrate names in Section 3.2 are contained in an exemplar input file that
comes with opm. It can be found, and input into R, as follows:

R> tecan.file <- opm_files("growth")

R> tecan.file <- grep(pattern = "tecan", x = tecan.file,

ignore.case = TRUE, value = TRUE)

R> tecan <- read.table(tecan.file)

R> head(tecan)

V1 V2 V3 V4 V5 V6 V7

1 <> 1.000 2.000 3.000 4.000 5.000 6.000

2 A 0.087 0.088 0.087 0.088 0.085 0.084

3 B 0.087 0.088 0.087 0.086 0.087 0.085

4 C 0.083 0.082 0.081 0.083 0.079 0.077

5 D 0.083 0.083 0.081 0.082 0.080 0.079

6 <> 1.000 2.000 3.000 4.000 5.000 6.000
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This file was output by an Infinite➤ F200 PRO instrument as distributed by the TECAN
corporation. After recording the data, the MagellanTM software generates such a file via the
“save as .asc” option in the “edit” menu.

The resulting format is not particularly useful within R but can be converted using the
“rectangular” mode of opmx:

R> tecan <- opmx(object = tecan, format = "rectangular",

plate.type = "growth", position = "1A", interval = 1)

R> tecan

Class OPM

From file

Hours measured 71

Number of wells 24

Plate type CUSTOM:GROWTH

Position 1A

Setup time Sat Feb 20 03:54:22 2016

Metadata 0

Aggregated FALSE

Discretized FALSE

Note that we have to refer to the previously registered plate type, “growth”. If several plates
of this plate type are to be dealt with, the position argument is important for identifying
each plate. The format of the position entry can, in principle, be arbitrarily selected by the
user, but the shown format is the recommended one, i.e. an integer followed by a single letter.

The optional interval argument provides the time interval between two consecutive mea-
surements. In the given example one measurement per hour was recorded, thus the default
fits perfectly when assigning integers in increasing order, starting at 0. If interval is stated
explicitly, it is ideally provided in hours. Time series with irregular intervals can be entered
with the same argument (by directly providing each time point). See the manual for further
details on the usage of the interval argument.

The “rectangular” formats also comprise time points separated by rows containing only NA

values or empty strings, time points defined as a given number of rows, and measurements
without indicators of well coordinates. Again, see the manual for more information.

The generated OPM object can now be split according to the repetition structure of the
wells (as apparent from the substrate names we have stored by calling register_plate), and
metadata can be added that describe each resulting plate:

R> tecan <- split(tecan)

R> metadata(tecan) <- data.frame(Replicate = c(1, 2, 1, 2),

Strain = rep(c("DSM30083", "DSM18039"), each = 2),

stringsAsFactors = FALSE)

R> dim(tecan)

[1] 4 72 6

3.4. Input of PerkinElmer data
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An example file for an EcoPlate➋ analysis not conducted with an OmniLog➤ PM system but
measured with a PerkinElmer, Inc., plate reader is included in opm. It contains anonymised
end-point measurements sent to us by an opm user who asked for a data-conversion approach.
The output of that reader is regular but contains a tab-separated part as well as bottom part
with the same measurements in a different layout as well as technical information on the run:

R> pe.file <- opm_files("growth")

R> pe.file <- grep(pattern = "perkin_elmer", x = pe.file,

ignore.case = TRUE, value = TRUE)

R> pe <- readLines(pe.file)

R> cat(head(pe), sep = "\n")

Plate Repeat Well Type Time 595nm (A)

1 1 A01 M 00:00:23,44 0,094

1 1 A02 M 00:00:24,16 0,080

1 1 A03 M 00:00:24,88 0,048

1 1 A04 M 00:00:25,60 0,088

1 1 A05 M 00:00:26,32 0,065

R> cat(tail(pe), sep = "\n")

Assay ID: ........................ 7318

Measured on ....................... 15.03.2015 18:08:35

Notes for the assay run

Run started by: christoph.probst

Moreover, the comma has been used decimal separator (the data were probably measured
with the language of the operating system set to German). Special care is needed when
inputting such data, but as we know that two measurements of a 96-well-plate are contained,
we can actually use the read.table function that comes with R.

R> pe <- read.table(file = pe.file, header = TRUE,

strip.white = TRUE, sep = "\t",

# fix the column data types and skip some columns

colClasses = c("integer", "integer", "character", "NULL", "NULL", "numeric"),

# re-use names but adapt last column to opmx()

col.names = c("Plate", "Repeat", "Well", "Skip", "Skip", "T_1"),

# skip all irregular rows after the tab-separated part

nrows = 192L,

# use comma as decimal separator

dec = ",")

R> head(pe)

Plate Repeat Well T_1

1 1 1 A01 0.094

2 1 1 A02 0.080

3 1 1 A03 0.048

4 1 1 A04 0.088

5 1 1 A05 0.065

6 1 1 A06 0.098
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Before the conversion to an OPMS object, we register the plate type as a user-defined plate
type even though EcoPlate➋ is identical to it. This makes sense because the scale is distinct
from an OmniLog➤ instrument, and the distinct plate types prevent comparing apples and
oranges.

R> # copy the plate type

R> register_plate(myeco = wells(plate = "eco"))

R> # convert to OPMS

R> pe <- opmx(object = pe, format = "horizontal",

full.name = c("custom:myeco" = "Ecoplate"),

position = "Repeat", well = "Well", file = pe.file)

R> pe <- do_aggr(pe)

It it useful to add the file name to the csv_data to ease the identification of the plates.
Because we have only end-point measurements here, aggregating means copying, but it needs
to be done to enable the application of the methods that work on aggregated data.

The code specific to irregular input formats ends here. The next step is typical for all
EcoPlate➋ data. As this plate type contains repetitions of substrates, it is often used to
measure distinct organisms or experimental conditions, or distinct replicates of the same
organism or experimental condition, in one run. The split function for OPMX objects is
designed for separating such plates into their individual components, allowing for their sub-
sequent comparison. The effect can be illustrated with heat maps drawn before and after the
split.

R> heat_map(pe, NULL) # no metadata available

And now the split:

R> pe.sep <- split(pe)

R> heat_map(object = pe.sep, as.labels = NULL,

extract.args = list(rm.num = TRUE))

The rm.num argument is necessary to strip the numbers from the end of the substrate names.
These numbers are used in opm for indicating the within-plate repetitions and are the basis
for the split operation.

The next step in a real analysis would be to add metadata. To better identify each plate, the
file name should be added to the keys within csv_data for finding metadata:

R> opm_opt(csv.keys = c(opm_opt("csv.keys"), "File"))

This works because of the use of the file argument in the call of opmx conducted above.
Apart from that, the processing of metadata is as usual. Note that after the application of
split the csv_data entries for several plates, i.e. those that come from the same original
plate, are identical.

4. Visualisation of growth curves
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Figure 1: Heat map of the EcoPlate➋ well measured using a PerkinElmer, Inc., plate reader
and not yet split into the within-plate repetitions. This is not an annotated plot, as no
metadata have been added (the data are anonymous anyway).
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Figure 2: Heat map of the EcoPlate➋ well measured using a PerkinElmer, Inc., plate reader
and split into the within-plate repetitions. This makes sense if the three are independent
repetitions of the samples, or distinct samples. Again, this is not an annotated plot, as no
metadata can be added (except for those that indicate the split structure).
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Growth experiment, fresh mass
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Figure 3: Potato cell-line growth measurements, recorded as fresh mass (left) and dry mass
(right), visualised using the xy_plot method. See Section 2.7 and Section 3.7 in the main
tutorial for details on this kind of plotting. Considering the fresh weight, the plot indicates
that the wild type grows better than the genetically modified cell lines under non-stress
(control) conditions. It also indicates that the stresses impair growth but that the genetically
modified cells grow better then the wild type under moderate stress conditions. The results
for the dry mass are similar except for the behaviour under Sorbitol stress.

Visualising raw measurements of growth curves with the methods intended for PM data
is straightforward, but some adaptations are necessary due to the deviations between the
distinct kinds of data. For instance, the expected maximum for PM data can seldom be used
for delimiting the y axes, the data are not measured in OmniLog➤ units, and a negative
control might not be present:

R> library("gridExtra")

R> plot.fm <- xy_plot(x = potato.fm, theor.max = FALSE, rcr = 1,

include = "Genotype", main = list(in.parens = FALSE),

ylab = "Fresh cell mass [mg]", neg.ctrl = FALSE)

R> plot.dm <- xy_plot(x = potato.dm, theor.max = FALSE, rcr = 1,

include = "Genotype", main = list(in.parens = FALSE),

ylab = "Dry mass [mg]", neg.ctrl = FALSE)

R> grid.arrange(plot.fm, plot.dm, ncol = 2)

The result is shown in Figure 3. The TECAN data (which contain a negative control) can be
visualised in the same way as the potato data, yielding Figure 4. Note the rm.num argument,
which causes the removal of the numbering from the end of the full well names (which is not
needed any more after applying the split function as described in Section 3.3):

R> xy_plot(x = tecan, theor.max = FALSE, include = "Strain",

main = list(in.parens = FALSE), ylab = "OD at 690nm", rm.num = TRUE)
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Growth on Glucose
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Figure 4: Growth of two E. coli strains on Glucose, visualised using the xy_plot method.
See Section 2.7 and Section 3.7 in the main tutorial for details on this kind of plotting. The
plot indicates that one of the strains outgrows the other unless high concentrations of Glucose
are applied.

Moreover, a numeric (non-integer) value provided as theor.max argument would directly be
used as upper limit of the y-axis.

5. Estimating parameters from growth curves

The next step is the estimation of curve parameters using do_aggr. See Section 2.5 and
Section 3.5 in the main tutorial for details on aggregation methods. The first major difference
between user-entered growth-curve data and PM data is that the former can have any kind of
scale. We have already seen in Section 4 that this makes adaptations of the y-axis necessary
when plotting. Moreover, the interpretation of the estimated curve parameters can differ. The
highest slope of the curve is estimated as µ value (Zwietering, Jongenburger, Rombouts, and
van ’t Riet 1990), which is normally interpreted as respiration rate. In the case of cell counts,
it can be interpreted as specific growth rate, but in the rather unusual form (N − N0)/t,
with N representing the finally obtained number of cells and N0 representing the number
of cells at he beginning of the measurements. For this reason, the do_aggr functions has a
logt0 argument, which when set to TRUE causes the data to be transformed into log(N/N0)
prior to estimating parameters. The estimated µ value then directly corresponds to the usual
(log(N)− log(N0))/t. Negative lag phase (λ) values are not an error, they just indicate that
the growth started prior to the beginning of the measurements.

The second main difference with respect to user-entered growth-curve data is that these
may contain much fewer time points than PM measurements. Hence the question arises
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which spline estimation is optimal for such measurements, because all spline-fitting procedures
have been optimised for estimating parameters from PM data. The following (informal)
comparison, however, illustrates the differences, if any, between the methods. We first define
a helper function for plotting parameters obtained with distinct approaches:

R> # A function not normally needed by the user!

R> plot_param_diff <- function(...) {

x <- list(...)

if (is.null(names(x)))

names(x) <- seq_along(x)

for (param in rev(param_names())) {

y <- lapply(lapply(x, aggregated, param, FALSE), unlist)

n <- names(y)

for (i in seq_along(y)[-1L])

for (j in seq.int(1L, i - 1L)) {

plot(x = y[[i]], y = y[[j]], pch = 19L, col = "darkgrey",

main = sprintf("%s, %s/%s", param, n[[i]], n[[j]]))

abline(a = line(y[[i]], y[[j]]), lty = "dashed")

}

}

invisible(NULL)

}

In the next step, the distinct spline-fitting approaches have to be applied.

R> tp.tecan <- do_aggr(object = tecan, method = "splines",

options = set_spline_options(type = "tp.spline"))

R> p.tecan <- do_aggr(object = tecan, method = "splines",

options = set_spline_options(type = "p.spline"))

R> sm.tecan <- do_aggr(object = tecan, method = "splines",

options = set_spline_options(type = "smooth.spline"))

After these preparations the methods can visually be compared as follows.

R> old.par <- par(mfrow = c(4, 3), mar = c(2, 2, 3, 2))

R> plot_param_diff(Tp = tp.tecan, P = p.tecan, Sm = sm.tecan)

R> par(old.par)

Apparently the distinct spline-fitting methods yield approximately the same estimates for
AUC and A but not necessarily for the other parameters. A closer investigation of the devi-
ations in the smoothing-spline results for λ and µ indicated that these are due to overfitting.
The same issue has been observed with PM data, see Section 2.5 in the main tutorial.

Other differences between the methods might reflect biological issues that render it difficult
to interpret the curves in terms of the four parameters. For instance, Figure 4 shows curves
with two positive shifts instead of a single one. Such curves might better be described by
two λ and two µ values instead of single ones. We have observed, however, that thin-plate
splines usually pick the stronger of the two shifts, which is plausible. Note also that neither
the interpretation of AUC nor the one of A suffer from that kind of problem. Selecting an A
value that makes sense is hampered by an increase in intensity followed by a decrease again,
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Figure 5: Comparison of curve parameters estimated using different spline-fitting options.
There are obviously quite high correlations between the AUC values and comparatively high
correlations for A. In the case of λ and µ the correlations are lower, with thin-plate and
P-splines corresponding somewhat more strongly to each other than to smoothing splines.
Negative λ values can occur in the case of negative reactions.
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as also visible in Figure 4. Thin-plate splines usually pick the actual maximum (of a smoothed
curve), which is biologically reasonable.

We conclude that in the case of comparatively few data points the same method preferences
should be applied as for PM data. For the forthcoming analyses we accordingly restrict
ourselves to the results obtained with thin-plate splines.

R> tecan <- tp.tecan

R> rm(tp.tecan, p.tecan, sm.tecan) # tidy up

R> potato.fm <- do_aggr(object = potato.fm, method = "splines",

options = set_spline_options(type = "smooth.spline"))

R> potato.dm <- do_aggr(object = potato.dm, method = "splines",

options = set_spline_options(type = "smooth.spline"))

Plots based on the estimated curve parameter could now be generated, such as heat maps or
confidence-interval plots. As there is no difference to plotting PM data, we refer to Section 2.8
and Section 3.8 in the main tutorial for details.

6. Statistical analysis of growth curves

In the following we will use opm_mcp to assess whether the conclusions from the graphical
analysis (Figure 4 and Figure 3) can be confirmed for the example data. The opm_mcp method
is extensively documented in Section 2.9 and particularly Section 3.9 of the main tutorial,
hence we here restrict ourselves to just the necessary function calls.

The following code answers the main question regarding the potato data sets, i.e. for which
treatment (well) significant or insignificant differences between the genotypes are found, and
how large the according effect size is.

R> dm.mcp <- opm_mcp(object = potato.dm, ~ J(Well, Genotype), m.type = "aov",

linfct = c(Pairs.Well = 1), max = 7, in.parens = FALSE)

R> fm.mcp <- opm_mcp(object = potato.fm, ~ J(Well, Genotype), m.type = "aov",

linfct = c(Pairs.Well = 1), max = 7, in.parens = FALSE)

Using the dedicated plot method, the results can be visualised as demonstrated in Figure 6.

R> old.par <- par(mfrow = c(2, 1), mar = c(1, 15, 2, 1))

R> plot(fm.mcp)

R> plot(dm.mcp, main = "")

R> par(old.par)

Results obtained with opm_mcp confirm the suspicion from Figure 3 that the stresses impair
growth but that, when measured using fresh mass (Figure 6, upper section), the genetically
modified cells grow better then the wild type under moderate stress conditions. In contrast,
the wild type outgrows the genetically modified lineages under non-stress (control) conditions.
In the dry-mass measurements (Figure 6, lower section) some differences are less apparent.
For instance, there is no significant difference between the lineages under control conditions.
See the publication by Vaas et al. (2013b) for an in-depth interpretation of these results.

The TECAN data can be analysed in an analogous fashion.
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Figure 6: Point estimates and 95% confidence intervals in a “Pairs”-type comparison of group
means for the fresh-mass (upper section) and dry-mass (lower section) potato cell-line example
data. Significant differences are those whose confidence intervals do not cross the dotted line
at x = 0; effect sizes are also easily visible. Compare the outcome with Figure 3 and see the
main text for an interpretation.



M. Göker 17

−0.1 0.0 0.1 0.2 0.3

‘A06/DSM18039‘ − ‘A06/DSM30083‘

‘A05/DSM18039‘ − ‘A05/DSM30083‘

‘A04/DSM18039‘ − ‘A04/DSM30083‘

‘A03/DSM18039‘ − ‘A03/DSM30083‘

‘A02/DSM18039‘ − ‘A02/DSM30083‘

‘A01/DSM18039‘ − ‘A01/DSM30083‘ (

(

(

(

(

(

)

)

)

)

)

)

●

●

●

●

●

●

95% family−wise confidence level

Figure 7: Point estimates and 95% confidence intervals in a “Pairs”-type comparison of group
means for the TECAN example data obtained from two E. coli strains. Significant differences
are those whose confidence intervals do not cross the dotted line at x = 0; effect sizes are also
easily visible. Compare the outcome with Figure 4 and see the main text for an interpretation.

R> tecan.mcp <- opm_mcp(object = tecan, ~ J(Well, Strain),

m.type = "aov", linfct = c(Pairs.Well = 1), full = FALSE)

Plotting the object accordingly yields Figure 7:

R> old.mar <- par(mar = c(3, 15, 3, 2))

R> plot(tecan.mcp)

R> par(old.mar)

The plot in Figure 4 indicated that one of the E. coli strains outgrows the other unless high
concentrations of Glucose are applied. This can be confirmed with the opm_mcp analysis
(Figure 7), as significant differences between the two strains only occur for moderate Glucose
concentrations (wells “A02” and “A03”) but neither in the control treatment nor for high
concentrations of the sugar.
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