
opm: An R Package for Analysing Phenotype

Microarray and Growth Curve Data

Markus Göker

Leibniz Institute
DSMZ

Benjamin Hofner

Universität
Erlangen-Nürnberg

Lea A.I. Vaas

Fraunhofer Institute
IME

Maria del Carmen Montero Calasanz

Newcastle University
Johannes Sikorski

Leibniz Institute DSMZ

Abstract

The OmniLog➤ Phenotype Microarray (PM) system can monitor simultaneously, on
a longitudinal time scale, the phenotypic reaction of single-celled organisms such as bac-
teria, fungi, and animal cell cultures to up to 2,000 environmental challenges spotted on
sets of 96-well microtiter plates. The phenotypic reactions are recorded as respiration
kinetics with a shape comparable to growth curves. Tools for storing the curve kinetics,
aggregating the curve parameters, recording associated metadata of organisms and exper-
imental settings as well as methods for analysing graphically and statistically these highly
complex data sets are increasingly in demand.

The opm R package facilitates management, visualisation and statistical analysis of
PM data and similar data such as growth curves. Raw measurements can easily be input
into R, combined with relevant meta-information and accordingly analysed. The kinetics
can be aggregated by estimating curve parameters using several methods. Some of them
have been specifically adapted for obtaining robust parameter estimates from PM data.
Containers of opm data can easily be queried for and subset by using the integrated
metadata and other information. The raw kinetic data can be displayed with customised
plotting functions. In addition to 95% confidence plots and enhanced heat-map graphics
for visual comparisons of the estimated curve parameters, the package includes customised
methods for user-defined simultaneous multiple comparisons of group means. It is also
possible to discretise the curve parameters and to export them for reconstructing character
evolution or inferring phylogenies with external programs.

Tabular and textual summaries suitable for, e.g., taxonomic journals can also be au-
tomatically created and customised. Data storage within, and data retrieval from, re-
lational or other databases is easily possible. Export and import in the YAML Ain’t
Markup Language (YAML) (or JavaScript Object Notation (JSON)) markup language
(or as character-separated values) facilitates the data exchange among labs. All meth-
ods are exemplified using real-world data sets that are part of the opm R package or are
included in the accompanying data package opmdata.

This is the tutorial of opm in the version of September 14, 2016.

Keywords: Bootstrap, Cell Lines, grofit, Growth Curves, lattice, Metadata, Microbiology,
Respiration Kinetics, Splines, YAML, JSON, CSV, RDBMS.

2 Phenotype Microarray Data (September 14, 2016)

1. Introduction

1.1. Preamble for “eager to start” readers

Readers who want to jump right into examples for applying opm to their data will find an
overview of what the package can do for them in Section 2.1. The functions that can be used
in each step of the possible opm work flows are shown in Section 3.1. A more theoretical
overview of all according subsections is provided in Section 2.1. Examples for each step are
found in the according subsections of Section 3. Almost all of these subsections contain a
final troubleshooting paragraph in which we comment on the most frequently observed
problems.

The single most important problem users reported to us when applying opm was that the input
files could not be read. This was most often due to the use of multiple-plate Comma-Separated
Values (CSV) files, which could not be read with older versions of opm, and sometimes due
to selection of non-Phenotype Microarray (PM) CSV files. See Section 3.2.1 for details.

For troubleshooting when including metadata, see Section 3.4.1. For instance, some spread-
sheet software might reformat the setup time, which would need to be prevented by reading
this date-time entry as plain text.

The scientific background in Section 1.2, including references for important methods, could
well be skipped during a first reading.

All web resources regarding opm are linked on its main website http://opm.dsmz.de/.

How substrate information can be processed by opm is described in a separate vignette,
“Working with substrate information in opm”, also available together with the package. How
to process growth-curve data and user-defined PM plates is described in the package vignette
“Analysing growth curves and other user-defined data in opm”.

Do not overlook that there is an opm manual, easily accessible from within R, that describes
all functions and arguments in much greater detail than possible in any if the vignettes.

Neither basic R syntax nor details of basic data structures (except for a few examples) will
be discussed in this tutorial. To this end, we refer to the manuals given on the R homepage
(http://cran.r-project.org/manuals.html).

1.2. Scientific introduction

The phenotype is regarded as the set of all types of traits of an organism (Mahner and Kary
1997). The phenotype is of high biological relevance because it is the object of selection
and, hence, is the level at which evolutionary directions are governed by adaptation processes
(Mayr 1997). The phenotype is also of direct relevance to humans, for example in exploiting
microorganisms for industrial purposes or in the combat of pathogenic organisms (Broadbent,
Larsen, Deibel, and Steele 2010; Mithani, Hein, and Preston 2011). In the study of single-cell
living beings, such as bacteria, fungi, plant or animal cells, it is an important field of research
to study the phenotype by measuring physiological activities as a response to environmental
challenges. These can be single carbon sources, which may be utilised as nutrients and hence
trigger cellular respiration, or substances such as antibiotics, which may slow down or even
inhibit cellular respiration, indicating a successful inhibitory effect on (potentially pathogenic)
organisms. The intensity of cellular respiration correlates with the production of reduced

http://opm.dsmz.de/
http://cran.r-project.org/manuals.html

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 3

single

96-well plate

set of 96

raw kinetics

96 sets of aggregated data

including 95% confidence limits

genus Bacillus

epithet subtilis

strain 0815

.

habitat soil

sampling place GPS coord.

sampling date 2011-06-15

sampling season summer

habitat [°C] 27

.

sporulation yes

flagellar motility yes

natural transformation no

.

PCR (gene xyz) positive

.

... as much/what you wish...

Proprietary OmniLog ® software:

Raw kinetic data recording, export as CSV

Hour

00.00

00.25

00.50

.

30.00

.

60.00

value

 35

 33

 37

 .

102

 .

328

Trehalose

Hour

00.00

00.25

00.50

.

30.00

.

60.00

value

 35

 33

 37

 .

102

 .

328

Arabinose

Hour

00.00

00.25

00.50

.

30.00

.

60.00

value

 35

 33

 37

 .

102

 .

328

Glucose

 Trehalose

Parameter value

mu 15.559078

lambda 5.798210

A 305.989319

AUC 23308.269348

mu CI95 low 3.803466

lambda CI95 low 1.080333

A CI95 low 305.642353

AUC CI95 low 23125.092442

mu CI95 high 140.841704

lambda CI95 high 11.819251

A CI95 high 306.986123

AUC CI95 high 23411.648024

 Arabinose

Parameter value

mu 15.559078

lambda 5.798210

A 305.989319

AUC 23308.269348

mu CI95 low 3.803466

lambda CI95 low 1.080333

A CI95 low 305.642353

AUC CI95 low 23125.092442

mu CI95 high 140.841704

lambda CI95 high 11.819251

A CI95 high 306.986123

AUC CI95 high 23411.648024

 Trehalose

Parameter value

mu 15.559078

lambda 5.798210

A 305.989319

AUC 23308.269348

mu CI95 low 3.803466

lambda CI95 low 1.080333

A CI95 low 305.642353

AUC CI95 low 23125.092442

mu CI95 high 140.841704

lambda CI95 high 11.819251

A CI95 high 306.986123

AUC CI95 high 23411.648024

 Arabinose

Parameter value

mu 15.559078

lambda 5.798210

A 305.989319

AUC 23308.269348

mu CI95 low 3.803466

lambda CI95 low 1.080333

A CI95 low 305.642353

AUC CI95 low 23125.092442

mu CI95 high 140.841704

lambda CI95 high 11.819251

A CI95 high 306.986123

AUC CI95 high 23411.648024

 Glucose

Parameter value

mu 15.559078

lambda 5.798210

A 305.989319

AUC 23308.269348

mu CI95 low 3.803466

lambda CI95 low 1.080333

A CI95 low 305.642353

AUC CI95 low 23125.092442

mu CI95 high 140.841704

lambda CI95 high 11.819251

A CI95 high 306.986123

AUC CI95 high 23411.648024

Time

V
a
lu

e Glucose

Time

V
a

lu
e Glucose

lag (λ)

sl
o
p
e
 (

µ)

max (A)

Area under the curve

(AUC)

opm software:

Data exploration, management, aggregation, discretization, incorporation of metadata

the amount of user-defined

metadata is only limited by

computer memory

Figure 1: Overview of the data assembly from a PM experiment and the possible additions
using opm. The raw colour-formation values result in sets of 96 raw kinetics per plate. opm

can augment them with the information coded in the shape characteristics. This yields 96
sets of parameters per plate, each containing four robustly estimated parameters that describe
distinct aspects of the respective curve shape. Bundles of raw, aggregated and/or discretised
data can further be combined with meta-information on the organisms and/or experiments.
Based on this meta-information, a variety of visual and statistical comparison tools for raw,
aggregated and discretised data are available in opm.

Nicotinamide Adenine Dinucleotide (NADH) engendering a redox potential and thus a flow
of electrons in the electron transport chain. To measure cellular respiration in an experimental
assay, this flow of electrons can be utilised to reduce a tetrazolium dye such as tetrazolium
violet, thereby producing purple colour (Bochner and Savageau 1977). In principle, the more
intense the colour, the larger the physiological activity.

The PM system (Figure 1) can measure many phenotypes in a high-throughput system that
uses such as tetrazolium detection approach. About 2,000 distinct physiological challenges,
such as the metabolism of single carbon sources for energy gain, the metabolism under vary-
ing osmolyte concentrations, and the response to varying growth-inhibitory substances are
included in the PM microtiter plates (Bochner, Gadzinski, and Panomitros 2001; Bochner
2009). The system is applicable, in principle, to each kind of cultivated cells (Bochner, Siri,
Huang, Noble, Lei, Clemons, and Wagner 2011; Lei and Bochner 2013; Chaiboonchoe, Do-
hai, Cai, Nelson, Jijakli, and Salehi-Ashtiani 2014) and also to environmental probes, even
though some kinds of cells, such as those from plant cell cultures, cause a reduction of the
dye but are too large to be handled in the 96-well layout (Vaas, Marheine, Sikorski, Göker,
and Schumacher 2013b). The OmniLog➤ PM system records the colour formation in an

4 Phenotype Microarray Data (September 14, 2016)

automated setting (every 15 minutes) throughout the duration of the experiment, which may
last up to several days. Thus the experimenter ends up with high-dimensional sets of longitu-
dinal data, the PM respiration kinetics. For the experimental setup for obtaining OmniLog➤
PM respiration kinetic data we refer to the OmniLog➤ website (http://www.biolog.com/)
and the associated hardware and software manuals. In brief, 96-well microtiter plates with
substrates, dye, and bacterial cells are loaded into the OmniLog➤ reader, a hardware device
which provides the appropriate incubation conditions and also automatically reads the inten-
sity of colour formation during tetrazolium reduction. The OmniLog➤ reader is driven by the
Data Collection software. The stored results files, which are in a proprietary format, are then
imported into the Data Management, File Management/Kinetic Analysis, and Parametric
Analysis software packages for data analysis.

In the case of positive reactions, the kinetics are expected to appear as (more or less regularly)
sigmoid curves in analogy to typical bacterial growth curves (Figure 1). The intrinsic higher
level of data complexity contains additional valuable biological information, which can be
extracted by exploring the shape characteristics of the recorded curves (Brisbin, Collins,
White, and McCallum 1987). These curve features can, in principle, unravel fundamental
differences or similarities in the respiration behaviour of distinct organisms, which cannot
be identified by the traditional end-point measurements alone. But the meta-information of
interest on the organisms and experimental conditions must also be available for a biologically
meaningful data analysis and an according statistical assessment.

The motivation for the here presented opm package originated from (i) the need to overcome
the limited graphical and analysis functions of the proprietary OmniLog➤ PM software and
(ii) the desirability of an analysis system for this kind of data in a free statistical software
environment such as R (R Development Core Team 2011). At the moment, the visualisation
of the kinetics by the proprietary OmniLog➤ PM software is of limited quality, especially
when simultaneously comparing the curves from more than two experiments. Its calculation
of curve parameters is rather crude (Vaas, Sikorski, Michael, Göker, and Klenk 2012; BiOLOG
Inc. 2009). The statistical treatment of raw kinetic data and curve parameters would involve
cumbersome manual and hence error-prone manipulations of data in typical spreadsheet ap-
plications before they may be imported into appropriate statistical software. Finally, the
amount of organismic or experimental metadata that can be added to the raw data is quite
limited.

Based on a previous study (Vaas et al. 2012) the here presented opm package (Vaas, Sikorski,
Hofner, Fiebig, Buddruhs, Klenk, and Göker 2013a) can rapidly, robustly and comprehensively
evaluate PM respiration kinetics suitable for a wide range of experimental questions.

Using customised input functions, raw kinetic data can be transferred into R, stored as S4

objects (Chambers 1998) containing single or multiple OmniLog➤ PM plates and further
processed. The package features the statistically robust calculation and attachment of ag-
gregated curve parameters including their (bootstrapped) confidence intervals. Moreover,
infrastructure is provided to merge this with any kind of additional metadata. These com-
plex data bundles can then be exported in YAML Ain’t Markup Language (YAML) format
(http://www.yaml.org/), which is a human-readable data serialisation format that can be
read by most common programming languages and facilitates fast and easy data exchange
between laboratories. For instance, YAML generated by opm can be imported in MetaCyc
(Caspi, Billington, Ferrer, Foerster, Fulcher, Keseler, Kothari, Krummenacker, Latendresse,
Mueller, Ong, Paley, Subhraveti, Weaver, and Karp 2016). The subset of YAML, JavaScript

http://www.biolog.com/
http://www.yaml.org/

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 5

Object Notation (JSON) (http://www.json.org/), can also be used, for instance if a proper
YAML parser is unavailable. As opm is also able to generate R matrices and data frames,
output as CSV is also easy.

Data evaluation includes the graphical display of the data such as the raw respiration curve
kinetics or the confidence intervals of aggregated curve parameters. With sophisticated selec-
tion methods the user can sort, group and arrange the data according the specific experimental
questions in the plotting and analysis framework. Since most addressed experimental ques-
tions require to statistically compare not only single curves, but distinct groups of curves,
the package provides adapted methods for performing simultaneous multiple comparisons of
group means (Bretz, Hothorn, and Westfall 2010). Because the definition of groups using
stored metadata is highly flexible, the user is enabled to individually define contrast tests
(Hsu 1996).

For further specific graphical or statistical analysis according to the needs of the users, the
opm package organises and maintains the data in way that eases additional data exploration
using other packages in the R environment (Vehkala, Shubin, Connor, Thomson, and Corander
2015).

The work flows described below include the input of raw kinetic data and integration of cor-
responding metadata, conversion into suitable storage formats, the computation of a set of
four parameters (aggregated data) sufficient for comprehensively describing the curves’ shape,
manipulating and querying the constructed objects, visualising both raw kinetics and aggre-
gated data, statistical comparison of group means, discretisation of the curve parameters and
corresponding export methods, obtaining additional information the substrates and setting
global options.

2. Methods

2.1. Overview

In the following the possible work flows (see Figure 2) for generating an R object that contains
the kinetic raw data from one to several OmniLog➤ plates along with the corresponding
metadata of interest, and optionally the aggregated and potentially also discretised curve
parameters, are described. We then explain the principles of graphically and statistically
analysing either raw data, metadata, aggregated data (curve parameters), or combinations of
all of them, as stored in the respective R objects.

The raw kinetic data can be exported by the proprietary OmniLog➤ software File Man-
agement/Kinetic Analysis as CSV files and imported into the opm package using read_opm.
This is explained in section Section 2.2, whereas corresponding code examples are found in
Section 3.2.

Batch processing many files is also possible, even without starting an interactive R session.
This includes storage of the opm data in the YAML (or JSON or CSV) format, as detailed
in Section 2.3. Example code is given in Section 3.3.

All kinds of PM data can be enriched with metadata (see Figure 1, Figure 2). The underlying
principles are described in Section 2.4, whereas example code for metadata management is
included in Section 3.4.

http://www.json.org/

6 Phenotype Microarray Data (September 14, 2016)

Figure 2: A depiction of the work flows possible within opm and its potential interplay with
base R, add-on packages for R and third-party software. See Section 3.1 for the functions that
can be used in the respective steps. The package allows the user full flexibility with respect to
the type of information added to the created R objects and to the order of steps in which this
is achieved. For example, it is possible to first add the metadata and to perform some of the
later described analysis and second to aggregate the raw kinetics and go on with analysis of
the aggregated values. Discretisation might frequently not be of interest because it causes a
loss of information. Since experimental frameworks can be imagined where only very limited
meta-information is available, it is also feasible to work without metadata at all.

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 7

To statistically analyse the biological information coded in the shape characteristics of the
kinetics, four descriptive curve parameters are estimated, which is explained in Section 2.5,
whereas example code for curve-parameter estimation is provided in Section 3.5.

The principles of querying the objects generated by opm and generating subsets are described
in Section 2.6, whereas example code for such object management can be obtained from
Section 3.6.

The raw kinetic data can be plotted either as level plots or as X-Y plots, as explained in
Section 2.7. The estimated curve parameters can be plotted either as confidence-interval
plots, radial plots or heat maps, which is described in Section 2.8. See Section 3.7 and
Section 3.8, respectively, for example code for plotting.

To statistically compare curve parameters, tools for the multiple comparison of groups means
have been adapted to PM data. The principles of testing statistical hypothesis involving
groups of plates or wells are described in Section 2.9, and example code is included in Sec-
tion 3.9.

The aggregated data can be discretised and exported for phylogenetic analysis or reconstruc-
tion of character evolution with external phylogeny software. The principles are outlined in
Section 2.10, whereas application examples are provided in Section 3.10.1.

The methods implemented in opm for classifying reactions as either “positive”, “negative”
or “weak” (ambiguous) are described in Section 2.11. Example code, including the export of
discretisation results as publication-ready tables, is included in Section 3.10.3. Textual reports
with or without formatting markup can also be produced, as exemplified in Section 3.10.2.
The discretisation settings can be modified in detail; see Section 3.10.4.

Furthermore, substrate information can be accessed, including accession numbers for relevant
public databases. The principles are explained and code examples are provided in the vignette
“Working with substrate information in opm”.

Database interaction for storing and receiving PM data is described in the Section 2.12.

Finally, it is possible to modify settings that have an effect on multiple functions and/or on
frequently used arguments. See Section 2.13 and then Section 3.10.3 for a code example.

2.1.1. Additional information

Many additional resources on opm are available:

❼ After a successful installation of opm, the complete R code extracted from this vignette
as well as all vignettes can be found via opm_files("doc").

❼ The manual is available as a Portable Document Format (PDF) file.

❼ The help pages for each topic some_topic in the manual can easily be looked up by
entering ?some_topic at the R prompt; for listing all topics of the opm manual, enter
help(package = "opm").

❼ For the code presentations that come with opm, enter demo(package = "opm").

2.2. Data import

8 Phenotype Microarray Data (September 14, 2016)

Figure 3: Screenshot of the export module of the OmniLog➤ PM data analysis software
File Management/Kinetic Analysis, illustrating how CSV files have to be batch exported for
use with opm, with one plate per file.

The proprietary OmniLog➤ PM data analysis software File Management/Kinetic Analysis
(BiOLOG Inc. 2009) can export the kinetic raw data from single or multiple plates as CSV
files. These contain a small amount of associated run information that has been entered
at the interface of the OmniLog➤ PM Data Collection software, which controls the Om-
niLog➤ reader. This generation of CSV files used to involve the creation of intermediary
files with the extension "d5e" from the original ones with the extension "oka". For use with
opm, the raw kinetic data should be exported into a single CSV file for each measured plate
(but current versions of the package can also read CSV containing more than a single plate,
thus the user does not need to export the data again). With version 1.6.0.107 of the File
Management/Kinetic Analysis software, this works as follows:

1. Change the Windows software language settings to American English.

2. Start the software PMM_Kinetic.exe.

3. Import "d5e" files by using Load → Import → Select Data Folder → Populate Filters
→ Import → Close.

4. Add all plates or selected plates from the Worksheet List to the Data List.

5. Export the data by using Export → Export Data as shown in Figure 3. You may
either choose One-line Header or Multi-line Header, but you should choose Every Plate
(Individual Files).

6. Enter a directory name in the pop-up window that now opens.

7. Press the Save button.

The resulting files can then directly be imported into opm as described in section Section 3.2.

In 2014, support for a Laboratory Information Management System (LIMS) plain text format
partially identical to a CSV format was added to the OmniLog➤ PM software. As of version
1.1.8, opm can read this format. As it directly yields metadata entries of potential interest

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 9

to the user, the LIMS CSV is the recommended way to input data from the OmniLog➤
PM software into opm. Please contact your local representative of the vendor for the latest
OmniLog➤ PM software version.

We refer to the CSV exports from versions of the OmniLog➤ PM File Management/Kinetic
Analysis software that did not support batch-export with one file per plate as “old style”.
Later versions exported the data in a slightly different CSV format we call “new style”, and
as of 2014 the LIMS style is available. The opm package now also supports the input of
several plates from PM-mode runs stored in a single old-style or new-style CSV file. Using
the function split_files to split CSV files containing multiple plates is not necessary any
more.

As of version 0.4.0, opm also supports the input of MicroStation➋ CSV files (frequently used
in conjunction with EcoPlate➋ assay for microbial community analysis) (Vaas et al. 2013a).
These files contain only end-point measurements but potentially several plates, which can
nevertheless be input together with their potentially also rich meta-information.

The easiest way to load the raw kinetic data (as CSV files or as YAML or JSON) into R

in a single step is using the function read_opm (see Figure 2). If raw data from only one
single-plate OmniLog➤ PM are imported, the resulting object belongs to the S4 class OPM.
This class for holding single-plate OmniLog➤ PM data originally only includes the (limited)
meta-information read from the original input CSV files, but an arbitrary amount of metadata
can be added later on (see Figure 2). If multiple plates are imported, the resulting object
automatically belongs to the S4 class OPMS. In the OPMS class, data may have been obtained
from distinct organisms and/or replicates, but must correspond to the same plate type and
must contain the same wells (see Figure 2). The function read_opm has an argument“convert”
which controls how sets of plates with distinct types are treated; for instance, the function
can return a list of OPMS objects, one for each encountered plate type.

The entire S4 class hierarchy used by opm is shown in Figure 4. A number of S3 helper classes
are also used by several functions. Users come in direct contact only with the OPM, OPMA,
OPMD and OPMS classes (see Section 3.1). Once such objects are created they could also be
stored in files using save and read again using load but not using dump and source instead,
respectively. We would nevertheless recommend storage in YAML format.

2.3. Batch conversion of many files

To process and store huge numbers of raw data files, the function batch_opm reads all Om-
niLog➤ CSV files (or YAML or JSON files previously generated with opm) within a given
list of files and/or directories and converts them to opm YAML (or JSON or CSV) format.
It is possible to let opm automatically include metadata (Section 2.4) and aggregated values
(curve parameters) (Section 2.5) as well as discretised values (Section 2.11) during this con-
version. Alternatively, graphics files containing the output of xy_plot or level_plot can be
batch-produced; see Section 2.7 for Details. File selection and exclusion using regular expres-
sions or globbing patterns is integrated in the function. The result from each file conversion is
reported in detail, and a demo mode is available for viewing the attempted file selections and
conversions before actually running the (potentially time consuming) conversion process. The
package is accompanied by a command-line script run_opm.R, enabling the users to run the
batch conversion without starting an interactive R session. This script is guaranteed to run
at least under UNIX-like operating systems. On such systems it can also be run in parallel,

10 Phenotype Microarray Data (September 14, 2016)

Figure 4: This picture shows the S4 class hierarchy used by opm. Class names are shown
in bold within the boxes. Boxes with dark background indicate virtual classes, those with
light background indicate real classes whose objects can be created and manipulated by some
code. Arrows indicate either inheritance relationships (pointing from the parent to its child
class) or object composition (pointing from the container class to its element class). Note
particularly that OPM, which only contains raw data, CSV data and metadata, is the parent
class of OPMA, which also contains aggregated data (and has methods for dealing with them).
OPMD inherits from OPMA and stores discretised curve parameters in addition to aggregated
values. OPMS is a container class that holds OPM, OPMA and/or OPMD objects. These can
usually co-occur in a single OPMS object but for some calculations the additional information
in OPMA or OPMD objects is strictly required. The query functions has_aggr and has_disc

are available for checking from which kinds of objects an OPMS is composed; see the manual
and Section 3. MOPMX objects are less tightly controlled collections. MOPMX objects are
lists restricted to objects of the previously listed classes as elements, which may or may not
have the same plate type. The non-virtual auxiliary classes shown in the figure are either well-
known in R (e.g., matrices) or not directly manipulated by the user (CMAT). The OPM DB

class and its child classes are internally used by opm for interactions with RDBMS.

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 11

making use of multiple-core machines.

2.4. Integration of metadata

Metadata are “data about data”. They can be either structural, i.e. indicating the way
data are stored, or descriptive, i.e. providing background information on the content of the
data. In the case of PM data, such descriptive metadata can include all kind of describing
characteristics of the observed organisms such as taxonomic affiliation, geographical and/or
ecological origin, and of the performed experimental setting such as culture conditions, genetic
modifications, physiological information of any kind and so on.

The interface of the Data Collection software of the OmniLog➤ reader is restricted in size
and contains only comparatively few fields for entering accompanying information to each
plate such as on the organism under study or the culture conditions. Further, not all of these
fields are exported together with the raw measurements. The few metadata that come along
with the imported CSV file can be accessed via csv_data. But for most experimental designs
it is clearly necessary to add much more meta-information to the kinetic data. It might also
happen that the metainformation from CSV files is not only limited but also inconsistent or
even erroneous, depending on what has been entered into the OmniLog➤ instrument.

The opm user can integrate the metadata into OPM and OPMS objects using functions such
as include_metadata (see Section 3.1). Often the metadata are kept in a data frame which
can conveniently be saved to, and generated directly from, a CSV file. How to safely edit
such a file with Microsoft Excel is shown in Figure 5. For an unambiguous match between the
raw kinetic data in the OPMS object and the collected metadata, a unique Identifier (ID) is
needed. This is, by default, provided by the combination of Setup Time and Position, which
should unequivocally identify certain plates. Setup Time indicates the date and time at the
precision of seconds of starting the batch read in the OmniLog➤ reader. Position indicates
the position of the plate in the OmniLog➤ reader. (For instance, 10-A indicates the plate
sliding carriage number 10 in slot A of the reader, but for opm the meaning is irrelevant, as
these entries only serves as ID.) Both Setup Time and Position are automatically recorded
by the OmniLog➤ reader Data Collection software and are exported by the OmniLog➤ PM
File Management/Kinetic Analysis software into CSV files together with the raw kinetic data.

To ease the manual compilation of metadata, collect_template generates a data frame (and
additionally, if requested, a CSV file) in which each line represents a single PM plate. The
function collect_template by default automatically includes the Setup Time and Position
of each plate into the data frame or file providing a structured template for the addition of
metadata. The user can subsequently add further columns describing any metadata of interest
on any PM plate of interest. The resulting data frame can then be queried for the information
specific to each plate, and the corresponding row integrated into OPM or OPMS objects using
include_metadata. Whereas this function will usually result in non-nested metadata entries,
opm allows one, in principle, to deal with arbitrarily nested meta-information. This holds
because within OPM or OPMS objects metadata are not stored as data frames and not
organised into rows and columns. The amount of meta-information added (and the number
plates simultaneously analysed) is only limited by the available computer memory. Functions
for generating and modifying plate meta-information are listed in Section 3.1.

The user can provide additional information to the metadata data frame on the fly by calling
the function edit, which opens the R editor enabling the user to modify and add data. More-

12 Phenotype Microarray Data (September 14, 2016)

Upper left: choose the column to be split.
Upper right: select tabulator as separator.
Lower left: set resulting columns to mode text.
Lower right: enjoy the result.

Figure 5: When using Microsoft Excel for editing metadata template files exported by opm,
care must be taken that these files remain interpretable by opm. After exporting a file in
CSV format under default settings and opening that file with Microsoft Excel, the entries will
not be split into separate columns. To fix this, mark the single existing column and choose
the Text to Columns tool. Select the tabulator as column separator and set all columns (at
least the “Setup Time” column) to Text as Column data format. After clicking Finish the
columns should then appear correctly. Further columns can then safely be added and the file
saved, but make sure it is saved in CSV format instead of the native Microsoft Excel format.
Afterwards the file can be input by opm again as described in Section 3.4.

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 13

over, you can just assign the metainformation from the CSV files to the metadata in one line of
code. As an alternative to changing the metadata entries by using the R editor, map_metadata
safely maps metadata within OPMS objects. The replacement function metadata<- enables
the user to set the entire meta-information, or specific entries, directly. If a data frame is
used on the right side of the assignment whose number of rows is identical to the number of
plates within the OPMS object on the left side, each data-frame row is specifically added to
the corresponding plate. Note that LIMS input automatically yielded metadata entries.

There are no restrictions regarding the stored metadata values but it usually makes not
much sense to store factors. It is safer to store character vectors instead because conversions
otherwise might easily result in integer vectors instead of factors. Where appropriate, factors
would be created on-the-fly from character vectors by those methods that have to integrate
metadata into data frames. A map_metadata method is available that conducts an according
cleaning of metadata entries. With respect to the stored metadata names, there are only
very few restrictions, which are explained in Section 2.13. In contrast to data frames it is not
advisable to access metadata entries by position instead of by name.

2.5. Aggregating data by estimating curve parameters

The function do_aggr calculates descriptive curve parameters from the kinetic raw data via
spline-fitting and includes them in OPM and OPMS objects. (Extraction of curve parameters
through the fit of sigmoid functions proved for several PM curve shapes to yield biologically
unrealistic values (Vaas et al. 2012) and have therefore not been implemented.) Three different
modelling alternatives for the splines exist (Vaas et al. 2013a): (low-rank) cubic smoothing
splines (Reinsch 1967) as implemented in smooth.spline from the base package as well as
thin-plate splines (Wood 2003, a generalisation of smoothing splines) and P-splines (Eilers and
Marx 1996) as provided by the package mgcv. Their settings have been specifically adapted to
PM data. This worked less well for smoothing splines than for thin-plate splines and P-splines
because a tendency of smoothing splines remained to overfit the data. It is also possible to
access methods from the package grofit (Kahm, Hasenbrink, Lichtenberg-Frate, Ludwig, and
Kschischo 2010) or to use a native implementation which is faster but only estimates two of
the four parameters. It is nevertheless recommended to use the default, successfully optimised
spline method.

The descriptive curve parameters lag phase (λ), respiration rate (µ), maximum curve height
(A) and Area Under the Curve (AUC) estimated by opm are shown in Figure 6. In addition to
the point estimates for the parameters from both model and spline, their confidence limits can
be calculated (for the spline-based approach via bootstrapping), with 95% being the default
value (Efron 1979). But confidence intervals and according group means can also, and usually
should, be calculated from experimental repetitions, as explained in Section 2.8. Attaching
the aggregated data to an OPM object yields an object of the class OPMA, which can also be
stored within an OPMS container object.

2.6. Manipulation of OPM and OPMS data

As usual, data analysis starts with data exploration (Section 3.1). It is easy to select specific
wells and time points from OPM or OPMS objects. It also straightforward to select specific
OPM objects from an OPMS object that contains them. To this end, OPM and OPMS

methods for the generic function subset and R’s bracket operator have been implemented.

14 Phenotype Microarray Data (September 14, 2016)

Time

V
a
lu

e

lag (λ)

sl
o
p
e
 (

µ)

area under the
curve (AUC)

max (A)

Figure 6: A schematic depiction of a typical respiration curve and the parameters estimated
by opm. (Growth curves could be described in the same way.) The descriptive curve pa-
rameters are λ, µ, A and AUC. Note that many respiration curves, even if representing a
clearly positive reaction, do not correspond to this idealised scheme. The parameters can
nevertheless be robustly estimated from deviating curves, particularly via spline fits (Vaas
et al. 2012, 2013a).

Particularly powerful are the options for metadata-based creation of subsets. These permit
queries for the presence of a specific metadata key or a specific value of a specific metadata
key, or a specific combination of values and/or keys, and allow for creating according subsets
of OPMS objects.

A plethora of methods for querying other aspects of OPM and OPMS objects have also been
implemented, as well as standard operations such as sorting objects and making them unique.
It is also possible to build up larger OPMS objects by combining OPMS and OPM objects
using specialised methods for the c generic function and the + operator as well as the very
flexible function opms. Moreover, an OPMS method for merge has been implemented, which
allows for concatenating PM measurements that represent subsequent runs of the same plate.
This has successfully been applied to slow-growing organisms in the bacterial genus Geoder-
matophilus, which had to be measured three times consecutively in the OmniLog➤ instrument
(up to twelve days in total) (Montero-Calasanz, Göker, Pötter, Rohde, Spröer, Schumann,
Gorbushina, and Klenk 2012; Montero-Calasanz, Göker, Rohde, Schumann, Pötter, Spröer,
Gorbushina, and Klenk 2013).

It is also possible to convert OPM or OPMS objects to other objects for an independent
exploration by the user. This can be done within R, based on a variety of distinct data-frame
or matrix objects that can be generated. Alternatively, export in some useful file formats is
possible.

2.7. Plotting functions for raw data

The function xy_plot displays the raw measurements on the y-axis in dependency on the

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 15

time on the x-axis.

For each well one sub-panel is drawn, and the user is free to colourise the plotted curves by
either their affiliation to a specific plate or by a combination of metadata entries of choice.
By default the panels are arranged according to the factual microtiter plate dimensions (eight
rows labelled A to H × twelve columns labelled 01-12), but other user-defined arrangements
are easily feasible because specific wells can be selected. Every panel is annotated with the
microtiter plate numbering (A01 to H12) and additionally or alternatively with the substrate
name (given the plate type, the opm package can translate all well coordinates to substrate
names, see also vignette “Working with substrate information in opm”). Thus, the function
enables the user to compare the curve data in a customised and useful arrangement (Vaas
et al. 2012, 2013a).

Since the estimation of curve parameters (see Section 2.5 and (Vaas et al. 2012)) is alleviated
in the case of curves from finished reactions, we strongly recommend to also use xy_plot for
assessing whether or not measurement times had been exhaustive and respiration reactions
were completely recorded. A clear indication of not exhaustively recorded experimental runs
is usually the absence of a final plateau phase in the recorded curves.

A statistical test for the completeness of respiration measurements over time is not known to
us, but it should be easy to visually identify finished reactions. Nevertheless, some experi-
mental experience is necessary to determine minimum running times for the organisms under
study. But plates with slowly reacting organisms can subsequently be measured several times
and the results put together using the merge method.

Depending on the question under study, it may or may not be advisable to further process
curve parameters estimated from unfinished reactions. Experimenters should keep in mind
that conclusions can only be drawn from recorded data. The part of a curve that is not
measured remains unknown, which might obscure existing differences. Moreover, parameters
such as A might not always be biologically interpretable as usual when inferred from unfinished
reactions. Since it increases constantly with increasing measurement times, AUC can only be
compared between curves with the same overall running time. But the subset method for
OPMS objects can easily reduce a set of plates to the time points common to all of them,
which would avoid comparing apples and oranges.

The function level_plot provides false-colour level plots from the raw respiration measure-
ments over time. Each respiration curve can be displayed as a thin horizontal line, in which
the measured respiration value (in OmniLog➤ units) is represented by colour, while the x-
axes indicates the measurement times. With increasing respiration measurement values, the
displayed colour changes (by default) from light yellow into dark orange and brownish. The
user can obtain an overview in a compacted design (Vaas et al. 2012, 2013a). This display
format is especially powerful for uncovering general differences between plates, for example
longer lag phases or smaller AUC values across the majority of wells. By default one sub-panel
in the level plot corresponds to one complete plate comprising 96 lines, but as in the case of
xy_plot plotting could also be preceded by creating subsets of the plates.

2.8. Plotting the aggregated data

For the graphical representation of the aggregated data the opm package provides four differ-
ent functions, namely parallel_plot for visualising distinct curve parameters in one plot as
well as radial_plot, ci_plot and heat_map for displaying a selected curve parameter.

16 Phenotype Microarray Data (September 14, 2016)

parallel_plot provides an overview of at least two estimated parameters and visualises their
interrelationships. Such a parallel coordinate plot produces an effective graphical summary
of a multivariate data set when there are not too many variables. Since the variables are
automatically scaled to a fixed range, this is equivalent to working with standardised values.
This is important for PM data because the distinct curve parameters are measured on quite
different scales.

radial_plot displays a plot of radial lines, polygons or symbols, or a combination of these,
centred at the midpoint of the plot frame, the lengths, vertices or positions corresponding to
the numeric magnitudes of the data values.

ci_plot displays point estimators and corresponding confidence limits for the depicted curve
parameters of selected curves. Thus the characteristics of different curves assembled into
a single overview facilitates the interpretation and comparison of user-defined data subsets
arranged according to the technical and/or biological repetition structure or other aspects of
the experimental design (Vaas et al. 2012).

Additionally, the package can plot the aggregated curve parameters as a heat map. Heat
maps appear particularly powerful for visualising the outcomes of PM experiment because
dendrograms inferred from both the substrates and the plates can be used to rearrange the
plot. Since the user is free to define the metadata to be used for the annotation of the plot and
the clustering analysis, the function heat_map is powerful for data exploration in specialised
contexts. For instance, the naming scheme of the individual plates can be devised by selecting
associated metadata. It is also possible to automatically construct row groups by selecting
the same or other meta-information.

Further, opm can plot aggregated values as radial plots using an eponymous function, which
is mainly a wrapper for the radial.plot function from the plotrix package adapted to the
typical opm objects. heat_map is mainly a wrapper for the heatmap functions from either
the stats or the gplots R package, but contains some useful adaptations to PM data. It
facilitates the selection of a clustering algorithm and the construction of row and column
groups, and provides more appropriate default solutions for row and column descriptions
sizes. (We suppose that in most situations the pictures produced by heat_map should not
need to be manually adapted in these respects.)

2.8.1. Normalisation of aggregated curve parameters

When analysing empirically obtained measurements such as PM data it is important to con-
sider possible systematic variations and to control for those by normalisation. For a PM
experiment the purpose of such a normalisation is to minimise systematic variations in the
aggregated curve parameters so as to more easily recognise biological differences, as well as to
allow for the comparison of parameters across plates processed in different experimental runs.
The underlying ideas are mainly derived from DNA-microarray experiments for measuring
gene-expression levels (Quackenbush 2002).

Using extract the user can select certain aggregated or discretised values into common ma-
trices or data frames. If applied a second time to a previously generated data frame, extract
can compute point estimates and their respective confidence intervals for individually de-
fined experimental groups. Optionally, normalisation by subtracting, or dividing through,
the plate-wise means (across all 96 wells) or well-wise means (across all plates that contain
this well) can be conducted beforehand. Although this method is intended mainly as a helper

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 17

function for ci_plot, it can be quite useful for specific normalisation purposes, for example
when data were derived before and after servicing the OmniLog➤ facility, which might result
in shifting the measurements by a certain amount. In conjunction with extract, ci_plot
allows for visualising point estimates and confidence intervals of groups of parameter esti-
mates. For visualising differences between groups and their confidence intervals, see opm_mcp
as described in Section 2.9.

2.9. Statistical comparisons of group means

Besides comparing single curves, the user may also be interested in statistically comparing the
mean values of distinct groups of curves. For example, imagine the comparison of four different
bacteria using GEN-III micro-plates. For instance, assume that for each bacterial strain, ten
replicates have been performed. (An according example data set is actually available in the
opmdata package.) Do these four bacteria differ in the mean value of curve parameter A of
well A01? Here, a statistical comparison of four groups (four organisms), each containing
ten values (curve parameter A of 10 replicates of well A01), would need to be performed.
Statistically, this requires simultaneous inferences across multiple questions (Hothorn, Bretz,
and Westfall 2008).

To address this issue the function opm_mcp performs simultaneous multiple comparisons of
group means by internally calling glht from the multcomp package (Hothorn et al. 2008)
but providing an easier interface for it, specifically adapted to the typical objects used within
opm. By referring to available metadata and/or the substrate names, the user can define
groups of interest, set up a model of choice and perform multiple comparison of group means
on individually specified contrasts (Bretz et al. 2010; Hsu 1996). The choice of appropriate
models and contrasts will be explained in detail below. As comparisons of the different curve
parameters are performed separately, it is possible to ask very specific questions on differences
between curve shapes.

At this point, it is necessary to highlight the power and flexibility of simultaneous multiple
comparison procedures and to encourage the user to apply contrast tests on individually
designed sets of mean comparisons rather than to employ the probably more popular classical
Analysis Of Variance (ANOVA) approaches, which perform F-tests. In general, such F-tests
only provide global information about main effects and interaction effects. That is, only
the significance of a result yields evidence for a difference in the means among any of the
considered treatments. For example, in the framework of PM data, a significant F-test on
the effect of the substrate would indicate that at least two of the substrates cause distinct
respiration. Considering that each PM experiment encounters up to 96 different substrates
per plate (overall up to 2,000), this information would, obviously, be nearly useless. Moreover,
F-tests neither provide information about effect sizes nor do they ease addressing comparisons
of particular interest (Schaarschmidt and Vaas 2009).

We thus opine that most underlying questions in PM experiments are best expressed as a set
of particular mean comparisons, resulting in a multiple-comparison problem (Hochberg and
Tamhane 1987). However, if an increasing number of hypotheses is tested, with the number of
true hypotheses unknown, the probability of at least one wrong testing decision also increases.
That is, if an increasing number of groups is compared to each other, conclusions on significant
differences between a pair of groups are increasingly likely to be wrong. Thus the so-called
family-wise error-rate, which is essentially the probability of at least one false rejection among

18 Phenotype Microarray Data (September 14, 2016)

all the null hypotheses, needs to be controlled (Tukey 1994). The here employed functions
from the package multcomp solve all those difficulties, since they allow for testing a user-
defined set of contrasts based on a broad range of model types while internally controlling
the family-wise error-rate.

Users of multiple-comparison procedures, especially of simultaneous multiple contrast tests as
applied here, are encouraged to have a look into the books by Hochberg and Tamhane (1987)
and Hsu (1996). Regarding the important topic of sample size estimation and power compu-
tation, we here provide a brief overview and recommend to further consult textbooks such as
Sokal and Rohlf (1995) and Zar (1999). The aim of a statistical test is to determine whether
or not there is a significant difference between the observed group means. An appropriate
sample size depends on the following parameters:

❼ The desired statistical power and the corresponding significance level α.

❼ Whether or not the test is planned as one- or two-sided comparison.

❼ The minimum expected difference, also called the effect size.

❼ The estimated measurement variability.

The crucial issue regarding sample size is its effect on the statistical “power”. The power of a
statistical test is defined as the probability that the test correctly rejects the null hypothesis
when the alternative hypothesis is true. In a false-negative result, the test does not reject
the null hypothesis even though there is a difference; this behaviour is referred to as “type-II
error”. A larger sample size increases the power and reduces the frequency of type-II errors
(Eng 2003). Unfortunately, power is directly influenced by the significance criterion α: for
smaller values of α, a larger sample size is needed to obtain a certain power. Similarly, the
minimum expected difference between two groups influences the necessary sample size: The
smaller the effect size, the higher the sample size needed to maintain a given power. Finally,
a larger variability of the samples increases the sample size needed to detect a minimum
difference. Power calculations in R can be done using functions in the package pwr (Champely
2012) or using the function power.t.test from the stats package.

Especially in situations where groups are defined by more than a single metadata entry the
evaluation of differences of treatment means may result in quite complex models. Then,
the application of cell-means models (also known as pseudo-one-way layouts) as discussed
in (Schaarschmidt and Vaas 2009)) is strongly encouraged. In this approach estimators for
treatment and variance are derived from a model with all treatments combined into a single
factor. Technically, this requires the merging of several defining metadata variables into a
single one. This can be done by creating new metadata entries from given ones and storing
them back in an OPM or OPMS object. An according example is given in Section 3.4.
Alternatively, merging can be done when selecting metadata for creating data frames. The
computation of multiple comparisons using a cell-means model is shown in Section 3.9.

The function opm_mcp internally reshapes the data into a “flat” data frame containing one
column for the chosen parameter value, one column for the well (substrate) name and op-
tionally additional columns for the selected metadata. For performing the testing procedure,
a model has to be stated that specifies the factor levels that determine the grouping (Searle

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 19

1971; Hothorn et al. 2008). The opm_mcp function allows for applying such testing directly to
OPMS objects, obtaining these factors from stored metadata.

Albeit unusual, depending on the individual study design, the underlying experimental ques-
tion and/or the used plates, it might be necessary to perform multiple tests and confidence-
interval estimations for ratios of means (e.g., “fold changes”) rather than differences of means.
A demonstration of those applications is beyond the scope of this vignette, but the reshaping
of the data implemented in opm_mcp provides a ready-to-use input format for test compu-
tation. For R the necessary functions are available in mratios (Djira, Hasler, Gerhard, and
Schaarschmidt 2012) and SimComp (Hasler 2012b). A valuable overview on the mathemati-
cal background is provided by Dilba, Bretz, and Guiard (2006), whereas examples for special
applications can be found in Hasler (2012a).

2.10. Discretising the aggregated data and export for phylogenetic analysis

Whereas the main data-analysis strategies of the opm package are based on quantitative,
continuous data (as described in the previous chapters), users may nevertheless be interested
in discretising the estimated curve parameters. Discretisation transfers continuous data into
discrete ones. For example, continuous values ranging from 0 to 400 could be discretised into
the three states“low”(from 0 to 100),“intermediate”(from 101 to 200), and“high”(from 201 to
400). Discretising the data is necessary for analysing them with external programs that cannot
deal with continuous characters. Indeed, phylogeny software such as PAUP* (Swofford 2003)
and RAxML (Stamatakis, Ludwig, and Meier 2005) is limited to at most 32 distinct character
states. (To the best of our knowledge, a maximum-parsimony algorithm applicable directly
to continuous data has only been implemented in TNT (Goloboff, Farris, and Nixon 2008).)
Phylogenetic studies of PM data, or at least reconstructions of PM character evolution, are
of interest because such phenotypic information is frequently used for taxonomic purposes
in microorganisms, and here phylogenetic inference methods might be superior to clustering
algorithms (Felsenstein 2004). But tabular or textual descriptions of physiological reactions
classified into negative, weak (ambiguous) and positive reactions (see Section 2.11 for details)
are of even greater relevance in current microbial taxonomy (Tindall, Kämpfer, Euzéby, and
Oren 2006).

The opm package includes data transformations (implemented in the discrete methods)
for coding continuous characters by assigning them to a given number of equal-width cat-
egories within a given range. For example, for the parameter A the theoretically possible
range between 0 and 400 OmniLog➤ units could be used. The data should then be analysed
under ordered (Wagner) maximum parsimony in PAUP* (Farris 1970) or with the options
for ordered multiple-state phenotypic characters in RAxML (Berger and Stamatakis 2010),
or corresponding settings in other programs, to minimise the loss of information caused by
discretising the values. For this reason, this kind of unsupervised, equal-width-intervals dis-
cretisation (Dougherty, Kohavi, and Sahami 1995; Ventura and Martinez 1995), even though
simple, appears appropriate for this task. In this context, it also makes not much sense to
let a discretisation method determine the number of categories because they are not dictated
by some property of the data but by the limitations of the subsequently to apply analysis
software. opm can appropriately export discretised data.

2.11. Determining positive and negative reactions and displaying them as

20 Phenotype Microarray Data (September 14, 2016)

text or table

If users wanted to discretise the parameters into “positive” and “negative” results, this would
apparently make most sense for the parameter A because here it is not of interest when and
how fast a reaction starts (which would be coded in λ and µ, respectively) or how much
overall respiration was achieved (as coded in AUC) but whether or not a reaction takes place
at all. Unfortunately, PM data frequently result in a continuum of A values between clearly
negative and clearly positive reactions. For instance, the distribution of A in the example
data sets distributed with the opm and opmdata packages is obviously bimodal, but contains
a large number of intermediary values. For this reason, do_disc implements a gap-mode
discretisation by interpreting a given range of values (within the overall range of observations)
as “ambiguous”. Values below would then be coded as negative, values above the range as
positive, and values within the range as either missing information or an intermediary state,
“weak”.

This range could be determined by some discretisation approach known from the literature
(Dougherty et al. 1995; Ventura and Martinez 1995). The opm package can automatically
determine it using k-means partitioning as implemented in Ckmeans.1d.dp (Wang and Song
2011), using an exact algorithm for one-dimensional data. Alternatively, an algorithm im-
plemented in best_cutoff is available, but it requires measurement replicates (which are
highly recommended, if not mandatory, anyway) accordingly annotated in the metadata.
Both methods are accessible via do_disc, too.

Export as richly annotated, publication-ready Hypertext Markup Language (HTML) table or
text is possible using phylo_data and listing. If analysis with phylogenetic programs was
of interest, in the case of an intermediary state the data should then be analysed as described
above. If intermediary values were coded as missing information they could be analysed under
either Wagner or unordered (Fitch) maximum parsimony in PAUP* (Farris 1970; Fitch 1971)
or with the options for binary phenotypic characters in RAxML (Berger and Stamatakis 2010),
or corresponding settings in other programs.

2.12. Database input and output

This topic is for advanced users and bioinformaticians, as it requires setting up, or at least hav-
ing access to, a database server. For this reason, automatically executed (and thus checked)
code for database I/O of PM data directly within R can neither be included here nor in the
example sections of the opm manual. We have, however, tested all of the following state-
ments, and all of the mentioned code examples, on our own workstations. But for a successful
database interaction users might need information that is not directly related to opm and thus
cannot be treated in the documentation of this package. We can nevertheless provide example
code that uses opm together with database-specific R packages for storing and receiving PM
data.

Database interaction differs greatly depending on whether a relational database or one of
the more recent NoSQL alternatives is concerned. For working with a Relational Database
Management System (RDBMS), a scheme needs to be defined beforehand for storing the
PM data, and additional conversions and selections are necessary. The scheme required
by the opm_dbput function and its accompanying functions such as opm_dbget is provided
with opm via opm_files("sql"). Whereas these functions require certain column names, as
well as inter-table relationships defined by foreign keys, the tables could be renamed. Note

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 21

particularly that columns for the metadata of interest could (and usually should) be added
to the “plates” table. Call demo(package = "opm") to see examples for SQLite, MySQL and
PostgreSQL. This code was successfully tested locally with RSQLite (James, Falcon, and
the authors of SQLite 2013), RMySQL (James and DebRoy 2012), RPostgreSQL (Conway,
Eddelbuettel, Nishiyama, Prayaga, and Tiffin 2013) and RODBC (Ripley and from 1999 to
Oct 2002 Michael Lapsley 2013).

A popular document-oriented database is MongoDB, which is accessible via the RMongo

package (Chheng 2013). If you have set up a local MongoDB server and installed RMongo,
call demo("MongoDB-IO", package = "opm") for a usage example. The data storage used
within opm fits well to a document-oriented database because OPMX objects do not enforce
a particular structure for storing the metadata (see Section 2.4). The same holds for the
“options” entries of the aggregation and discretisation settings.

Finally, the output YAML format (or its subset, JSON) is likely to facilitate the quick estab-
lishment of third-party software for importing PM data into a database (Caspi et al. 2016).

2.13. Global settings

It is possible to modify settings that have an effect on multiple functions and/or on frequently
used arguments globally using opm_opt. This allows the user to adopt opm to personal
preferences and to thereby substantially decrease coding effort. It is checked that the novel
values inherit from the same class(es) than the old ones. Usage examples are provided in
several sections (e.g., Section 3.10.3).

The function param_names yields the spelling of the curve parameters used by opm. It also
displays the set of names that are used by some methods that have to compile metadata
entries with other columns. It is thus not impossible, but discouraged, to use these names
as metadata keys. The same holds for (non-syntactical) names starting with an underscore
and followed by capital letters, as such names are temporarily used by some methods in
intermediary objects together with the metadata.

3. Program application

3.1. Overview

The most important functions that can be used in each step of the possible opm work flows
are shown in Figure 7. For a complete list of user-level functions see the manual.

Before starting, the opm package should be loaded into an R session as follows:

R> library("opm")

The example data set distributed with the package (Vaas et al. 2012) comprises the re-
sults from running 114 GEN-III plates (BIOLOG Inc.) in the PM mode of the OmniLog➤
reader. The organisms used were two strains of Escherichia coli (Deutsche Sammlung von
Mikroorganismen (DSM) 18039 = K12 and the type strain DSM 30083T) and two strains
of Pseudomonas aeruginosa (DSM 1707 and 429SC (Selezska, Kazmierczak, Müsken, Garbe,
Schobert, Häussler, Wiehlmann, Rohde, and Sikorski 2012)). The strains with a DSM number

22 Phenotype Microarray Data (September 14, 2016)

Previously generated YAMLRaw data (CSV file)

Input via read_opm

compile metadata via editing a data frame in R

or a CSV file with a spreadsheet software

generate metadata template for OPM or OPMS

objects via collect_template

combine
using
opms,
c, +,
[]<-

raw kinetic data

raw kinetic and
aggregated data

raw kinetic,
aggregated and
discretized data

OPM

OPMA

OPMD

OPMS

OPMS

OPMS

raw kinetic data

raw kinetic and
aggregated data

raw kinetic,
aggregated and
discretized data

aggregate via
do_aggr

discretize via
do_disc

aggregate via
do_aggr

discretize via
do_disc

single plate

add metadata via include_metadata

In
it

ia
l

c
o

m
p

il
a

ti
o

n
 o

f
d

a
ta

Data containers flexibly compiled
according to the interests and needs of the user

output YAML,
CSV, etc.:
to_yaml/write,
as.data.frame/
write.table,
phylo_data/
write

manage metadata:
metadata<-,
include_metadata,
map_metadata,
metadata_chars

create plots:
level_plot,
xy_plot,
ci_plot/extract,
heat_map,
radial_plot,
annotated,
parallelplot

query metadata
and select:
subset, [],
%k%, %q%,
%K%, %Q%

convert:
flatten,
extract,
opm_mcp

OPM, OPMA, OPMD, OPMS objects

Single to many plates with raw kinetic and metadata,
and optionally aggregated and discretized data

conduct
multiple
comparison
of means:
opm_mcp

D
a

ta
 a

n
a

ly
s

is
 a

n
d

 m
a

n
a

g
e

m
e

n
t

create
tables
and/or text:
phylo_data,
listing

obtain basic
information:
summary,
metadata,
aggregated,
discretized,
...

explore
data within
R yourself

publish
tables

and/or text

explore
data

elsewhere

publish
figures

Data frame

Conversion via opmx

many plates

publish
statistics

read from
and/or
write to
databases:
opm_dbput,
opm_dbget,
...

use
database
storage

Figure 7: Overview of the possible strategies and appropriate functions for data analysis
using the opm package. Beginning with one to several CSV files containing raw kinetic
data exported by the proprietary OmniLog➤ software File Management/Kinetic Analysis,
or YAML or JSON files that have been generated in previous opm runs, OPM or OPMS

objects can easily be generated. Methods for metadata management, plotting the data in a
customised manner, querying and sub-setting the generated objects, statistical comparison of
multiple group means, and data-conversion tools including discretisation, report generation
and output in files are provided. How to use annotated to produce graphics is explained
in the tutorial on substrate information in opm. The input of growth-curve data, or any
other data that have neither been measured with an OmniLog➤ nor a with a MicroStation➋
system, is described in the tutorial on analysing growth curves and other user-defined data.
As shown in the upper left part of the figure, it only requires the creation of a data frame
that can be converted with the opmx function.

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 23

could be ordered from the Leibniz Institute Deutsche Sammlung von Mikroorganismen und
Zellkulturen (DSMZ) (http://www.dsmz.de/).

Each strain was measured in two biological replicates, each comprising ten technical replicates,
yielding a total of 80 plates. To additionally investigate the impact of the growth age of
the cultures on the technical and biological reproducibility of the PM respiration kinetics,
strain E. coli DSM 18039 was grown on solid Lysogeny Broth (LB) medium for nine different
durations, from 16.75 h (t1) to 40.33 h (t9), respectively. For each growth duration four
technical replicates were performed except for t9 (which was repeated only twice), yielding
34 plates for this time-series experiment. All biological and experimental details of this data
set have been described previously (Vaas et al. 2012).

Two subsets of the data, vaas_1 and vaas_4, are included in opm. See their description in
the manual, and have a look at the objects as follows:

R> vaas_1

R> vaas_4

The entire data set, stored in the object vaas_et_al, comes with the supporting package
opmdata and can (if that package is installed, of course) be loaded using:

R> data(vaas_et_al, package = "opmdata")

The metadata included in these objects comprise seven entries, as described in the opmdata

manual. The entry Experiment denotes the biological replicate or the affiliation to the time-
series experiments. The keys Species and Strain refer to the organism used for the respective
experiment (see above), and Slot (either A or B) indicates whether the plate was placed
in the left or the right half of the OmniLog➤ reader. (Note that for an assessment of the
reproducibility of the curves the slot is occasionally of relevance.) Two additional entries
contain the index of the time point and the corresponding sample point in minutes for the
time series experiment. The key Plate number indicates the technical replicate (per biological
replicate). The combination of the keys Strains, Species, Experiment and Plate number results
in a unique label which unequivocally annotates every single plate.

3.1.1. Troubleshooting

It is hard to provide a general hint regarding problems with R code except for the following
one: If anything fails, read the issued error message and take it serious.

3.2. Data import

The following code illustrates the import of the OmniLog➤ CSV file(s) into the opm package.
In the opm manual and all help pages, all data import functions are contained in the family
“IO-functions” with according cross-references.

The CSV files with the OmniLog➤ raw data should be stored in one to several user-defined
folders. Setting the working directory of R to the parent folder of these using setwd frequently
facilitates file selection, but in principle the user can provide any number of paths to input
files and/or directories containing such files to the function read_opm, which can load several
CSV files (and also YAML or JSON files generated by opm) at once. A former restriction of

http://www.dsmz.de/

24 Phenotype Microarray Data (September 14, 2016)

the input functions was that they could solely read new-style CSV files that only contained
the measurements from a single plate per file (either a PM plate or a single GEN-III plate
measured in either PM- or identification mode). The function split_files had to be used
to split CSV files with multiple plates into one file per plate, but this is not necessary any
more.

To illustrate the file import step by step, a set of input CSV example files is provided with
the package. Before starting, remember that the opm package must be loaded. Then use the
built-in function opm_files to find the example files in your R installation:

R> files <- opm_files("testdata")

R> files

Afterwards check whether this returned a vector of nine file names, including the full path to
their location in the file system. (It might fail in very unusual R installation situations; in that
case, the files must be found manually.) For demonstration purposes, the test data contain
EcoPlate➤ Gen-III, PM01 and PM20 plate types. One of these files contains multiple plates
and could be used as an example for split_files, but it can also directly be read.

Using read_opm, from a given vector of file and/or directory names, files can easily be selected
and deselected using globbing or regular-expression patterns. For instance, for reading the
three example files in “new style” CSV format (see Section 2.2), use the following code.

R> example.opm <- read_opm(names = files, convert = "try",

include = "*Example_?.CSV.xz")

R> summary(example.opm)

Here convert = "try" causes the function to attempt to combine all input plates in a single
OPMS object. This fails when there are several plate types. (The default is to group by
plate type, yielding a MOPMS object, see below.) After performing this step, the OPMS

object contains three plates, as indicated by the summary function. An example for inputting
LIMS-style CSV is here:

R> example.lims <- read_opm(names = files, convert = "try",

include = "*Example_LIMS_*.EXL.xz")

R> summary(example.lims)

R> rm(example.lims)

Instead of a single file name the user could also provide several file names to read_opm, or a
mixture of file and directory names. If these were contained as subdirectories of the current
working directory, read_opm(".") or read_opm(getwd) would be sufficient to input these
files. To filter the files with patterns, the arguments exclude and include are available. There
is also a demo mode allowing the user to check the effect of each argument before actually
reading files. One can use the gen.iii argument to trigger the automated conversion of the
plate type to, e.g., GEN-III or “ECO” plates run in “PM”mode, or convert later on using the
gen_iii function itself. Plate-type conversions to one of the “PM” modes are disallowed by
default and are, to the best of our knowledge, hardly relevant in practice anyway. (They would
only be necessary if the wrong plate type was entered into the OmniLog➤ instrument.) The
plate type is crucial, as it is disallowed to integrate distinct plate types into a single OPMS

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 25

objects. The reason is that comparing the same well positions from distinct plate types would
be almost always equivalent to comparing apples and oranges.

If more than one plate of the same plate type was read, however, data from all files would
automatically be integrated into a single OPMS object. To read plates from several types at
once, the convert argument is useful. If one uses read_opm(..., convert = "grp") (the
default), a named list is created with, as each list element, one OPM or OPMS object per plate
type, depending on whether only a single plate of that plate type, or several such plates, have
been found. For instance, for inputting all example files (except for the one with multiple
plates), consider the following code:

R> many.plates <- read_opm(names = files, exclude = "*Multiple*")

R> summary(many.plates)

R> summary(many.plates$PM01)

R> rm(many.plates) # tidy up

This yields the data from plates with distinct plate types in a single object. Note that the
objects for each encountered plate type can easily be accessed via the names of the list. More
example code is available via opm_files("demo"). Call demo("multiple-plate-types",
package = "opm") after moving to the directory with input CSV files (or a parent directory
of it). Unreadable CSV would yield an error.

A single plate could also be imported using read_single_opm. But this might only occasion-
ally be useful, as read_opm can cope with single files, too.

3.2.1. Troubleshooting

A frequent kind of error is that you attempt to read files that are CSV but do not contain PM
data. The name of the first file that fails is shown in the error message, fixing the problem
should thus be straightforward. Use demo = TRUE to first show the files you would read, and
if this list contains names of files that expectedly cannot be read by opm, modify the inclusion
or exclusion settings. Alternatively, modify your folder structure. Finally, note that you can
always use a character vector of specific file names collected by hand as names argument. This
would provide complete control about the files to be read.

The most usual error that occurred with older versions of opm was that it was attempted
to input CSV files with several plates per file, but such multiple-plate CSV files had to be
split beforehand with split_files to generate files that can be input by the package. This
restriction has been lifted in current opm versions. Moreover, the most recent versions of the
OmniLog➤ software can batch-export one plate per CSV file.

3.3. Batch conversion of many files

In addition to read_opm and read_single_opm (Section 3.2), which need to be called before
an interactive exploration of PM data, batch-processing large numbers of files by converting
them from CSV (or previously generated YAML or JSON) to YAML, JSON or CSV format,
is also possible. This optionally includes aggregating the raw data by estimating curve param-
eters (Section 3.5), discretising these parameters (Section 3.10.2) and integrating metadata
(Section 3.4). Again there is a demo mode to first investigate the attempted conversions:

26 Phenotype Microarray Data (September 14, 2016)

R> batch_opm(files, include = "*Example_?.CSV.xz",

aggr.args = list(boot = 100, method = "opm-fast"),

outdir = ".", demo = TRUE)

The arguments aggr.args, disc.args and md.args control aggregation, discretisation and
metadata incorporation, respectively. Details on all three processes are given in the according
sections, and for the exact use of these arguments see the opm manual.

The following command reads three of the seven example input files, estimates two of the four
curve parameters using the fast native method including 100 rounds of bootstrapping, and
stores the resulting YAML files (one per plate) in the current working directory (indicated by
"."):

R> batch.result <- batch_opm(files, include = "*Example_?.CSV.xz",

aggr.args = list(boot = 100, method = "opm-fast"),

outdir = ".")

By default, progress messages are printed to the screen. The return value, here assigned to
the batch.result variable, also contains all information about the success of the individual
file conversions.

The run_opm.R script distributed with the package is an Rscript-dependent command-line
tool for non-interactively running such file conversions. Its location in the file system can be
obtained using

R> opm_files("scripts")

Regarding the use of the script, see the documentation of Rscript (the Rmanual contains an ac-
cording entry) and watch the help output of this script (try system(opm_files("scripts"))).

3.4. Integration and manipulation of metadata

Several ways for linking metadata to OPM or OPMS objects are possible. The easiest one
is probably the batch-inclusion after creating a template with plate ID associating it with
metadata. In the first step, either a data frame to be manipulated within R or a CSV file to be
modified with a suitable editor are created. The opm package supports metadata integration
by creating a template for such a table from an OPM or OPMS objects that contains plate ID
in the first columns; by default the keys Setup Time, Position and File. These entries must
not be changed, ensuring that the package can later on link the metadata to the dedicated
plates according to these ID.

In the opm manual and help pages, most metadata-manipulation functions are contained
in the family “metadata-functions” with according cross-references. For the collection of a
metadata template in a data frame to be manipulated in R, use this command:

R> metadata.example <- collect_template(files, include = "*Example_?.CSV.xz")

For the generation of a metadata template file, the following command can be used:

R> collect_template(files, include = "*Example_?.CSV.xz",

outfile = "example_metadata.CSV")

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 27

This will result in a file "example_metadata.CSV" in the current working directory (whose
name is accessible using getwd). If other metadata have previously been collected, by default
an already existing file with the same name will be reused. The already defined columns will
be respected, novel rows will be added, old metadata will be kept, ID for novel files will be
included and their so far empty metadata entries will be set to missing data (NA). You can also
provide the location of another previously created metadata file with the collect_template
argument previous. An ID for the OmniLog➤ instrument in use can also be added. This
makes sense if plates from several such machines are analysed. A further option is to normalise
the plate-position and setup-time entries, as described in the manual.

The generated CSV file could then be edited using external software; for the purpose of this
tutorial, we load it directly and manipulate it in R. To avoid the usual changes in data format
and header of the table during the import a customised import function was implemented as
a wrapper for read.delim:

R> metadata.example <- to_metadata("example_metadata.CSV")

Per default, this expects CSV columns separated by tabulators, with the fields protected by
quotes. To input other formats, consider the sep argument for defining an alternative column
separator, as well as the strip.white argument for turning the removal of whitespace at the
beginning and end of the fields on or off (which is relevant if a spreadsheet program exports
CSV without quotes). Note that you can pass a file name directly to include_metadata. This
is computationally less efficient but by default the function then tries several strip.white
and sep arguments in turn unless it succeeds in finding the column names and rows of interest.

Some spreadsheet software might also interpret and reformat the setup time. This needs to
be avoided by declaring the according column to be input as plain text into the spreadsheet,
thus preventing any interpretation of its content. See Figure 5 for how to achieve this with
Microsoft Excel.

Now the user could add information to the data frame by calling edit, which would open the
R editor, or by any other way of manipulating data frames in R. New columns could be defined,
or the existing metadata modified. But the first columns must remain unchanged because
they are needed to identify individual PM plates for linking them to their meta-information.
As an example, we here add an (arbitrary) Colour column with the values “blue”, “red” and
“yellow” and another (arbitrary) Integer column with the integer values 10, 20 and 30:

R> metadata.example$Colour <- c("blue", "red", "yellow")

R> metadata.example$Integer <- c(10L, 20L, 30L)

Now the metadata are ready to be included into the previously generated OPMS object:

R> example.opm <- include_metadata(example.opm, md = metadata.example)

The metadata could then be received as follows:

R> metadata(example.opm)

28 Phenotype Microarray Data (September 14, 2016)

This returns the entire metadata entries as a list (for just displaying them, to_metadata(example.opm)
is often more convenient, as described below). By default only the added metadata are in-
cluded in the object, but not the ID used for assigning data-frame rows to plates.

One might want to remove the metadata CSV file as it is not needed any more:

R> unlink("example_metadata.CSV")

If include_metadata complains about a missing key/value pair, watch carefully whether the
shown value contains leading (or trailing) spaces. If so, consider using strip.white = FALSE

when calling include_metadata or to_metadata. The default setting for include_metadata
tries several options in turn, however, until the matching succeeds.

A couple of other functions have been implemented for manipulating metadata included in
OPM and OPMS objects. For instance, the entire meta-information, or specific entries, can
be set using the replacement function metadata<-. Setting a specific entry named key to
a specific value value in all plates is accomplished with metadata(example.opm, key) <-

value. If the right side of the assignment is a data frame with the same length as the OPMS

object, each row would specifically be assigned to the OPM object with the same index. This
makes it easy to add the selected csv_data, or all information from the OmniLog➤ CSV
files, to the metadata:

R> metadata(example.opm)

R> metadata(example.opm) <- to_metadata(csv_data(example.opm))[,

c("Strain Name", "Sample Number")]

R> metadata(example.opm)

However, there is an even easier short-cut to copy the csv_data to the metadata:

R> ## do not enter this code, as we already have copied the CSV data

R> metadata(example.opm) <- TRUE # set selected CSV metainformation

R> metadata(example.opm) <- FALSE # remove it again

The csv_data not to be copied (or removed again) are chosen using opm_opt("csv.selection").

You might note that “Sample Number” is a misnomer in these data sets. (One of the fields
in the interface of the Data Collection software of the OmniLog➤ reader had been de-
fined as “Sample Number”, but the operator entered species and strain designations into
this field.) In such cases, modifying the metadata in-place is of use, which is accomplished
with map_metadata. This function returns a novel OPMS (or OPM) object. Its formula
method is particularly powerful:

R> metadata(example.opm)

R> metadata(map_metadata(example.opm, Organism ~ ❵Sample Number❵))

This works by converting the left side of the formula into a metadata key and evaluating
the right side of the formula in the context of the metadata entries that have already been
added. As result, a new metadata entry is created, with “Organism” as key and the entry
from “Sample Number” as value. “Sample Number” must be quoted because it contains a
special character (the blank).

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 29

But we have not yet removed the inadequately named “Sample Number” entries. Here, it is
useful that all operators (except for $ and other high-precedence operators, which can be used
for defining nested keys) on the left side, if present, are changed by map_metadata into a call
to list. The resulting list is flattened and treated as a list of metadata keys. Hence it is
possible to define several keys at once. The right side, once evaluated, is recycled accordingly.
Thus we can clean up our metadata in a single line of code:

R> metadata(map_metadata(example.opm,

Organism + ❵Sample Number❵ ~ list(❵Sample Number❵, NULL)))

The deletion of “Sample Number” is accomplished by the assignment of NULL, as usual in
R lists. Instead of + almost all other operators could be used, and one could also write
c(Organism, ‘Sample Number‘) on the left side, which might be more intuitive. If map_metadata
is called without a mapping, it “cleans” the metadata by removing empty entries (by default
including those that only contain NA values) and converting factors to character vectors.

But we have not yet stored an OPMS object with the cleaned metadata. This could be done
using example.opm <- map_metadata(example.opm, ...). In that case, however, direct
assignment would also be possible:

R> metadata(example.opm) <- Organism + ❵Sample Number❵ ~

list(❵Sample Number❵, NULL)

R> metadata(example.opm)

Assigning NULL to a metadata entry would remove that entry. We can achieve the same using
an expression object:

R> metadata(example.opm) <- to_metadata(csv_data(example.opm))[,

c("Strain Name", "Sample Number")] # reset

R> metadata(example.opm)

R> metadata(example.opm) <- expression(Organism <- ❵Sample Number❵,
rm(❵Sample Number❵))

R> metadata(example.opm)

Here, the assignment targets (names within the metadata) are specified directly using just the
<- operator. Apparently, arbitrarily complex code can be put in such a metadata-modifying
expression.

All metadata are cleared by assigning an empty list, without specifying a key:

R> metadata(example.opm, "Organism") <- NULL

R> metadata(example.opm)

R> metadata(example.opm) <- list()

R> metadata(example.opm)

So keep in mind that formulae and expressions are very flexible for modifying metadata entries.
They allow for any other operation (such as numerical calculations) if it can be applied to
the selected predefined metadata content. The replacement function can also be used to copy
metadata between OPM and/or OPMS objects.

Metadata can also be assigned specifically for subsets of OPMS objects, using the indexed
assignment available for those objects:

30 Phenotype Microarray Data (September 14, 2016)

R> metadata(example.opm[2]) <- list(Organism = "Elephas maximus",

Size = "3 meters")

R> metadata(example.opm)

R> metadata(example.opm[2]) <- list()

R> metadata(example.opm)

You may have noted that metadata always returns a list, not a data frame. This is because
metadata need not contain the same entries, even within a single OPMS object, and can be
nested. It is possible, however, to get the metadata as data frame by using to_metadata.
Missing entries would then be filled with NA values, and nested metadata entries would yield
data-frame columns of the mode “list”. This might or might not be suitable for further
processing. For statistical analysis, the appropriate way is to extract only those metadata
entries that are present in all OPMS elements, and usually also only those that are not
themselves lists. Methods such as extract are based on this principle.

For manual editing, an edit method can directly be applied to OPMX objects, provided
that to_metadata yields a suitable data frame. This is not normally the case unless the
metadata are rectangular (in a relaxed sense, as missing values would not matter), which is
not enforced by the way OPMX objects are implemented. So whereas edit might be handy
in many situations, one should not expect it to work with all kinds of OPMX objects. If the
metadata were unsuitable, it would stop with an error message before any editing by hand
can be conducted; otherwise it would (of course) modify the metadata in the intended way.

The following code, making use of the metadata.example data frame generated above, adds a
new metadata entry with the key“Character”containing the integer values from the metadata
entry called “Integer” converted to character mode. It then includes a new metadata entry
with the key “Times 10” containing the entry “Integer” multiplied by 10.

R> example.opm <- include_metadata(example.opm, md = metadata.example)

R> metadata(example.opm)

R> example.opm <- map_metadata(example.opm, Character ~ as.character(Integer))

R> metadata(example.opm)

R> example.opm <- map_metadata(example.opm, ❵Times 10❵ ~ (Integer * 10))

R> metadata(example.opm)

Note that map_metadata can also be used with character vectors as mapping objects. Making
use again of the exemplar generated above, the key Colour can be changed to Colony colour
as follows:

R> example.opm <- include_metadata(example.opm, md = metadata.example)

R> md.map <- metadata_chars(example.opm, values = FALSE)

R> md.map

This yields a character vector including itself as names attribute, thus implying an identity
mapping. In the next step the new labels are defined and then exchanged with the old ones
using map_metadata:

R> md.map["Colour"] <- "Colony colour"

R> example.opm <- map_metadata(example.opm, md.map, values = FALSE)

R> metadata(example.opm)

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 31

The keys have been changed to Colony colour now but the values have remained unaffected.
In addition to mapping based on character vectors, a mapping function can also be used. By
setting their argument values to TRUE, the functions metadata_chars and map_metadata

could be used as well to modify values instead of key. For instance, assume any entries “red”
in the field denoted Colony colour should be changed to “green”:

R> md.map <- metadata_chars(example.opm, values = TRUE)

R> md.map

R> md.map["red"] <- "green"

R> example.opm <- map_metadata(example.opm, md.map, values = TRUE)

R> metadata(example.opm)

This command transforms all entries in the table with the value ”red” to ”green”. Other
values, as well as the keys, are unaffected.

The metadata_chars function can also detect misspellings in metadata name or values if the
max.distance argument is set to a non-negative numeric value. It then indicates the upper
threshold for the dissimilarity between two strings to regard them as synonyms. The most
frequent within each group of strings is regarded as the correct spelling. This is not fail-safe,
hence resulting vectors should always be checked before passing them to map_metadata, and
distinct max.distance settings should be tried.

Frequently, metadata entries will be used as factors in statistical models. This always requires
that the chosen metadata entry is present in all considered OPM object and sometimes requires
that entries are combined. For instance, for setting up a cell-means model (see Section 2.9
and Section 3.9), factors used for defining the groups of interest have to be merged. This
might already be done during the initial step when setting up the metadata data frame before
including the metadata into an OPM or OPMS object using include_metadata. Here, the
function interaction could be used to concatenate columns (but it should be taken into
account that metadata entries should better not be represented as factors). As a result, two
metadata entries would be merged into a single one:

R> # not recommended

R> metadata.example$Colour.Position <-

as.character(interaction(metadata.example$Colour,

metadata.example$Position, drop = TRUE))

This is not advisable, however, unless all statistical comparisons of interest, or at least the
group definitions of interest, were already known at that early stage. (Even more tedious
would be to go back to the initial metadata compilation in a CSV file.) Using the metadata
mapping functions, metadata entries can instead by merged at any time after including them
into an OPM or OPMS object with include_metadata. For instance, the following code
operates directly in the OPMS object, merging the . “Colony colour” (which had previously
been renamed from “Colour”, see above) and “Integer” entries into a new one:

R> metadata(example.opm) <- Col.Int ~ paste(❵Colony colour❵, Integer, sep = ".")

R> metadata(example.opm)

As result, a new metadata entry named“Col.Int”is created with the general string-concatenation
tool paste. Note that metadata should not normally contain factors but rather generate them
on-the-fly from selected entries, and keep in mind that metadata are not organised in rows.

32 Phenotype Microarray Data (September 14, 2016)

Finally, there is short-cut for assigning a plate ID that is unique during the current opm

session to the metadata:

R> ## do not do this unless you need it

R> metadata(example.opm) <- "ID"

For using keys other than “ID”, use opm_opt("md.id.name"). For resetting the starting
point, use opm_opt("md.id.start"). If so, keep in mind that all forthcoming IDs might not
be unique any more. You would need to re-assign all of them to ensure uniqueness.

3.4.1. Troubleshooting

The include_metadata function must correctly and uniquely identify plates to correctly
assign the metadata. This cannot work if the identifiers get modified after exporting them.
A potential cause for key-value mismatches mismatches is the re-interpretation of date-time
entries (in the column for the setup time) by some spreadsheet software re-interpreting date-
time entries. You must set the data type of all columns to text to safely prevent this from
happening. Consult Figure 5 for how to safely do edit opm metadata template CSV files in
Microsoft Excel.

3.5. Aggregating data by estimating curve parameters

The exemplar OPM object vaas_1 contains a full 96-well plate, aggregated data (curve pa-
rameters), and metadata:

R> data(vaas_1)

R> vaas_1

In the opm manual and help pages, the parameter-estimation functions are contained in the
family “aggregation-functions” with according cross-references. Primarily do_aggr should be
used for aggregation because it generates the kinds of objects that allow for the predefined
work flows. vaas_1 already contains aggregated data but we will now re-estimate parameters.
For invoking the fast estimation method, use:

R> vaas_1.reaggr <- do_aggr(vaas_1, boot = 100, method = "opm-fast")

This will only yield two of the four parameters, namely A and AUC. (Screen messages output
by boot.ci might be annoying but can usually be ignored.) The aggregation settings used
can be accessed via aggr_settings:

R> aggr_settings(vaas_1)

R> aggr_settings(vaas_1.reaggr)

and the aggregated data can be extracted as a matrix via aggregated, e.g.:

R> summary(aggregated(vaas_1))

R> summary(aggregated(vaas_1.reaggr))

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 33

By default do_aggr does not conduct bootstrapping of the kinetic data to obtain confidence
intervals for individual curves because these are not normally needed. As this would be a
time-consuming intensive process (particularly if grofit is used), it could be split over several
cores on a multiple-core machine if mclapply from the parallel R package can be run with
more than one core, which is possible on all operating systems except for Windows.

In conjunction with method = "spline" (the default), distinct spline fitting methods can be
used (Vaas et al. 2013a). The default settings have been optimised for PM data and thus
are recommended, but options such as the spline type and the number of knots used for the
spline could be set using the function set_spline_options. To attempt to reproduce the
results from method = "grofit" one could use smoothing splines:

R> op <- set_spline_options(type = "smooth.spline") # not recommended

R> vaas_1.aggr2 <- do_aggr(vaas_1, method = "spline", options = op)

Other spline types could analogously be specified via the type argument.

3.6. Manipulation of OPM and OPMS data

In the opm manual and help pages, the functions for creating subsets of OPM or OPMS

objects are included in the family “getter-functions” with according cross-references.

For instance, the user may wish to select specific wells from the input plates, which are present
in a 96-well layout, numbered from A01 to H12. The function dim provides the dimensions
of an OPMS object as a three-element vector comprising (i) number of contained OPM or
OPMA objects, (ii) the number of time points (of the first contained plate; these values need
not be uniform within an OPMS object), and (iii) the number of wells (which must be uniform
within an OPMS object).

For example, the wells G11 and H11 together with the negative-control well A01 can by
extracted from the vaas_et_al object as follows:

R> data("vaas_et_al", package = "opmdata")

R> vaas.small <- vaas_et_al[, , c("A01", "G11", "H11")]

R> dim(vaas.small)

R users should be familiar with this application of bracket operators to multidimensional
arrays, even though the internal representation of the OPMS method is quite different. Like
the dim function, the first index refers to the plates, the second to the time points, and
the third to the wells. Moreover, as second index lists could be used, and as third index a
formula. A formula allows for creating sequences of well coordinates as, e.g., in vaas_et_al[,

, ~c(A08:B02, B05)], which would select eight wells. Metadata added to OPM and OPMS

objects (see Section 3.4) can be queried for their content with the specialised infix operators
%k% and %q% (for %K% and %Q% see the manual) in analogy to R’s %in% operator. This reveals
whether an OPM or OPMS object contains a specific value associated with a specific metadata
key, or the key associated with any value, or combinations of keys and/or values. %k% searches
in the metadata keys; it detects whether all given keys are present as names of the metadata.
%q% tests whether all given query keys are present as names of the metadata and refer to the
same query elements.

34 Phenotype Microarray Data (September 14, 2016)

The vaas_et_al OPMS object contains a metadata key Experiment with the three possible
values Time series, First replicate, and Second replicate, and a metadata key Species with
either Escherichia coli or Pseudomonas aeruginosa as values.

To detect the plates that have Experiment as metadata key, use:

R> "Experiment" %k% vaas_et_al

R> vaas_et_al %k% "Experiment" # equivalent

R> vaas_et_al %k% ~ Experiment # equivalent

R> (~ Experiment) %k% vaas_et_al # equivalent, parentheses needed

This shows that the arguments can be swapped and that a formula can be used. Plates with
both an Experiment and a Species metadata key are determined like this:

R> c("Experiment", "Species") %k% vaas_et_al

R> vaas_et_al %k% ~ c(Experiment, Species) # equivalent

The formula method works by evaluating the right side of the formula in the context of
the metadata entries and reporting whether or not this yielded an error. For this reason,
vaas_et_al %k% ~ Experiment + Species would fail because there is no + operator for
character strings.

Plates not only with the Experiment and Species metadata keys but also the respective values
First replicate and Escherichia coli can be found as follows:

R> c(Experiment = "First replicate",

Species = "Escherichia coli") %q% vaas_et_al

R> vaas_et_al %q% ~ Experiment == "First replicate" &

Species == "Escherichia coli"

Again the formula and the character-vector solutions are equivalent, but note the differences
in the syntax that has to be used. The formula method allows, in principle, for arbitrarily
complex expressions.

We can check for the Species metadata key with either the value Escherichia coli or the value
Bacillus subtilis:

R> list(Species = c("Escherichia coli", "Bacillus subtilis")) %q% vaas_et_al

R> vaas_et_al %q% ~ Species %in% c("Escherichia coli", "Bacillus subtilis")

In addition to conducting queries with alternatives, using lists as queries would also allow for
nested queries; this is relevant because the metadata entries could also be nested. Within
formulae, nested keys should be separated by the $ operator.

The infix operators yield a logical vector with one value per plate. It could be passed to usual
R functions such as all, any or which or directly be used as the first argument of the bracket
operator for OPMS objects to create subsets. If suitable other arguments are passed to the
OPMS bracket-operator, they are automatically sent through %q% for creating a subset:

R> vaas.e.coli.1 <- vaas_et_al[c(Experiment = "First replicate",

Species = "Escherichia coli")]

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 35

R> ## this is the short notation for:

R> #vaas.e.coli.1 <- vaas_et_al[c(Experiment = "First replicate",

R> # Species = "Escherichia coli") %q% vaas_et_al]

R> summary(vaas.e.coli.1)

R> rm(vaas.e.coli.1) # tidy up

The subset function is an alternative interface for selecting from OPMS objects. All metadata
keys at once are available like this:

R> metadata_chars(vaas_et_al, values = FALSE)

All metadata values at once can be obtained with values = TRUE. The values of special keys
in the metadata can also be checked:

R> metadata(vaas_et_al, "Species")

The resulting vector could be used for mapping old metadata keys, or values, to novel ones
(see Section 3.4).

The presented plotting results of xy_plot and level_plot (see Section 3.7) show selected
subsets of vaas_et_al. In our example below, the function subset extracts the plates that
contain the value First replicate in the metadata key Experiment and the value 6 in the key
Plate number, resulting in a single, representative technical repetition and thus four plates
(because four strains were involved) from the data set vaas_et_al:

R> vaas.1.6 <- subset(vaas_et_al,

query = list(Experiment = "First replicate", ✬Plate number✬ = 6))

R> summary(vaas.1.6)

(Note that the resulting object vaas.1.6 is equal to the data object vaas_4 coming along
with opm.)

Providing the desired combination of metadata keys and values as a list is more flexible,
and using a formula is maximally flexible, but other approaches are also implemented. The
selection of plates can be based on the presence of keys only, using %k% described above (this
makes not much sense for vaas_et_al whose plates are uniform regarding the keys). Plate
selection with %q% can conduct nested queries with a list as described above; this makes, of
course, more sense if the metadata contain nested entries.

The subset function also has a “time” argument that allows one to create a subset containing
only the time points that were common to all plates. This is useful because deviations
regarding the overall measurement hours might exist; look up opm::‘[‘ in the manual.

In addition to plate-wise querying and subdividing OPMS objects, methods for a variety of
generic R functions such as unique, sort, duplicated, anyDuplicated and merge are avail-
able for OPMS objects. As specified using sort(by = ...), sorting can be done based on
selected metadata or on csv_data entries such as the setup time. The latter is of use in con-
junction with the merge method, which can concatenate OPM objects from subsequent runs
of the same plate. See the manual entries for opm::sort and opm::merge for further infor-
mation. For a usage example (and entire exemplar data set) see opmdata::montero_et_al.

36 Phenotype Microarray Data (September 14, 2016)

3.6.1. Converting to data frames or matrices

Finally, functions for converting selected content of all plates to other classes of objects are
available. These other classes are not directly supported by opm and thus not necessarily
suitable for beginners. The opm manual and help pages list the necessary methods in the
family “conversion-functions” with according cross-references.

For instance, an advanced user may wish to explore the aggregated curve parameters (λ, µ,
A and AUC) with functions other than those defined in opm. These may be exported either
as a matrix or a data frame using extract:

R> vaas.mu <- extract(vaas_et_al, dataframe = TRUE,

as.labels = NULL, subset = "mu")

To extract also the full or partial set of metadata, it is sufficient to add a list of desired
metadata:

R> vaas.mu <- extract(vaas_et_al, dataframe = TRUE,

as.labels = list("Experiment", "Number of sample time point",

"Plate number", "Slot", "Species", "Strain", "Time point in min"),

subset = "mu")

This only works if this meta-information is present for the plates under study. When a data
frame is exported, the chosen metadata will be contained in additional columns; when a
matrix is exported, they will be used to construct the row names. The metadata could also
be selected using a formula; see the manual, particularly the entry on metadata. A peculiarity
of extract is that formulae can be used to trigger the joining of selected metadata entries
(converted to data-frame columns) into new ones, using the pseudo-function J within the
formula. For instance, the following code would create a new entry called “Species.Strain”:

R> vaas.mu <- extract(vaas_et_al, dataframe = TRUE,

as.labels = ~ J(Species, Strain), subset = "mu")

This is applied by opm_mcp, see Section 3.9. The behaviour during joining of factors is
modified using opm_opt(comb.key.join = ...) and opm_opt(comb.value.join = ...).
The default curve parameter returned by extract can be set with opm_opt(curve.param =

...).

3.6.2. Troubleshooting

It is an error to apply %q% with a formula to metadata keys that are not present. These errors
can be avoided by using a list on the right-hand side and by checking with %k% beforehand
which keys are there. Also note that metadata can be nested.

You can create subsets of OPMX and MOPMX objects at any time, but what is allowed
depends on the dimensions of the data. If you select beyond the real range, an error results.

3.7. Plotting functions for raw data

In the opmmanual and help pages, the plotting functions are contained in the family“plotting-
functions” with according cross-references.

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 37

E. coli vs. P. aeruginosa

Time [h]

V
al

ue
 [O

m
ni

Lo
g

un
its

]

100

200

300

A01 (Negative Control)

0 20 40 60 80 10
0

A02 (Dextrin) A03 (D−Maltose)

0 20 40 60 80 10
0

A04 (D−Trehalose) A05 (D−Cellobiose)

0 20 40 60 80 10
0

A06 (b−Gentiobiose)

A07 (Sucrose) A08 (Turanose) A09 (Stachyose) A10 (Positive Control) A11 (pH 6)

100

200

300

A12 (pH 5)

100

200

300

B01 (D−Raffinose) B02 (a−D−Lactose) B03 (D−Melibiose) B04 (b−Methyl−D−Glucoside) B05 (D−Salicin) B06 (N−Acetyl−D−Glucosamine)

0 20 40 60 80 10
0

B07 (N−Acetyl−b−D−Mannosamine) B08 (N−Acetyl−D−Galactosamine)

0 20 40 60 80 10
0

B09 (N−Acetyl−Neuraminic Acid) B10 (1% NaCl)

0 20 40 60 80 10
0

B11 (4% NaCl)

100

200

300

B12 (8% NaCl)

Escherichia coli DSM18039
Escherichia coli DSM30083T
Pseudomonas aeruginosa 429SC1
Pseudomonas aeruginosa DSM1707

Figure 8: PM curves from the sixth technical repetition of the first biological repetition and
the first 24 wells plotted using xy_plot corresponding to Figure 2 in (Vaas et al. 2012). (See
(Vaas et al. 2012) for the difference between technical and biological repetitions.) The respec-
tive curves from all four strains are superimposed; the affiliation to each strain is indicated
by colour (see the legend). The x-axes show the measurement times in hours, the y-axes the
measured colour intensities in OmniLog➤ units. Compare Figure 10, which depicts exactly
the same wells.

The function xy_plot displays the respiration curves as such (see Figure 8). In our example
the selected OPMS object vaas.1.6 is the subset of the data set vaas_et_al constructed in
Section 3.6, additionally reduced to the first 24 wells:

R> xy_plot(vaas.1.6[, , 1:24], main = "E. coli vs. P. aeruginosa",

include = list("Species", "Strain"))

With the argument main the user can include a main title in the plot; if it is omitted,
by default the title is automatically constructed from the plate type. Likewise, the well
coordinates are automatically converted to substrate names (details of how this is done can
specified with additional arguments). The content of the legend, which is mainly a description
of the assignment of the colours to the curves, is also determined automatically.

The argument include refers to the metadata and allows the user to choose which entries to
use for assigning curve colours and accordingly be included in the legend. Character vectors,
lists and formulae are allowed as include argument. See Section 3.4 and the metadata entry
in the manual. Note particularly the difference between, say, list("Species", "Strain")

and c("Species", "Strain"). As the metadata can be nested, the latter would search for
an element called "Strain" within an element called "Species".

In the example the combination of species and strain is used, yielding four distinct colours. If
include is not used, the colours are assigned per plate. Several predefined colour palettes are
available in opm (accessible via select_colors) with a maximum of 67 distinct colours. If
a distinct colour vector was needed, the user should set up a larger colour vector and pass it

38 Phenotype Microarray Data (September 14, 2016)

E. coli vs. P. aeruginosa

Time [h]

V
al

ue
 [O

m
ni

Lo
g

un
its

] 100

200

300

C10 (1% Sodium Lactate)

0 20 40 60 80 10
0

C11 (Fusidic Acid) D01 (D−Sorbitol)

0 20 40 60 80 10
0

100

200

300

D02 (D−Mannitol)

Escherichia coli DSM18039
Escherichia coli DSM30083T
Pseudomonas aeruginosa 429SC1
Pseudomonas aeruginosa DSM1707

Figure 9: Selected PM curves from the sixth technical repetition from the first biological
repetition plotted using xy_plot. The respective curves from all four strains are superim-
posed, the affiliation to each strain indicated by colour (see the legend). The x-axes show the
measurement time in hours, the y-axes the measured colour-value units.

as the argument col to xy_plot or preferably use opm_opt(colours = ...). Note that an
empty opm_opt("colours") value, in conjunction with most plotting functions, triggers the
automated selection of a colour vector supposed to be optimal for the resulting set of levels
to be distinguished.

The plotting of fewer sub-panels (see Figure 9) works as described above; the only difference
is in the manipulation of the data set (note that the order of wells is changed in the plotted
object, but not in the plot):

R> xy_plot(vaas.1.6[, , c("D01", "D02", "C10", "C11")], neg.ctrl = NULL,

main = "E. coli vs. P. aeruginosa", include = list("Species", "Strain"))

The function level_plot (see Figure 10) provides false-colour level plots from the raw respi-
ration measurements over time.

R> level_plot(vaas.1.6[, , 1:24], main = "E. coli vs. P. aeruginosa",

include = list("Species", "Strain"))

Again, a main title can be set explicitly. Furthermore, the argument include again refers
to the metadata and allows the user to choose the information to be included in the header
for annotating the plates. In the example the combination of species and strain is used. The
default colour palette used can by modified with opm_opt(colour.borders = ...).

3.7.1. Troubleshooting

If a plotting function complains about having more groups than colours available, you can
check select_colors and consider using opm_opt(colors = "brewer") or create your own
set of colours using rainbow etc. The more colours, however, the more difficult is it to visually
distinguish them. Hence, we recommend to try to create larger and thus fewer groups instead
of more colours.

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 39

E. coli vs. P. aeruginosa

Time

W
el

l

A01 (Negative Control)
A02 (Dextrin)

A03 (D−Maltose)
A04 (D−Trehalose)

A05 (D−Cellobiose)
A06 (b−Gentiobiose)

A07 (Sucrose)
A08 (Turanose)

A09 (Stachyose)
A10 (Positive Control)

A11 (pH 6)
A12 (pH 5)

B01 (D−Raffinose)
B02 (a−D−Lactose)
B03 (D−Melibiose)

B04 (b−Methyl−D−Glucoside)
B05 (D−Salicin)

B06 (N−Acetyl−D−Glucosamine)
B07 (N−Acetyl−b−D−Mannosamine)

B08 (N−Acetyl−D−Galactosamine)
B09 (N−Acetyl−Neuraminic Acid)

B10 (1% NaCl)
B11 (4% NaCl)
B12 (8% NaCl)

20 40 60 80

Escherichia coli DSM18039

20 40 60 80

Escherichia coli DSM30083T

20 40 60 80

Pseudomonas aeruginosa DSM1707

20 40 60 80

Pseudomonas aeruginosa 429SC1

0

50

100

150

200

250

300

350

Figure 10: Visualisation of PM curves using the function level_plot. Each respiration
curve is displayed as a thin horizontal line, in which the curve height as measured in colour-
value units is represented by colour intensity (darker parts indicate higher curves). The x-axes
correspond to the measurement time in hours. Compare Figure 8, which depicts exactly the
same wells.

When selecting metadata, do not mix up the selection by, say c("a", "b") with the selection
using list("a", "b").

3.8. Plotting the aggregated data

The purpose of parallel_plot is to include several estimated curve parameters into one
comprehensive overview. Figure 11 provides an example of such a visualisation. All four
parameters are plotted for the wells A01 to A10 from the data set vaas_4 and superimposed
with colours according their affiliation to strains.

R> parallel_plot(vaas_4[, , 1:10], data = ~ J(Species, Strain))

The fine-tuning of the plot is managed by the data argument for selecting metadata, option-
ally combined with groups, which by default accesses the provided metadata entries, if any.
Additionally, panel.var for creating sub-panels can access the metadata selected with data.
If no metadata are selected (the default), only Well is available as grouping variable. Fig-
ure 12 demonstrates how the panel.var and the groups argument can be used for fine-tuning
the plot.

R> parallel_plot(vaas_4[, , 1:10], data = ~ J(Species, Strain),

panel.var = "Species", groups = "Strain")

In addition to NULL as data argument (no metadata are included), a character vector or
a list of character vectors can be used that indicates which metadata should be included.
However, most flexibility is achieved if data is a formula. The right part of the formula
always indicates the meta-information to be included in the underlying data set. As usual in
opm, the J pseudo-function can be used to join metadata entries. Further, the left part in the
formula (as an alternative to the pnames argument) can indicate which parameters should be

40 Phenotype Microarray Data (September 14, 2016)

mu

lambda

A

AUC

Min Max

Escherichia coli/DSM18039
Escherichia coli/DSM30083T
Pseudomonas aeruginosa/DSM1707
Pseudomonas aeruginosa/429SC1

Figure 11: Visualisation of all four curve parameters in one comprehensive parallel coordinate
plot. The parameters are automatically scaled to a fixed range (here marked with “Min” and
“Max”) and plotted by connecting lines. By default the first element of the right part of the
formula in data is used as groups argument. Thus, in the example the colours indicate the
combination of “Strain” and “Species”, since these entries are selected from the metadata via
the data argument and joined using the pseudo-function J.

mu

lambda

A

AUC

Min Max

Escherichia coli

Min Max

Pseudomonas aeruginosa

DSM18039
DSM30083T
DSM1707
429SC1

Figure 12: Visualisation of all four curve parameters in a more sophisticated parallel coor-
dinate plot. Since a combination of Strain and Species is selected from the metadata via
the data argument using the pseudo-function J, the colour can be set by “Strain” as groups
argument and the sub-panelling can use “Species” as input for panel.var.

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 41

A01 (Negative Control)

A02 (Dextrin)A03 (D−Maltose)

A04 (D−Trehalose)

A05 (D−Cellobiose) A10 (Positive Control)

50

100

150

200

250

300

350

Escherichia coli DSM18039
Escherichia coli DSM30083T
Pseudomonas aeruginosa DSM1707
Pseudomonas aeruginosa 429SC1

Figure 13: Comparison using radial_plot of the parameter A measured for four strains.
The results for the wells A01 to A05 and A10 are shown. The data, represented by polygons,
are supplemented by centroids displayed as accordingly coloured squares.

plotted on the Y-axes. Note that at least two parameters have to be used, see the manual for
examples.

The function radial_plot can plot numeric values as distances from the centre of a circular
field in directions defined by angles in radians. Some selection of wells should usually be
applied beforehand for these plots to be useful. Figure 13 provides a simple example of such
a visualisation. The parameter A is plotted for the wells A01 to A05 and A10 from data set
vaas_4. Note that the values for positioning the upper-left corner of the legend are oriented
according to the axes of the plot. For positioning the legend in the lower left part of the
figure, negative values for x and y would be necessary (see Figure 14). The code is as follows:

R> radial_plot(vaas_4[, , c(1:5, 10)], as.labels = list("Species", "Strain"),

x = 150, y = 200)

Using the argument rp.type it is possible to plot symbols instead of a polygon. With
show.centroid, centroids are included in the graphic, potentially indicating a trend in the
data at hand. The centroid of a polygon is the arithmetic mean position of all the points in
the shape.

R> radial_plot(vaas_4[, , c(1:5, 10)], as.labels = list("Species", "Strain"),

main = "Test", x = -550, y = -50, rp.type = "s",

point.symbols = 15, show.centroid = TRUE)

The function ci_plot can visualise point estimates and corresponding 95% confidence in-
tervals for the parameters, derived via bootstrapping during aggregation of raw kinetic data
into curve parameters, or, in conjunction with extract, from plate groups defined by the
metadata. The bracket operator as described above (see Section 3.6) facilitates the selection
of subsets of interest.

42 Phenotype Microarray Data (September 14, 2016)

Test

A01 (Negative Control)

A02 (Dextrin)A03 (D−Maltose)

A04 (D−Trehalose)

A05 (D−Cellobiose) A10 (Positive Control)

50

100

150

200

250

300

350

Escherichia coli DSM18039
Escherichia coli DSM30083T
Pseudomonas aeruginosa DSM1707
Pseudomonas aeruginosa 429SC1

Figure 14: Comparison of estimates for the parameter A from four distinct strains using
radial_plot. The results for the wells A01 to A05 and A10 are shown, plotted as symbols.
Each centroid is displayed as larger symbol in the corresponding colour.

Figure 15 provides an example of such a visualisation. The parameter A is plotted for the
three wells A01 (Negative Control), A02 (Dextrin) and A03 (D-Maltose) from one plate (the
sixth plate of the first biological repetition from data set vaas_et_al). The code is as follows:

R> ci_plot.legend <- ci_plot(vaas.1.6[, , c("A01", "A02", "A03")],

as.labels = list("Species", "Strain"), subset = "A",

legend.field = NULL, x = 170, y = 3)

The helper function extract (more specifically, its data-frame method) can group curve pa-
rameters from OPMS objects according to selected metadata and calculate point estimates
(means) and confidence intervals. This extract method can also apply normalisation before-
hand, which might frequently be necessary to more easily recognise biological differences; see
Section 2.8.1.

After the extraction of the values together with necessary metadata (argument as.labels) in
a first call to extract, the resulting data frame can be treated by extract again for generating
another data frame with numeric values grouped according to the as.groups argument and
optionally normalisation applied, as triggered via the argument norm.per. The first data
frame would be created as follows:

R> x <- extract(vaas_et_al, as.labels = list("Species", "Strain"),

dataframe = TRUE)

For a better understanding of the following second call of extract it is highly recommended
to take a look at the results from plotting the data with ci_plot and also at structure of the
created data frames.

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 43

−50 0 50 100 150 200

A01 (Negative Control)

1
3

()●

()●
()●

()●

50 100 150 200 250 300

A02 (Dextrin)

1
3

()●

()●
()●

()●

50 100 150 200 250 300

A03 (D−Maltose)

1
3

()●

()●
()●

()●

1: Escherichia coli DSM18039
2: Escherichia coli DSM30083T
3: Pseudomonas aeruginosa 429SC1
4: Pseudomonas aeruginosa DSM1707

Figure 15: Comparison of point estimates and their 95% confidence intervals for the param-
eter A observed from four strains, using ci_plot. The results for estimating the maximum
height of the single curves on the three wells A01 (Negative Control), A02 (Dextrin) and
A03 (D-Maltose) as indicated by the sub-plot titles are shown. Point estimates that have no
overlapping confidence intervals are regarded as significantly different. But note that here the
confidence intervals only indicate the uncertainty in parameter estimation from single curves.

Using norm.per = "none" causes normalisation to be omitted. If as.groups = TRUE is used,
all metadata that have been included in the first data frame are used to determine the groups.
The result is shown in Fig 16, after a further selection of columns from the second data frame
to be passed to ci_plot.

R> # without normalisation

R> ci_plot(extract(x, as.groups = TRUE, norm.per = "none")[, c(1:7, 13)],

legend.field = NULL, x = 350, y = 0)

Normalisation can be applied by subtracting plate means (norm.per = "row"). Per default,
this would subtract the mean of each plate from each of its values (over all wells of that plate).
Alternatively, well means can be subtracted (norm.per = "column"). Per default, this would
subtract the mean of each well from each of its values (over all plates in which this well is
present). Division instead of subtraction is also possible (subtract = FALSE). The following
code would first normalise with the plate means, then with the well means:

R> ci_plot(extract(x, as.groups = TRUE, norm.per = "row")[, c(1:7, 13)],

legend.field = NULL, x = 150, y = 0)

R> ci_plot(extract(x, as.groups = TRUE, norm.per = "column")[, c(1:7, 13)],

legend.field = NULL, x = 150, y = 0)

Via norm.by it is possible to use one to several selected wells or plates for the calculation
of the means used for normalisation. With direct = TRUE even directly entered numeric
values can be used for normalisation purposes. See Figure 17 for an example of plotted
confidence intervals obtained from data normalised by subtracting the value of well A10

44 Phenotype Microarray Data (September 14, 2016)

−100 0 100 200 300

A01 (Negative Control)

1
2

3
4

()●

()●

()●

()●

0 100 200 300

A02 (Dextrin)

1
2

3
4

()●

()●

()●

()●

0 100 200 300

A03 (D−Maltose)

1
2

3
4

()●

()●

()●

()●

0 100 200 300 400

A04 (D−Trehalose)

1
2

3
4

()●

()●

()●

()●

200 300 400 500

A10 (Positive Control)

1
2

3
4

()●

()●

()●

()●

1: Escherichia coli DSM18039
2: Escherichia coli DSM30083T
3: Pseudomonas aeruginosa 429SC1
4: Pseudomonas aeruginosa DSM1707

Figure 16: Comparison of mean point estimates and their 95% confidence intervals, computed
with extract over groups defined by the “Species” and “Strain” metadata entries, for the
parameter A observed from four strains, using ci_plot. Shown are the results on the three
wells A01 (Negative Control), A02 (Dextrin), A03 (D-Maltose), A04 (D-Trehalose) and A10
(Positive Control) as indicated by the sub-plot titles. Normalisation was not used for this plot.
Point estimates that have no overlapping confidence intervals are regarded to be significantly
different. Compare this with Figure 17.

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 45

−400 −300 −200 −100

A01 (Negative Control)

1
2

3
4

()●

()●

()●

()●

−300 −200 −100 0

A02 (Dextrin)

1
2

3
4

()●

()●

()●

()●

−300 −200 −100 0

A03 (D−Maltose)

1
2

3
4

()●

()●

()●

()●

−300 −200 −100 0

A04 (D−Trehalose)

1
2

3
4

()●

()●

()●

()●

−200 −100 0 100 200

A10 (Positive Control)

1
2

3
4

()●

()●

()●

()●

1: Escherichia coli DSM18039
2: Escherichia coli DSM30083T
3: Pseudomonas aeruginosa 429SC1
4: Pseudomonas aeruginosa DSM1707

Figure 17: Comparison of mean point estimates and their 95% confidence intervals, com-
puted with extract over groups defined by the “Species” and “Strain” metadata entries, for
the parameter A observed from four strains, using ci_plot. Shown are the results on the
three wells A01 (Negative Control), A02 (Dextrin), A03 (D-Maltose), A04 (D-Trehalose) and
A10 (Positive Control) as indicated by the sub-plot titles. Normalisation was done by sub-
tracting the overall well means of well A10 (“Positive Control”). Point estimates that have
no overlapping confidence intervals are regarded as significantly different. Compare this with
Figure 16.

(“Positive Control”). Note that due to the structure of the data frame norm.per = "row" in
conjunction with the norm.by argument has to be used. One could normalise by subtracting
the means of well A10 only as follows:

R> ci_plot(extract(x, as.groups = TRUE, norm.per = "row",

norm.by = 10, subtract = TRUE)[, c(1:7, 13)],

legend.field = NULL, x = 0, y = 0)

The function heat_map (see Figure 18) provides false-colour level plots in which both axes are
rearranged according to clustering results. In the context of PM data, it makes most sense
to apply it to the estimated curve parameters. This opm function is a wrapper for heatmap
from the stats and heatmap.2 from the gplots package with some adaptations to PM data.
For instance, row groups can automatically be constructed from the metadata.

The function heat_map could be applied to matrices or data frames constructed using the
helper function extract, but it is more convenient to apply it directly to OPMS objects:

46 Phenotype Microarray Data (September 14, 2016)

G
03

 (
D

−
La

ct
ic

 A
ci

d
M

et
hy

l E
st

er
)

H
06

 (
A

ce
to

ac
et

ic
 A

ci
d)

F
01

 (
P

ec
tin

)
E

01
 (

G
el

at
in

)
A

01
 (

N
eg

at
iv

e
C

on
tr

ol
)

F
06

 (
G

lu
cu

ro
na

m
id

e)
C

05
 (

3−
O

−
M

et
hy

l−
D

−
G

lu
co

se
)

D
08

 (
D

−
A

sp
ar

tic
 A

ci
d)

A
08

 (
Tu

ra
no

se
)

A
09

 (
S

ta
ch

yo
se

)
C

06
 (

D
−

F
uc

os
e)

D
04

 (
m

yo
−

In
os

ito
l)

A
07

 (
S

uc
ro

se
)

A
05

 (
D

−
C

el
lo

bi
os

e)
B

05
 (

D
−

S
al

ic
in

)
B

01
 (

D
−

R
af

fin
os

e)
H

09
 (

S
od

iu
m

 F
or

m
at

e)
B

03
 (

D
−

M
el

ib
io

se
)

B
04

 (
b−

M
et

hy
l−

D
−

G
lu

co
si

de
)

B
07

 (
N

−
A

ce
ty

l−
b−

D
−

M
an

no
sa

m
in

e)
A

03
 (

D
−

M
al

to
se

)
B

08
 (

N
−

A
ce

ty
l−

D
−

G
al

ac
to

sa
m

in
e)

A
06

 (
b−

G
en

tio
bi

os
e)

C
02

 (
D

−
M

an
no

se
)

B
02

 (
a−

D
−

La
ct

os
e)

C
04

 (
D

−
G

al
ac

to
se

)
A

04
 (

D
−

Tr
eh

al
os

e)
C

07
 (

L−
F

uc
os

e)
B

09
 (

N
−

A
ce

ty
l−

N
eu

ra
m

in
ic

 A
ci

d)
C

08
 (

L−
R

ha
m

no
se

)
A

02
 (

D
ex

tr
in

)
G

09
 (

B
ro

m
o−

S
uc

ci
ni

c
A

ci
d)

H
12

 (
S

od
iu

m
 B

ro
m

at
e)

F
07

 (
M

uc
ic

 A
ci

d)
F

09
 (

D
−

S
ac

ch
ar

ic
 A

ci
d)

D
01

 (
D

−
S

or
bi

to
l)

G
02

 (
M

et
hy

l P
yr

uv
at

e)
H

05
 (

a−
K

et
o−

B
ut

yr
ic

 A
ci

d)
H

03
 (

a−
H

yd
ro

xy
−

B
ut

yr
ic

 A
ci

d)
F

03
 (

L−
G

al
ac

to
ni

c
A

ci
d−

g−
La

ct
on

e)
D

06
 (

D
−

G
lu

co
se

−
6−

P
ho

sp
ha

te
)

F
02

 (
D

−
G

al
ac

tu
ro

ni
c

A
ci

d)
F

05
 (

D
−

G
lu

cu
ro

ni
c

A
ci

d)
D

09
 (

D
−

S
er

in
e

#1
)

D
07

 (
D

−
F

ru
ct

os
e−

6−
P

ho
sp

ha
te

)
G

07
 (

D
−

M
al

ic
 A

ci
d)

D
03

 (
D

−
A

ra
bi

to
l)

H
01

 (
Tw

ee
n

40
)

G
05

 (
C

itr
ic

 A
ci

d)
G

01
 (

p−
H

yd
ro

xy
−

P
he

ny
la

ce
tic

 A
ci

d)
F

08
 (

Q
ui

ni
c

A
ci

d)
H

02
 (

g−
A

m
in

o−
n−

B
ut

yr
ic

 A
ci

d)
E

07
 (

L−
H

is
tid

in
e)

E
08

 (
L−

P
yr

og
lu

ta
m

ic
 A

ci
d)

E
04

 (
L−

A
rg

in
in

e)
H

04
 (

b−
H

yd
ro

xy
−

B
ut

yr
ic

 A
ci

d)
E

06
 (

L−
G

lu
ta

m
ic

 A
ci

d)
G

10
 (

N
al

id
ix

ic
 A

ci
d)

G
12

 (
P

ot
as

si
um

 T
el

lu
rit

e)
C

01
 (

D
−

G
lu

co
se

)
C

03
 (

D
−

F
ru

ct
os

e)
B

06
 (

N
−

A
ce

ty
l−

D
−

G
lu

co
sa

m
in

e)
D

05
 (

G
ly

ce
ro

l)
D

02
 (

D
−

M
an

ni
to

l)
C

12
 (

D
−

S
er

in
e

#2
)

C
09

 (
In

os
in

e)
G

11
 (

Li
th

iu
m

 C
hl

or
id

e)
E

09
 (

L−
S

er
in

e)
H

10
 (

A
zt

re
on

am
)

B
12

 (
8%

 N
aC

l)
E

03
 (

L−
A

la
ni

ne
)

H
07

 (
P

ro
pi

on
ic

 A
ci

d)
F

04
 (

D
−

G
lu

co
ni

c
A

ci
d)

G
08

 (
L−

M
al

ic
 A

ci
d)

H
08

 (
A

ce
tic

 A
ci

d)
E

05
 (

L−
A

sp
ar

tic
 A

ci
d)

E
02

 (
G

ly
−

P
ro

)
G

06
 (

a−
K

et
o−

G
lu

ta
ric

 A
ci

d)
C

11
 (

F
us

id
ic

 A
ci

d)
B

11
 (

4%
 N

aC
l)

D
10

 (
Tr

ol
ea

nd
om

yc
in

)
D

11
 (

R
ifa

m
yc

in
 S

V
)

C
10

 (
1%

 S
od

iu
m

 L
ac

ta
te

)
G

04
 (

L−
La

ct
ic

 A
ci

d)
H

11
 (

B
ut

yr
ic

 A
ci

d)
F

10
 (

V
an

co
m

yc
in

)
E

10
 (

Li
nc

om
yc

in
)

A
11

 (
pH

 6
)

A
10

 (
P

os
iti

ve
 C

on
tr

ol
)

B
10

 (
1%

 N
aC

l)
E

11
 (

G
ua

ni
di

ne
 H

yd
ro

ch
lo

rid
e)

D
12

 (
M

in
oc

yc
lin

e)
E

12
 (

N
ia

pr
oo

f)
A

12
 (

pH
 5

)
F

11
 (

Te
tr

az
ol

iu
m

 V
io

le
t)

F
12

 (
Te

tr
az

ol
iu

m
 B

lu
e)

DSM1707

429SC1

DSM18039

DSM30083T

50 150 250 350

Value

0
6

12

Color Key
and Histogram

C
ou

nt

Figure 18: Visualisation of the clustered results from the curve parameter A for each substrate
using the function heat_map. The x-axis corresponds to the substrates clustered according
to the similarity of their values over all plates; the y-axis corresponds to the plates clustered
according to the similarity of their values over all substrates. As row labels, the strain names
were selected (argument as.labels), whereas the species affiliation was used to assign row
group colours (bars at the left side, argument as.groups). The central rectangle is a substrate
× plate matrix in which the colours represent the classes of values. The default colour setting
uses topological colours, with deep violet and blue indicating the lowest values and light brown
indicating the highest values, but another colour palette could also be chosen. The default
can by set with opm_opt(hm.colours = ...).

R> vaas.1.6.A <- heat_map(vaas.1.6, as.labels = "Strain",

as.groups = "Species")

Additional example code on clustering curve parameters, including an assessment of the uncer-
tainty of the branching, is available via opm_files("demo"). Call demo("cluster-with-pvalues",
package = "opm") for running examples based on the using the pvclust package (Suzuki and
Shimodaira 2011).

Additional example code on visualising curve parameters is available via opm_files("demo").
It is indeed easy to conduct a principal-component analysis with matrices created with
extract. Call demo("custom-PCA", package = "opm") for running examples based on the
BiodiversityR package (Kindt and Coe 2005).

3.8.1. Troubleshooting

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 47

If a plotting function complains about having more groups than colours available, check
select_colors and consider using opm_opt(colors = "brewer") or create your own set of
colours using rainbow etc. In the case of radial_plot, alternatively use group.col = TRUE

for one colour per group.

If there are no replicates per group, ci_plot cannot newly calculate confidence intervals.

In the case of the heat_map function, the widths of the left and bottom margin are not easy
to correctly calculate automatically under all circumstances. The margin widths can be set
by hand at any time, however, using the margins argument.

When selecting metadata, do not mix up the selection by, say c("a", "b") with the selection
using list("a", "b").

3.9. Statistical comparisons of group means

The opm_mcp function allows the user to test for differences in the means of multiple groups
directly on OPMS objects, obtaining the factors that determine the grouping structure from
the stored metadata or the wells. In the following, the application of the function is explained
using several examples for groups defined within wells, across wells, or across metadata-based
groups. Detailed explanations of how the graphical and numerical output of the results has
to be interpreted are provided.

3.9.1. Tukey type of comparison: all-against-all

This paragraph addresses the comparison of a single well type across different plates organised
into multiple groups. We compare four distinct strains, each of which represented by ten
replicates of GEN-III micro-plate measurements. The experimental question addressed relates
to a single well: “Do these four bacteria differ in the mean value of curve parameter A on
well G06?” (see Figure 19). This type of comparison is termed “Tukey”-type contrasts (all-
against-all) because each strain is compared to each other.

The example data are taken from the first biological replicate included in vaas_et_al:

R> vaas.G06 <- subset(vaas_et_al[, , "G06"],

list(Experiment = "First replicate"))

The resulting data set of four strains, each represented by the ten replicates, is shown in
Figure 19.

To solve the statistical question, we now perform a multiple comparison of group means using
opm_mcp.

As explained in section 2.9, the initial step is the reshape of the data into a data frame
containing one column for the chosen parameter, one column for the well (substrate) name,
another column for the values itself and optionally additional columns for the selected meta-
data. These transformations are conducted internally by the opm_mcp method. When using
the argument output = "data" the data frame created by opm_mcp is shown. Accordingly,
the code below shows the first rows of the data frame with the example data containing the
A values of the well G06 (α-Keto-Glutaric Acid) from four strains and 10 plates, respectively:

R> head(x <- opm_mcp(vaas.G06, model = ~ Strain, m.type = "aov",

linfct = c(Tukey = 1), output = "data", full = FALSE))

48 Phenotype Microarray Data (September 14, 2016)

Gen III (Identification)

Time [h]

V
al

ue
 [O

m
ni

Lo
g

un
its

]

100

200

300

0 20 40 60 80 10
0

G06 (a−Keto−Glutaric Acid)

429SC1
DSM1707
DSM18039
DSM30083T

Figure 19: PM curves from the ten technical replicates of the first biological repetition plotted
using xy_plot. The respective curves from all four strains are superimposed; the affiliation
to each strain is indicated by colour (see the legend). The x-axis shows the measurement time
in hours, the y-axis the measured colour intensities in OmniLog➤ units.

Strain Parameter Well Value

1 DSM18039 A G06 265.4947

2 DSM18039 A G06 262.8439

3 DSM18039 A G06 252.1659

4 DSM18039 A G06 267.9070

5 DSM18039 A G06 258.1758

6 DSM18039 A G06 261.9873

For performing the testing procedure, a model has to be composed that specifies the factor
levels which determine the grouping. The groups to be compared (and to be selected from
the metadata beforehand) are defined by the argument model.

The argument m.type specifies the type of model to be used for fitting, either a linear model
(lm), a generalised linear model (glm), or an analysis-of-variance model (aov).

Via providing the name of the desired contrast type as the linfct argument, the user defines
the set of comparisons to be computed in the multiple comparison. The contrast matrix
determines from which model-defined groups the means should be compared and how.

In our example, a Tukey-type contrast matrix is used (a more detailed explanation of prede-
fined contrast matrices is given in the help page of multcomp::contrMat).opm_opt("contrast.type")
would be inserted if names were missing. The test results in a set of six two-sided pairwise
comparisons between all four strain means (all possible pairs). In our example the results of
the comparison are stored in the object vaas.G06.mcp:

R> vaas.G06.mcp <- opm_mcp(vaas.G06, model = ~ Strain, m.type = "aov",

linfct = c(Tukey = 1))

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 49

Since the model can be arbitrarily complex, the argument linfct can flexibly address specific
variables for performing of the testing procedure. A linfct argument given as a numeric
vector simply refers to the positions of the variable within model to be used for the testing
procedure. Accordingly, by using 1 the first (and in this example, only term) “Strain” is
selected.

Note that the structure of the arguments set by model and by linfct may become more
complex if several metadata entries are involved in the testing. The user might therefore wish
to check the way how model and by linfct will actually be transformed during the execution
of the statistical test. This is done using output = "model":

R> opm_mcp(vaas.G06, model = ~ Strain, m.type = "aov",

linfct = c(Tukey = 1), output = "model")

Similarly, the usage of the linfct argument can be checked as follows:

R> opm_mcp(vaas.G06, model = ~ Strain, m.type = "aov",

linfct = c(Tukey = 1), output = "linfct")

For conducting the test opm_mcp uses glht from the package multcomp and returns an object
of class opm_glht (which inherits from glht). As shown in Figure 20, the results of the
performed statistical test are plotted using the methods available for objects of that class (see
multcomp::glht in the manual).

R> old.mar <- par(mar = c(3, 15, 3, 2)) # adapt margins in the plot

R> plot(vaas.G06.mcp)

R> par(old.mar) # reset to default plotting settings

A summary of the numerical results is obtained as follows:

R> mcp.summary <- summary(vaas.G06.mcp)

R> mcp.summary$model$call <- NULL # avoid some unnecessary output

R> mcp.summary

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

DSM1707 - 429SC1 == 0 -19.527 1.938 -10.076 <1e-04 ***

DSM18039 - 429SC1 == 0 -43.047 1.938 -22.213 <1e-04 ***

DSM30083T - 429SC1 == 0 -16.432 1.938 -8.479 <1e-04 ***

DSM18039 - DSM1707 == 0 -23.520 1.938 -12.136 <1e-04 ***

DSM30083T - DSM1707 == 0 3.095 1.938 1.597 0.393

DSM30083T - DSM18039 == 0 26.615 1.938 13.734 <1e-04 ***

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

(Adjusted p values reported -- single-step method)

50 Phenotype Microarray Data (September 14, 2016)

−40 −20 0 20

DSM30083T − DSM18039

DSM30083T − DSM1707

DSM18039 − DSM1707

DSM30083T − 429SC1

DSM18039 − 429SC1

DSM1707 − 429SC1 (

(

(

(

(

(

)

)

)

)

)

)

●

●

●

●

●

●

95% family−wise confidence level

Figure 20: Comparisons of group means from well G06 between the four exemplar strains
calculated with opm_mcp and the plotting method for the resulting object. On the y-axis
the performed comparisons are indicated as differences of the groups, determining which
differences of means were computed. All pairwise comparisons are shown. The filled black
circle indicates the point estimator for the difference between the group means. 95% confidence
intervals are indicated by horizontal bars and parentheses. Note the differences in interpreting
this figure on the one hand and the Figures obtained with ci_plot in Section 3.8 on the other
hand, as explained in the main text.

The interpretation of confidence intervals for differences of means is somewhat distinct from
the interpretation of the confidence intervals for the point estimators for curve parameters
as discussed in Section 3.8. The point estimator for differences of means represents the com-
puted difference of the considered group means and, analogously, the size of the Confidence
Interval (CI) indicates the reliability of this difference. For an explanation of the graphical
representation of the CIs, sees the last comparison in Figure 20. If the 95% CI for differences
of means includes zero (dashed vertical lines in Figure 20) there is no significant difference
between the group means. Conversely, if zero is not included, a statistically significant dif-
ference is indicated. Furthermore, the more distant the 95% CI is from zero, the larger the
biological effect size, i.e. the real difference between the group means.

In the example shown here all group means of the curve parameter A are statistically sig-
nificantly different from each other (p < 0.001), except for the comparison of strains DSM
30083T and DSM 1707 (Figure 20). For instance, the comparison of the mean A value from
strain DSM 30083T minus the mean A value of strain DSM 18039 results in 26.615 units as
the point estimator of this difference, which is accordingly plotted on the x-axis. That is, on
average the A values from well G06 and strain DSM 30083T are 26.615 units larger than the A
values of strain DSM 18039. The detailed numeric outcome is obtained by applying summary

to the test results or confint(vaas.G06.mcp) for both the point estimator and confidence
intervals. Additionally, each point estimator for the difference of means comes with a 95%
CI providing information about the statistical significance of the test, the effect size and the
variability of the mean differences. They are plotted as usual.

Importantly, the p-values do not tell us anything about the magnitude of the differences be-
tween the means and thus nothing about the biological relevance of the statistical significance.
But the CI around the point estimator for each difference of means can as well be used to

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 51

assess whether a certain difference is significantly larger than a given minimum difference
that is known to be biologically relevant. For a meaningful biological interpretation of the
results it is therefore highly recommended to also consider the effect size rather than taking
only the p-values into account. For instance, consider the point estimate and the 95% CI
of the difference between strains DSM 18039 and 429SC1 (i.e, the effect size in the second
comparison in Figure 20), which is much larger, even if the CIs are considered, than between
strains DSM 30083T and 429SC1 (smaller effect size in the third comparison).

3.9.2. Dunnett-type comparison: one-against-all

This paragraph describes another type of comparison of the means of multiple groups, which
is the comparison of a single, selected well against all other wells available in the data set.
This type of comparison is termed “Dunnett”-type contrasts (one-against-all). In the example
below, we compare the wells among themselves. Accordingly, the groups are defined by the
wells rather than by the measured organisms or experimental conditions. The reference well
can either be the negative or positive control but also one of the substrates as, for example,
a substrate that serves as the standard in a specific chemical group. The following example
is again taken from the first biological replicate included in vaas_et_al, but this time only
the type strain of Escherichia coli, measured in ten technical replicates, is selected.

R> vaas.e.coli <- subset(vaas_et_al,

list(Experiment = "First replicate", Strain = "DSM30083T"))

For convenience, we perform the tests only for the first ten wells. The comparison of all wells
against the negative control in A01 is performed by calling:

R> opm_mcp(vaas.e.coli[, , 1:10], output = "mcp", model = ~ Well,

linfct = c(❵Dunnett_A01 (Negative Control)❵ = 1))

Please note a special feature substantially simplifying the choice of the reference group. The
value for the linfct argument can be constructed by typing Dunnett plus, separated by any
sign, e.g. underscore (“ ”), the level name which should serve as the reference group in the
contrast set. The next example shows the Dunnett-type comparison with well A03 chosen as
the reference group.

R> mcp.A03 <- opm_mcp(vaas.e.coli[, , 1:10], output = "mcp", model = ~ Well,

linfct = c(Dunnett_A03 = 1), full = FALSE)

R> mcp.summary <- summary(mcp.A03)

R> mcp.summary$model$call <- NULL # avoid some unnecessary output

R> mcp.summary

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

A01 - A03 == 0 -165.358 3.213 -51.468 <0.001 ***

52 Phenotype Microarray Data (September 14, 2016)

A02 - A03 == 0 -39.304 3.213 -12.233 <0.001 ***

A04 - A03 == 0 -10.187 3.213 -3.171 0.0117 *

A05 - A03 == 0 -110.982 3.213 -34.543 <0.001 ***

A06 - A03 == 0 -1.376 3.213 -0.428 0.9997

A07 - A03 == 0 -121.911 3.213 -37.945 <0.001 ***

A08 - A03 == 0 -146.956 3.213 -45.740 <0.001 ***

A09 - A03 == 0 -137.566 3.213 -42.817 <0.001 ***

A10 - A03 == 0 40.219 3.213 12.518 <0.001 ***

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

(Adjusted p values reported -- single-step method)

3.9.3. Pairs-type comparison of groups: pairwise comparisons as defined by specific
combinations of metadata entries

This paragraph describes a more specific and hence more complex design of the group structure
that makes a more elaborate use of the stored metadata. For example, consider data from two
species, P. aeruginosa and E. coli (data set vaas_4), each of which with two plates restricted
to the wells A01, A02, A03, and H02.

A combination of two species × four well types would yield eight different groups, which are
each represented by two plates. A Tukey-type comparison (all-against-all) would then result
in 28 pairwise comparisons, whereas a Dunnett-type comparison (one-against-all) would result
in seven pairwise comparisons.

However, assume the user was only interested in a specific subset of pairwise comparisons
defined by questions such as “For each well, is there a difference between the two species?”
This experimental question resulted in testing four statistical hypotheses, as there are only
four pairwise combinations that fit this question, since for each of the four wells the two
species should be compared.

This user-defined set of comparisons can easily be performed by applying the specially de-
signed linfct argument “Pairs”. The user must take care that “Well” is part of the model
and is joined with at least one other factor extracted from the metadata, in this case with
“Species”. This is achieved on-the-fly with the J pseudo-function as shown below. Note that
the resulting model factor “Well.Species” contains eight levels, i.e. four groups per plate.

Object of class "OPM_MCP_OUT"

Species Parameter Well Value Well.Species

1 Escherichia coli A A01 57.66618 A01/Escherichia coli

2 Escherichia coli A A01 123.45581 A01/Escherichia coli

3 Pseudomonas aeruginosa A A01 61.35526 A01/Pseudomonas aeruginosa

4 Pseudomonas aeruginosa A A01 55.74738 A01/Pseudomonas aeruginosa

5 Escherichia coli A A02 131.67996 A02/Escherichia coli

6 Escherichia coli A A02 248.18087 A02/Escherichia coli

7 Pseudomonas aeruginosa A A02 75.10225 A02/Pseudomonas aeruginosa

8 Pseudomonas aeruginosa A A02 66.05093 A02/Pseudomonas aeruginosa

9 Escherichia coli A A03 42.45742 A03/Escherichia coli

10 Escherichia coli A A03 284.09938 A03/Escherichia coli

11 Pseudomonas aeruginosa A A03 22.37216 A03/Pseudomonas aeruginosa

12 Pseudomonas aeruginosa A A03 49.63049 A03/Pseudomonas aeruginosa

13 Escherichia coli A H02 48.75757 H02/Escherichia coli

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 53

14 Escherichia coli A H02 63.62915 H02/Escherichia coli

15 Pseudomonas aeruginosa A H02 294.68878 H02/Pseudomonas aeruginosa

16 Pseudomonas aeruginosa A H02 312.19430 H02/Pseudomonas aeruginosa

As explained above, the name of the linfct value indicates the type of contrast used for the
testing procedure. Unless explicitly specified, “Pairs” selects the first subcomponent from the
previously selected (joined) model component for the comparisons. Explicitly setting linfct

= c(Pairs.Well = 1) ensures that for all levels present in the first (joined) component of
the model, i.e, Well-wise, all pairwise comparisons are performed between the defined groups
(here: the two species P. aeruginosa and E. coli).

The result of this analysis is shown below.

R> y <- opm_mcp(vaas_4[, , c(1:3, 86)], model = ~ J(Well, Species),

m.type = "aov", linfct = c(Pairs.Well = 1), full = FALSE)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Linear Hypotheses:

Estimate Std. Error t value

❵A01/Pseudomonas aeruginosa❵ - ❵A01/Escherichia coli❵ == 0 -32.01 69.68 -0.459

❵A02/Pseudomonas aeruginosa❵ - ❵A02/Escherichia coli❵ == 0 -119.35 69.68 -1.713

❵A03/Pseudomonas aeruginosa❵ - ❵A03/Escherichia coli❵ == 0 -127.28 69.68 -1.827

❵H02/Pseudomonas aeruginosa❵ - ❵H02/Escherichia coli❵ == 0 247.25 69.68 3.549

Pr(>|t|)

❵A01/Pseudomonas aeruginosa❵ - ❵A01/Escherichia coli❵ == 0 0.9816

❵A02/Pseudomonas aeruginosa❵ - ❵A02/Escherichia coli❵ == 0 0.3753

❵A03/Pseudomonas aeruginosa❵ - ❵A03/Escherichia coli❵ == 0 0.3240

❵H02/Pseudomonas aeruginosa❵ - ❵H02/Escherichia coli❵ == 0 0.0271 *

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

(Adjusted p values reported -- single-step method)

Particularly if models are more complex, e.g., if more than two metadata entries would be
joined by the J function, it is highly recommended to explicitly set the names of the metadata
entries for which the pairwise comparisons should be performed by appending it directly to
the Pairs argument. For instance, in our example the metadata name Species is directly
addressed with linfct = c(Pairs.Species = 1), which results in the pairwise all-against-
all comparisons of the selected four wells within each of the two species Escherichia coli and
Pseudomonas aeruginosa.

R> y <- opm_mcp(vaas_4[, , c(1:3, 86)], model = ~ J(Well, Species), m.type = "aov",

linfct = c(Pairs.Species = 1), full = FALSE)

R> mcp.summary <- summary(y)

R> mcp.summary$model$call <- NULL # avoid some unnecessary output

R> mcp.summary

54 Phenotype Microarray Data (September 14, 2016)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Linear Hypotheses:

Estimate Std. Error

❵A02/Escherichia coli❵ - ❵A01/Escherichia coli❵ == 0 99.37 69.68

❵A03/Escherichia coli❵ - ❵A01/Escherichia coli❵ == 0 72.72 69.68

❵H02/Escherichia coli❵ - ❵A01/Escherichia coli❵ == 0 -34.37 69.68

❵A03/Escherichia coli❵ - ❵A02/Escherichia coli❵ == 0 -26.65 69.68

❵H02/Escherichia coli❵ - ❵A02/Escherichia coli❵ == 0 -133.74 69.68

❵H02/Escherichia coli❵ - ❵A03/Escherichia coli❵ == 0 -107.09 69.68

❵A02/Pseudomonas aeruginosa❵ - ❵A01/Pseudomonas aeruginosa❵ == 0 12.03 69.68

❵A03/Pseudomonas aeruginosa❵ - ❵A01/Pseudomonas aeruginosa❵ == 0 -22.55 69.68

❵H02/Pseudomonas aeruginosa❵ - ❵A01/Pseudomonas aeruginosa❵ == 0 244.89 69.68

❵A03/Pseudomonas aeruginosa❵ - ❵A02/Pseudomonas aeruginosa❵ == 0 -34.58 69.68

❵H02/Pseudomonas aeruginosa❵ - ❵A02/Pseudomonas aeruginosa❵ == 0 232.86 69.68

❵H02/Pseudomonas aeruginosa❵ - ❵A03/Pseudomonas aeruginosa❵ == 0 267.44 69.68

t value Pr(>|t|)

❵A02/Escherichia coli❵ - ❵A01/Escherichia coli❵ == 0 1.426 0.7298

❵A03/Escherichia coli❵ - ❵A01/Escherichia coli❵ == 0 1.044 0.9070

❵H02/Escherichia coli❵ - ❵A01/Escherichia coli❵ == 0 -0.493 0.9974

❵A03/Escherichia coli❵ - ❵A02/Escherichia coli❵ == 0 -0.383 0.9994

❵H02/Escherichia coli❵ - ❵A02/Escherichia coli❵ == 0 -1.919 0.4603

❵H02/Escherichia coli❵ - ❵A03/Escherichia coli❵ == 0 -1.537 0.6685

❵A02/Pseudomonas aeruginosa❵ - ❵A01/Pseudomonas aeruginosa❵ == 0 0.173 1.0000

❵A03/Pseudomonas aeruginosa❵ - ❵A01/Pseudomonas aeruginosa❵ == 0 -0.324 0.9998

❵H02/Pseudomonas aeruginosa❵ - ❵A01/Pseudomonas aeruginosa❵ == 0 3.515 0.0580 .

❵A03/Pseudomonas aeruginosa❵ - ❵A02/Pseudomonas aeruginosa❵ == 0 -0.496 0.9974

❵H02/Pseudomonas aeruginosa❵ - ❵A02/Pseudomonas aeruginosa❵ == 0 3.342 0.0735 .

❵H02/Pseudomonas aeruginosa❵ - ❵A03/Pseudomonas aeruginosa❵ == 0 3.838 0.0376 *

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

(Adjusted p values reported -- single-step method)

This yields 2× 6 = 12 pairwise comparisons (two species, and six all-against-all comparisons
between four wells) for which the adjustment of multiplicity has been undertaken.

When dealing with more complex models keep in mind that a numeric linfct argument can
refer to the position of any variable, or set of variables obtained by joining, within model.

3.9.4. User-defined comparisons of interest

For performing even more specific comparisons of interest, the user would directly provide a
contrast matrix. Such a contrast for multiple comparison procedures is defined as a linear
combination of two or more factor-level means whose coefficients add up to 0 (Hochberg and
Tamhane 1987). To demonstrate the principle of a contrast matrix, we here perform an
all-against-all comparison (a “Tukey”-type contrast) of four groups using a toy example.

R> library("multcomp") # now needed

R> n <- c(10, 20, 30, 40)

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 55

R> names(n) <- paste0("group", 1:4)

R> contrMat(n, type = "Tukey")

Multiple Comparisons of Means: Tukey Contrasts

group1 group2 group3 group4

group2 - group1 -1 1 0 0

group3 - group1 -1 0 1 0

group4 - group1 -1 0 0 1

group3 - group2 0 -1 1 0

group4 - group2 0 -1 0 1

group4 - group3 0 0 -1 1

Each line defines a pair of group-wise comparisons by the locations of the non-zero values. For
instance, in the first line, the 1 and−1 entries indicate that the means of group1 are subtracted
from the means of group2. The function multcomp::contrMat provides an overview of the
predefined contrast types that can be used in the linfct argument of opm_mcp.

In the example from above (see Figure 20), a “Tukey”-type contrast was used to trigger the
comparison of all groups against all others in the data set. The underlying contrast matrix
used to set up the contrasts is shown after entering:

R> summary(vaas.G06.mcp)$linfct

(Intercept) StrainDSM1707 StrainDSM18039 StrainDSM30083T

DSM1707 - 429SC1 0 1 0 0

DSM18039 - 429SC1 0 0 1 0

DSM30083T - 429SC1 0 0 0 1

DSM18039 - DSM1707 0 -1 1 0

DSM30083T - DSM1707 0 -1 0 1

DSM30083T - DSM18039 0 0 -1 1

attr(,"type")

[1] "Tukey"

Accordingly, the user is free to set up her own contrast matrix for opm_mcp that defines the
comparisons of interest. However, a model argument is necessary to define the factors that
determine the groups and thus the possibilities for comparisons. In the next example we
compare the overall performance of the tested organisms in the four wells A01 to A04.

Although the user typically expects these wells to be in order in an OPMS object, this actually
may have been changed by a previous selection of wells. Moreover, the implementation of the
conversion of OPMS objects to data frames, and of reshaping these data frames, might be
changed in the future, which might also affect the order of factor levels within the data frame
passed to glht. Hence, it should be avoided to construct a contrast matrix entirely by hand.
Instead, opm_mcp(output = "contrast") yields one to several template contrast matrices,
which are guaranteed to match the used OPMS object. We highly recommend to generate
those template matrices and modify them according to specific user needs.

For instance, the following output contains a contrast matrix with all possible comparisons
(because “Tukey” is used) for Well as factor variable in the correct order for the first four
wells of vaas_4:

56 Phenotype Microarray Data (September 14, 2016)

−300 −200 −100 0 100 200

A04 − A03

A04 − A01

A03 − A01

A02 − A01 (

(

(

(

)

)

)

)

●

●

●

●

95% family−wise confidence level

Figure 21: Point estimates and 95% confidence intervals in a manually defined comparison
of group means for a specifically selected set of wells (A01 to A04) from the vaas_4 exemplar
object. The picture was obtained by running opm_mcp and then plotting the resulting object.
Compare this with Figure 20 regarding the axis annotation.

R> contr <- opm_mcp(vaas_4[, , 1:4], model = ~ Well, linfct = c(Tukey = 1),

output = "contrast", full = FALSE)

R> contr

The contr object is a named list of contrast matrices with one matrix per selected factor. An
according call of the opm_mcp function including the selecting of some comparisons of interest
is:

R> vaas4.mcp <- opm_mcp(vaas_4[, , 1:4], model = ~ Well, m.type = "lm",

linfct = contr$Well[c(1:3, 6),], full = FALSE)

Since output = "contrast" does not work in this situation, the definition of the contrast
matrix is controlled with:

R> summary(vaas4.mcp)$linfct

A01 A02 A03 A04

A02 - A01 -1 1 0 0

A03 - A01 -1 0 1 0

A04 - A01 -1 0 0 1

A04 - A03 0 0 -1 1

As mentioned above, the outcome is visualised using the plot method for glht objects (see
Figure 21).

Note that the model argument defines the group means available for comparison. In the
following example “Species” contains only two levels (“Pseudomonas aeruginosa” and “Es-
cherichia coli”). Thus only one comparison is possible, irrespective of the requested contrast
type.

R> vaas4.mcp <- opm_mcp(vaas_4, model = ~ Species, m.type = "lm",

linfct = mcp(Species = "Dunnett"))

Finally, in addition to the multiple comparison of single group means as described above, it is
possible to compare averages from several subgroups with a single other subgroup or averages
from several other subgroups. For instance, the user might be interested in comparing the
data shown in Figure 22 at the level of groups that contained distinct data sets as subgroups.

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 57

−50 −40 −30 −20 −10 0 10

DSM30083T/Second replicate − 429SC1/First replicate

DSM30083T/First replicate − 429SC1/First replicate

DSM18039/Time series − 429SC1/First replicate

DSM18039/Second replicate − 429SC1/First replicate

DSM18039/First replicate − 429SC1/First replicate

DSM1707/Second replicate − 429SC1/First replicate

DSM1707/First replicate − 429SC1/First replicate

429SC1/Second replicate − 429SC1/First replicate (

(

(

(

(

(

(

(

)

)

)

)

)

)

)

)

●

●

●

●

●

●

●

●

95% family−wise confidence level

Figure 22: Point estimates and 95% confidence intervals in a Dunnett-type comparison
of group means for a cell-means model for the vaas.G06 exemplar object. In analogy to
Figure 21, the picture was obtained by running opm_mcp and then the plotting function for
the resulting object. Compare with Figure 20 for the axis annotation.

R> vaas.G06 <- vaas_et_al[, , "G06"]

R> vaas.G06.mcp <- opm_mcp(vaas.G06, model = ~ J(Strain, Experiment),

linfct = c(Dunnett = 1))

The result is shown in Figure 22, visualised using plot as described above.

Note that for defining a contrast matrix the levels of the model-defining factor need to match
the columns of the contrast matrix, in order. For this reason, it is advantageous to work
with a template contrast matrix generated with opm_mcp from the object under study and to
investigate the positioning of its column names prior to any modification:

R> contr <- opm_mcp(vaas.G06, model = ~ J(Strain, Experiment),

linfct = c(Dunnett = 1), output = "contrast")$Strain.Experiment

R> colnames(contr)

The user is then free to choose other values than just 0 and 1 for the coefficients, provided
that each contrast sums up to zero. In the example below, the contrast matrix is reduced to
three contrasts of interest, in which the values 0, −1/4 , 1/4, and 1 are used. At this point
the reader might already have noted that the “First replicate” entries are in columns 1, 3,
5 and 8, whereas the “Second replicate” entries are in columns 2, 4, 6 and 9 and the “Time
series” entries are in column 7 of the object contr. This information is sufficient to define a
correct contrast matrix for the following three contrasts of interest:

R> contr <- contr[1:3,] # keeps the column names

R> rownames(contr) <- c(

"First repl. - Second repl.",

"First repl. - Time series",

"DSM 1707 #1 - Second repl."

)

R> contr[1,] <- c(1 / 4, -1 / 4, 1 / 4, -1 / 4, 1 / 4, -1 / 4, 0, 1 / 4, -1 / 4)

R> contr[2,] <- c(1 / 4, 0, 1 / 4, 0, 1 / 4, 0, -1, 1 / 4, 0)

58 Phenotype Microarray Data (September 14, 2016)

−10 −5 0 5

DSM 1707 #1 − Second repl.

First repl. − Time series

First repl. − Second repl. (

(

(

)

)

)

●

●

●

95% family−wise confidence level

Figure 23: Point estimates and 95% confidence intervals in a user defined comparison of
group means for a cell-means model for the vaas.G06 exemplar object. Like Figure 21, the
picture was obtained by first applying opm_mcp and then the plotting function for the resulting
object. Compare with Figure 20 for the axis annotation.

R> contr[3,] <- c(0, -1 / 4, 1, -1 / 4, 0, -1 / 4, 0, 0, -1 / 4)

R> contr

R> vaas6.mcp <- opm_mcp(vaas.G06, model = ~ J(Strain, Experiment), m.type = "lm",

linfct = mcp(Strain.Experiment = contr))

The resulting visualisation of this entirely user-defined contrast matrix is shown in Figure 23.

3.9.5. Troubleshooting

Note that you need data sets which actually provide group structures for comparisons. These
are, e.g., strains measured on the same plate type in several repetitions, or one strain treated
differentially with each treatment measured in several repetitions. It is also possible, of course,
to compare the wells with each other if the plates are comparable. But with a single value
per group opm_mcp will inevitably raise an error.

3.10. Discretisation

After calculating curve parameters, data can be discretised and optionally also exported for
analysis with external phylogeny software or for inclusion into a scientific manuscript as text
or table. In the opm manual and help pages, the functions for either task are contained in
the families “discretisation-functions”, “phylogeny-functions” and partially also in “naming-
functions”, with according cross-references. Much like do_aggr for aggregation, do_disc

should be preferred for discretisation. By default it works on the A parameter (see Figure 6)
but this can be modified.

3.10.1. Discretisation and phylogenetic data export

Restricting the vaas_et_al example data set to the two biological replicates yields an orthog-
onal data set with 2 × 10 replicates for each of the four strains, for which we can calculate
discretised parameters:

R> vaas.repl <- subset(vaas_et_al,

query = list(Experiment = c("First replicate", "Second replicate")))

R> vaas.repl <- do_disc(vaas.repl)

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 59

Note that the resulting object is an OPMS object with OPMD objects as elements. Such
objects contain discretised values, available via discretised, as well as the discretisation set-
tings used, available via disc_settings. This works much like aggregated and aggr_settings
explained above. disc_settings also yields the computed discretisation cutoffs. The subset
function has a positive argument that allows one to create a subset containing only the wells
that were positive in at least one plate or in all plates, as well as a corresponding negative

argument. The effect of either could be modified with subset(invert = TRUE). For ex-
ample, the command xy_plot(subset(vaas_4, positive = "all"), neg.ctrl = NULL)

would plot only those wells in which all curves have been classified by k-means partition-
ing to yield a positive reaction. Look up opm::subset in the manual for further information.

3.10.2. Discretisation and export of text

The listing methods of the OPMD and OPMD classes create textual descriptions of the
discretisation results suitable for the direct inclusion in scientific manuscripts.

R> listing(vaas.repl, as.groups = NULL)

R> listing(vaas.repl, as.groups = list("Species"))

As usual, the results can be grouped according to specified metadata entries using the
as.groups argument. If this yields ambiguities (such as a negative reaction of the same
well on one plate and a positive reaction on another plate), the result is accordingly renamed.
The cutoff argument can be used to define filters, keeping only those values that occur in a
specified minimum proportion of wells, as described in the opm::listing entry in the manual.

The listing function returns a character vector or matrix with the S3 class OPMD listing or
OPMS listing, allowing for a special phylo_data function that further formats these objects.
Accordingly, the following code snippets:

R> phylo_data(listing(vaas.repl, as.groups = NULL))

R> phylo_data(listing(vaas.repl, as.groups = list("Species")))

yield character scalars better suitable for exporting into text files using write. It is also
possible to generate HTML output, yielding formatted text. Try

R> phylo_data(listing(vaas.repl, as.groups = NULL, html = TRUE))

R> phylo_data(listing(vaas.repl, as.groups = list("Species"), html = TRUE))

and note that the phylo_data function has a html.args argument. Textual HTML output
supports most of the formatting instructions for the output of HTML tables described below
(see 3.10.3). Note particularly how formatting via a Cascading Style Sheets (CSS) file works,
as described in Section 3.10.3.

The default settings of do_disc imply exact k-means partitioning into three groups (“neg-
ative”, “ambiguous” and “positive”), treating all contained plates together, and using the
maximum-height parameter for discretisation. Let A1 and A2 be the A parameters from two
curves C1 and C2, respectively, and let us assume that A1 ≥ A2 holds. The algorithm then
guarantees that if C2 is judged as positive reaction then C1 is also judged as positive; if C2 is
weak then C1 is not negative; if C1 is negative then C2 is negative; and if C1 is weak then C2 is

60 Phenotype Microarray Data (September 14, 2016)

not positive. In this sense, the results will be consistent, but there are not many other things
the algorithm guarantees. Note particularly that always three clusters result by default (one
can omit the middle cluster, i.e. the “weak” reactions), irrespective of the input data. This is
usually without difficulty if the data contain both really negative and really positive reactions,
but data that in reality are negative throughout, or uniformly positive, would nevertheless
be split into three (or two) clusters. That is, additionally checking the curve heights and
particularly the “cutoffs” entry obtained via disc_settings should initially be mandatory.

It is also possible to make the reactions uniform within metadata-defined groups. This would
be specified with the unify argument and would deliberately deviate from the kind of consis-
tency described above. The unification approach replaces the primary discretisation results
with the most frequent value within the respective combination of group and well if this value
is present in a given proportion of the original values and with NA otherwise. The accord-
ing cutoff is set using opm_opt(min.mode = ...) or directly. Thus there are two distinct
meanings of “ambiguous” reactions, as ambiguity either results from the clustering of the pa-
rameters, or by clustering results that deviate between distinct experimental replications. It
is unnecessary and perhaps not preferable to use both approaches together, i.e. to cluster
into three groups only and then also unify. Note that listing and phylo_data would use
the same unification approach, if requested.

The manual of do_disc describes the other discretisation approaches available in opm, such as
using best_cutoff instead of k-means partitioning, and using subsets of the plates, specified
using stored metainformation.

3.10.3. Discretisation and export of tables

The HTML created by opm deliberately contains no formatting instructions. Rather, it is
possible (and recommended) to link it to a CSS file or embed such a file. CSS is a style-sheet
language used for defining the formatting of a document written in a markup language such
as HTML.

As the generated HTML is richly annotated with “class” attributes, which not only provide
information on the structure of the file but also on the depicted data, very specific formatting
can be obtained just by modifying one to several associated CSS files. For the following
example, we set the default CSS file to be linked from the generated HTML to the first CSS
file that comes with opm.

R> opm_opt(css.file = opm_files("css")[[1]])

One could now easily create an HTML table from the discretised data and write it to a file:

R> vaas.html <- phylo_data(vaas.repl, format = "html",

as.labels = list("Species", "Strain"), outfile = "vaas.html")

A practical problem is that the resulting HTML file is linked to its CSS file with a fixed
path. The formatting would thus get lost once the HTML file was copied to another system,
without a warning. Hence, users might want to copy the predefined CSS file to the working
directory and set it as default, or embed the CSS file directly into HTML:

R> vaas.html <- phylo_data(vaas.repl, format = "html",

html.args = html_args(embed.css = TRUE),

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 61

as.labels = list("Species", "Strain"), outfile = "vaas.html")

R> ## the alternative: copying the file into the working directory

R> # file.copy(opm_files("css")[[1]], "opm_styles.css", overwrite = TRUE)

R> # opm_opt(css.file = "opm_styles.css")

The generated HTML would subsequently be linked to this file, and the two files could be
distributed together, or the CSS from the file would directly be embedded in the HTML.
The same mechanism works for text generation using listing (see 3.10.2). In addition to
the default CSS file, a complete list of the settings that can be modified with this function is
available in the opm_opt entry of the manual.

Users who want to define their own CSS files can start with modifying the file shipped with
opm. Microsoft Windows users should consider that the path to the linked file must be
provided in UNIX style, as obtained, e.g., using normalizePath(x, winslash = "/") if x
is the path to the file. This is according to World Wide Web (WWW) standards and not
determined by opm.

By default columns with measurement repetitions as specified using as.labels are joined
together. The delete argument specifies how to reduce the table: either not at all or keep-
ing only the variable, parsimony-informative or non-ambiguous characters. The legend of
the table is as used in taxonomic journals such as the International Journal of Systematic
and Evolutionary Microbiology (http://ijs.sgmjournals.org/) but could also be adapted.
Users can modify the headline, add sections before the table legend, or before or after the
table. The title and the “meta” entries of the resulting HTML can also be modified. The
phylo_data methods have an auxiliary function, html_args, which assists in putting to-
gether the arguments that determine the shape and content of the HTML output. Look up
the manual for further information on html_args.

3.10.4. Fine-tuning the discretisation

One can also conduct discretisation step-by-step by using the functions best_cutoff or
discrete after extracting matrices from the OPMS object. This is more flexible (and has
additional discretisation approaches, e.g. the creation of multiple-state characters) but is also
more tedious than using do_disc.

R> vaas.repl <- subset(vaas_et_al,

query = list(Experiment = c("First replicate", "Second replicate")))

R> vaas.repl <- extract(vaas.repl,

as.labels = list("Species", "Strain", "Experiment", "Plate number"))

The A parameter (see Figure 6) can be discretised into (per default) 32 states using the
theoretical range of 0 to 400 OmniLog➤ units (see Section 2.10):

R> vaas.repl.disc <- discrete(vaas.repl, range = c(0, 400))

This yields (at most) 32 distinct character states corresponding to the 32 equal-width inter-
vals within 0 and 400. Exporting the data in extended PHYLIP format readable by RAxML

(Stamatakis et al. 2005) works as follows:

R> phylo_data(vaas.repl.disc, outfile = "example_replicates.epf")

http://ijs.sgmjournals.org/

62 Phenotype Microarray Data (September 14, 2016)

The other supported formats are PHYLIP, NEXUS and TNT (Goloboff et al. 2008). For
discretising the data not in equally spaced intervals but into binary characters including
missing data, or ternary characters with a third, intermediary state between ”negative” and
”positive” the gap mode of discrete can be used:

R> vaas.repl.disc <- discrete(vaas.repl, range = c(120.2, 236.6), gap = TRUE)

Here the range argument does not provides the overall boundaries of the data as before (at
least as large as the real range), but the boundaries of a zone within the real range of the
data corresponding to an area of ambiguous affiliation. That is, values below 120.2 are coded
as “0”, those above 236.6 as “1”, and those in between as “?”. The values used above were
determined by k-means partitioning of the A values from the vaas_et_al data set (Vaas et al.
2012); there is currently no conclusive evidence that they can generally be applied. The last
command results in the treatment of values within the given range as “missing data” (NA in
R, “?” if exported). To treat them as a third, intermediary character state, set middle.na to
FALSE:

R> vaas.repl.disc <- discrete(vaas.repl, range = c(120.2, 236.6),

gap = TRUE, middle.na = FALSE)

The three resulting states, coded as “0”, “1” and “2” (in contrast to “0”, “?” and “1” above)
have to be interpreted as “negative”, “weak” and “positive”. Exporting the data in one of the
supported phylogeny formats works as described above. If the do_disc function described
above calls discrete, then only in gap mode and with middle.na set to TRUE, yielding a
vector or logical matrix.

4. Discussion and conclusion

The high-dimensional sets of longitudinal data collected by the OmniLog➤ PM system call
for fast and easily applicable (and extensible) data organisation and analysis facilities. The
here presented opm package for the free statistical software R (R Development Core Team
2011) features not only the calculation of aggregated values (curve parameters) including
their (bootstrapped) confidence intervals, but also provides a rather complete infrastructure
for the management of raw kinetic values and curve parameters together with any kind of
meta-information of relevance for the user (Vaas et al. 2012, 2013a).

The spline estimation and parameter calculation in the data-aggregation step of has been
optimised for the analysis of PM data. One main issue in the spline-fitting procedure is the
selection of suitable smoothing parameters. The methods included in opm provide not only the
basic framework (Vaas et al. 2012) based on methods from the grofit package (Kahm et al.
2010), but also specifically adapted applications of smooth.spline and the mgcv package
(Wood 2003; Eilers and Marx 1996)

The analysis toolbox of the package includes the implementation of a fully automated esti-
mation of whether respiration kinetics should be classified as either a “positive” or “negative”
(absent) physiological reaction. This dichotomisation is apparently of high interest to many
users of the OmniLog➤ PM system but would apparently be extremely biased as long as

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 63

thresholds are chosen ad hoc and by eye. Users should nevertheless be aware that loss of
information is inherent to discretising continuous data.

The opm package enables the user to produce highly informative and specialised graphical
outputs from both the raw kinetic data as well as the curve-parameter estimates. Moreover,
the package provides simultaneous multiple comparisons of group means (Hothorn et al. 2008;
Bretz et al. 2010; Hsu 1996) with an interface specifically adapted to the typical PM data
objects. In combination with the functionality for annotating the data with meta-information
and then selecting subsets of the data, straightforward analyses regarding specific analytical
questions can be performed without the need to invoke other R packages.

But since the design of the opm objects is not intended to be limited to specific analysis
frameworks, the opm package works as a data containment providing well organised and
comprehensive PM data for further, more specialised analyses using methods from different
R packages or other third-party software tools. Particularly the generation of S4 objects
featuring a rich set of methods as containers for either single or multiple OmniLog➤ PM
plates enables not only the transfer of raw kinetic data into R but also eases their further
processing. The complex data bundles can also be exported in YAML format, which is a
human-readable data serialisation format that can be read by most common programming
languages and facilitates fast and easy data exchange between laboratories. If a proper YAML
parser was unavailable, its subset JSON could also be used. The interaction between opm

and databases is partially also based on these formats; see Section 2.12. The package can also
generate CSV output files, but due to the limitation of this format these files cannot be read
back into opm in a meaningful way (but into R).

Power and limitations regarding usage of substrate information and their implementation for
data arrangement and hypothesis testing (Hofner, Boccuto, and Göker 2015) are discussed in
detail in the vignette “Working with substrate information in opm”.

These features render the opm package the first comprehensive toolbox for the management
and a broad range of analyses of OmniLog➤ PM data. Its usage requires some familiarity
with R, but is otherwise intuitive and straightforward also for biologists who are not used to
command-line based software. To summarise, we are convinced that the opm package already
enables the users to analyse OmniLog➤ PM data in rather unlimited exploratory directions
(Vaas et al. 2012, 2013a).

5. Acknowledgements

The help of Nora Buddruhs (DSMZ) and Anne Fiebig (DSMZ), who contributed a lot to the
stored substrate information and to examples in earlier versions of this tutorial, is gratefully
acknowledged. We owe very much to Hans-Peter Klenk (DSMZ), who brought the Om-
niLog➤ instrument to the DSMZ and supported this project in numerous ways. We thank
Barry Bochner (BIOLOG Inc.), John Kirkish (BIOLOG Inc.), Andre Chouankam (BIOLOG
Inc.), Jan Meier-Kolthoff (DSMZ), Pia Wüst (DSMZ), Stefan Ehrentraut (DSMZ) and Jörn
Petersen (DSMZ) for helpful advice, as well as Victoria Michael (DSMZ) for technical support.
We are also grateful to the maintainers of R-Forge for providing the on-line resources used by
this project, and to the maintainers of the R on which opm depends for making their packages
freely available. This work was supported by the Deutsche Forschungsgemeinschaft (DFG)
Sonderforschungsbereich (SFB)/Transregio (TRR) 51 and by the Microme project within the

64 Phenotype Microarray Data (September 14, 2016)

Framework 7 programme of the European Commission, which is gratefully acknowledged.
Johannes Sikorski gratefully acknowledges his support by DFG grant SI 1352/1-2.

References

Berger S, Stamatakis A (2010). “Accuracy of Morphology-Based Phylogenetic Fossil Place-
ment under Maximum Likelihood.” In 8th ACS/IEEE International Conference on Com-
puter Systems and Applications (AICCSA-10). ACS/IEEE, Hammamet, Tunisia.

BiOLOG Inc (2009). Converter, File Management Software, Parametric Software, Phenotype
MicroArray, User Guide, Part 90333. Biolog Inc., Hayward CA.

Bochner B (2009). “Global Phenotypic Characterization of Bacteria.” FEMS Microbiological
Reviews, 33, 191–205. doi:10.1111/j.1574-6976.2008.00149.x.

Bochner B, Gadzinski P, Panomitros E (2001). “Phenotype MicroArrays for High Throughput
Phenotypic Testing and Assay of Gene Function.” Genome Research, 11, 1246–1255. doi:
10.1101/gr.186501.

Bochner B, Savageau M (1977). “Generalized Indicator Plate for Genetic, Metabolic, and
Taxonomic Studies with Microorganisms.” Applied and Environmental Microbiology, 33,
434–444.

Bochner BR, Siri M, Huang RH, Noble S, Lei XH, Clemons PA, Wagner BK (2011). “Assay
of the Multiple Energy-Producing Pathways of Mammalian Cells.” PLoS ONE, 6, e18147.
doi:10.1371/journal.pone.0018147.

Bretz F, Hothorn T, Westfall P (2010). Multiple Comparisons Using R. CRC Press, Boca
Raton.

Brisbin I, Collins C, White G, McCallum D (1987). “A New Paradigm for the Analysis and
Interpretation of Growth Data: The Shape of Things to Come.” The Auk, 104, 552–553.

Broadbent J, Larsen R, Deibel V, Steele J (2010). “Physiological and Transcriptional Response
of Lactobacillus casei ATCC 334 to Acid Stress.” Journal of Bacteriology, 192, 2445–2458.
doi:10.1128/JB.01618-09.

Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A, Krumme-
nacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Karp
PD (2016). “The MetaCyc database of metabolic pathways and enzymes and the Bio-
Cyc collection of pathway/genome databases.” Nucleic Acids Research, 44, D471–D480.
doi:10.1093/nar/gkv1164.

Chaiboonchoe A, Dohai BS, Cai H, Nelson DR, Jijakli K, Salehi-Ashtiani K (2014). “Microal-
gal Metabolic Network Model Refinement through High Throughput Functional Metabolic
Profiling.” Frontiers in Bioengineering and Biotechnology, 2. ISSN 2296-4185. doi:

10.3389/fbioe.2014.00068.

Chambers J (1998). Programming with Data. Statistics and Computing. Springer-Verlag,
New York.

http://dx.doi.org/10.1111/j.1574-6976.2008.00149.x
http://dx.doi.org/10.1101/gr.186501
http://dx.doi.org/10.1101/gr.186501
http://dx.doi.org/10.1371/journal.pone.0018147
http://dx.doi.org/10.1128/JB.01618-09
http://dx.doi.org/10.1093/nar/gkv1164
http://dx.doi.org/10.3389/fbioe.2014.00068
http://dx.doi.org/10.3389/fbioe.2014.00068

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 65

Champely S (2012). pwr: Basic functions for power analysis. R package version 1.1.1, URL
http://CRAN.R-project.org/package=pwr.

Chheng T (2013). RMongo: MongoDB Client for R. R package version 0.0.25, URL http:

//CRAN.R-project.org/package=RMongo.

Conway J, Eddelbuettel D, Nishiyama T, Prayaga SK, Tiffin N (2013). RPostgreSQL: R
interface to the PostgreSQL database system. R package version 0.4, URL http://CRAN.

R-project.org/package=RPostgreSQL.

Dilba G, Bretz F, Guiard V (2006). “Simultaneous confidence sets and confidence intervals
for multiple ratios.” Journal of Statistical Planning and Inference, 136, 2640–2658. doi:

10.1016/j.jspi.2004.11.009.

Djira GD, Hasler M, Gerhard D, Schaarschmidt F (2012). mratios: Inferences for ratios
of coefficients in the general linear model. R package version 1.3.17, URL http://CRAN.

R-project.org/package=mratios.

Dougherty J, Kohavi R, Sahami M (1995). “Supervised and Unsupervised Discretization of
Continuous Features.” In A Prieditis, S Russell (eds.), Machine Learning: Proceedings of
the fifth international conference.

Efron B (1979). “Bootstrap Methods: Another Look at the Jackknife.” The Annals of Statis-
tics, 7, 1–26.

Eilers P, Marx B (1996). “Flexible Smoothing with B-splines and Penalties.” Statistical
Sciences, 11, 89–121.

Eng J (2003). “Sample size estimation: How many individuals should be studied?” Radiology,
227, 309–313. doi:10.1148/radiol.2272012051.

Farris J (1970). “Methods for Computing Wagner Trees.” Systematic Zoology, 19, 83–92.

Felsenstein J (2004). Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, MA.

Fitch W (1971). “Towards Defining the Course of Evolution: Minimal Change for a Specified
Tree Topology.” Systematic Zoology, 20, 406–416.

Goloboff P, Farris J, Nixon K (2008). “TNT, a Free Program for Phylogenetic Analysis.”
Cladistics, 24, 774–786. doi:10.1111/j.1096-0031.2008.00217.x.

Hasler M (2012a). “Multiple comparisons to both a negative and a positive control.” Phar-
maceutical Statistics, 11, 74–81. doi:10.1002/pst.503.

Hasler M (2012b). SimComp: Simultaneous Comparisons for Multiple Endpoints. R package
version 1.7.0, URL http://CRAN.R-project.org/package=SimComp.

Hochberg A, Tamhane Y (1987). Multiple Comparison Procedures. John Wiley & Sons, New
York.

Hofner B, Boccuto L, Göker M (2015). “Controlling false discoveries in high-dimensional
situations: Boosting with stability selection.” BMC Bioinformatics, 16, 144. doi:10.

1186/s12859-015-0575-3.

http://CRAN.R-project.org/package=pwr
http://CRAN.R-project.org/package=RMongo
http://CRAN.R-project.org/package=RMongo
http://CRAN.R-project.org/package=RPostgreSQL
http://CRAN.R-project.org/package=RPostgreSQL
http://dx.doi.org/10.1016/j.jspi.2004.11.009
http://dx.doi.org/10.1016/j.jspi.2004.11.009
http://CRAN.R-project.org/package=mratios
http://CRAN.R-project.org/package=mratios
http://dx.doi.org/10.1148/radiol.2272012051
http://dx.doi.org/10.1111/j.1096-0031.2008.00217.x
http://dx.doi.org/10.1002/pst.503
http://CRAN.R-project.org/package=SimComp
http://dx.doi.org/10.1186/s12859-015-0575-3
http://dx.doi.org/10.1186/s12859-015-0575-3

66 Phenotype Microarray Data (September 14, 2016)

Hothorn T, Bretz F, Westfall P (2008). “Simultaneous Inference in General Parametric Mod-
els.” Biometrical Journal, 50, 346–363. doi:10.1002/bimj.200810425.

Hsu J (1996). Multiple Comparisons. Chapman & Hall, London.

James DA, DebRoy S (2012). RMySQL: R interface to the MySQL database. R package
version 0.9-3, URL http://CRAN.R-project.org/package=RMySQL.

James DA, Falcon S, the authors of SQLite (2013). RSQLite: SQLite interface for R. R
package version 0.11.4, URL http://CRAN.R-project.org/package=RSQLite.

Kahm M, Hasenbrink G, Lichtenberg-Frate H, Ludwig J, Kschischo M (2010). “grofit: Fitting
Biological Growth Curves with R.”Journal of Statistical Software, 33, 1–21. doi:10.18637/
jss.v033.i07.

Kindt R, Coe R (2005). Tree diversity analysis. A manual and software for common statis-
tical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF),
Nairobi (Kenya). URL http://www.worldagroforestry.org/treesandmarkets/tree_

diversity_analysis.asp.

Lei XH, Bochner BR (2013). “Using Phenotype MicroArrays to Determine Culture Conditions
That Induce or Repress Toxin Production by Clostridium difficile and Other Microorgan-
isms.” PLoS ONE, 8, e56545. doi:10.1371/journal.pone.0056545.

Mahner M, Kary M (1997). “What Exactly are Genomes, Genotypes and Phenotypes? And
what about Phenomes?” Journal of Theoretical Biology, 186, 55–63.

Mayr E (1997). “The Objects of Selection.” Proceedings of the National Academy of Science
USA, 94, 2091–2094.

Mithani A, Hein J, Preston G (2011). “Comparative Analysis of Metabolic Networks Pro-
vides Insight into the Evolution of Plant Pathogenic and Nonpathogenic Lifestyles in Pseu-
domonas.” Molecular Biology and Evolution, 28, 483–499. doi:10.1093/molbev/msq213.

Montero-Calasanz MdC, Göker M, Pötter G, Rohde M, Spröer C, Schumann P, Gorbushina
AA, Klenk HP (2012). “Geodermatophilus arenarius sp. nov., a xerophilic actinomycete
isolated from Saharan desert sand in Chad.” Extremophiles, 16, 903–909. doi:10.1007/

s00792-014-0708-z.

Montero-Calasanz MdC, Göker M, Rohde M, Schumann P, Pötter G, Spröer C, Gorbushina
AA, Klenk HP (2013). “Geodermatophilus siccatus sp. nov., isolated from arid sand of
the Saharan desert in Chad.” Antonie van Leeuwenhoek, 103, 449–456. doi:10.1007/

s10482-012-9824-x.

Quackenbush J (2002). “Microarray data normalization and transformation.”Nature Genetics,
32, 496–501. doi:10.1038/ng1032.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.

org/.

Reinsch CH (1967). “Smoothing by spline functions.” Numerische Mathematik, 10, 177–183.

http://dx.doi.org/10.1002/bimj.200810425
http://CRAN.R-project.org/package=RMySQL
http://CRAN.R-project.org/package=RSQLite
http://dx.doi.org/10.18637/jss.v033.i07
http://dx.doi.org/10.18637/jss.v033.i07
http://www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp
http://www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp
http://dx.doi.org/10.1371/journal.pone.0056545
http://dx.doi.org/10.1093/molbev/msq213
http://dx.doi.org/10.1007/s00792-014-0708-z
http://dx.doi.org/10.1007/s00792-014-0708-z
http://dx.doi.org/10.1007/s10482-012-9824-x
http://dx.doi.org/10.1007/s10482-012-9824-x
http://dx.doi.org/10.1038/ng1032
http://www.R-project.org/
http://www.R-project.org/

M. Göker, B. Hofner, M.d.C. Montero Calasanz, J. Sikorski, L.A.I. Vaas 67

Ripley B, from 1999 to Oct 2002 Michael Lapsley (2013). RODBC: ODBC Database Access.
R package version 1.3-7, URL http://CRAN.R-project.org/package=RODBC.

Schaarschmidt F, Vaas LA (2009). “Analysis of trials with complex treatment structure using
multiple contrast tests.” HortScience, 44, 188–195.

Searle SR (1971). Linear Models. John Wiley & Sons, New York.

Selezska K, Kazmierczak M, Müsken M, Garbe J, Schobert M, Häussler S, Wiehlmann L,
Rohde C, Sikorski J (2012). “Pseudomonas aeruginosa Population Structure Revisited
under Environmental Focus: Impact of Water Quality and Phage Pressure.” Environmental
Microbiology, 14, 1952–1967. doi:10.1111/j.1462-2920.2012.02719.x.

Sokal R, Rohlf F (1995). Biometry: The principles and practice of statistics in biological
research. W.H. Freeman, New York.

Stamatakis A, Ludwig T, Meier H (2005). “RAxML-III: A fast Program for Maximum
Likelihood-Based Inference of Large Phylogenetic Trees.” Bioformatics, 21, 456–463. doi:
10.1093/bioinformatics/bti191.

Suzuki R, Shimodaira H (2011). pvclust: Hierarchical Clustering with P-Values via Multi-
scale Bootstrap Resampling. R package version 1.2-2, URL http://CRAN.R-project.org/

package=pvclust.

Swofford D (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods).
Version 4. Sinauer Associates, Sunderland, Massachusetts.

Tindall B, Kämpfer P, Euzéby J, Oren A (2006). “Valid publication of names of prokaryotes
according to the rules of nomenclature: past history and current practice.” International
Journal of Systematic and Evolutionary Microbiology, 56, 2715–2720. doi:10.1099/ijs.

0.64780-0.

Tukey J (1994). “The problem of multiple comparisons.” unpublished manuscript. Reprinted
in: Braun, H.I. (Ed.), The collected works of John W. Tukey. VIII Multiple Comparisons.
Chapman & Hall, New York.

Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N, Klenk HP, Göker M (2013a). “opm:
An R Package for Analysing OmniLog➤Phenotype MicroArray Data.” Bioinformatics.
doi:10.1093/bioinformatics/btt291.

Vaas LA, Sikorski J, Michael V, Göker M, Klenk H (2012). “Visualization and Curve Param-
eter Estimation Strategies for Efficient Exploration of Phenotype MicroArray Kinetics.”
PLoS ONE, 7, e34846. doi:10.1371/journal.pone.0034846.

Vaas LAI, Marheine M, Sikorski J, Göker M, Schumacher HM (2013b). “Impacts of pr-
10a Overexpression at the Molecular and the Phenotypic Level.” International Journal of
Molecular Sciences, 14, 15141–15166. doi:10.3390/ijms140715141.

Vehkala M, Shubin M, Connor TR, Thomson NR, Corander J (2015). “Novel R Pipeline for
Analyzing Biolog Phenotypic Microarray Data.” PLoS ONE, 10, e0118392. doi:10.1371/
journal.pone.0118392.

http://CRAN.R-project.org/package=RODBC
http://dx.doi.org/10.1111/j.1462-2920.2012.02719.x
http://dx.doi.org/10.1093/bioinformatics/bti191
http://dx.doi.org/10.1093/bioinformatics/bti191
http://CRAN.R-project.org/package=pvclust
http://CRAN.R-project.org/package=pvclust
http://dx.doi.org/10.1099/ijs.0.64780-0
http://dx.doi.org/10.1099/ijs.0.64780-0
http://dx.doi.org/10.1093/bioinformatics/btt291
http://dx.doi.org/10.1371/journal.pone.0034846
http://dx.doi.org/10.3390/ijms140715141
http://dx.doi.org/10.1371/journal.pone.0118392
http://dx.doi.org/10.1371/journal.pone.0118392

68 Phenotype Microarray Data (September 14, 2016)

Ventura D, Martinez T (1995). “An Empirical Comparison of Discretization Methods.” In
Proceedings of the Tenth International Symposium on Computer and Information Sciences,
pp. 443–450. Morgan Kaufmann Publishers, San Francisco, CA.

Wang H, Song M (2011). “Ckmeans.1d.dp: optimal k-means clustering in one dimension by
dynamic programming.” The R Journal, 3, 29–33.

Wood SN (2003). “Thin Plate Regression Splines.” Journal of the Royal Statistical Society.
Series B, 65, 95–114. doi:10.1111/1467-9868.00374.

Zar J (1999). Biostatistical analysis. Prentice Hall, Upper Saddle River, NJ.

Affiliation:

Markus Göker
Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures
Braunschweig

Telephone: +49/531-2616-272
Fax: +49/531-2616-237
E-mail: markus.goeker@dsmz.de
URL: www.dsmz.de

http://dx.doi.org/10.1111/1467-9868.00374
mailto:markus.goeker@dsmz.de
www.dsmz.de

	Introduction
	Preamble for ``eager to start'' readers
	Scientific introduction

	Methods
	Overview
	Additional information

	Data import
	Batch conversion of many files
	Integration of metadata
	Aggregating data by estimating curve parameters
	Manipulation of OPM and OPMS data
	Plotting functions for raw data
	Plotting the aggregated data
	Normalisation of aggregated curve parameters

	Statistical comparisons of group means
	Discretising and export for phylogenetic analysis
	Determining positive and negative reactions and displaying them as text or table
	Database
	Global settings

	Program application
	Overview
	Troubleshooting

	Data import
	Troubleshooting

	Batch conversion of many files
	Integration and manipulation of metadata
	Troubleshooting

	Aggregating data by estimating curve parameters
	Manipulation of OPM and OPMS data
	Converting to data frames or matrices
	Troubleshooting

	Plotting functions for raw data
	Troubleshooting

	Plotting the aggregated data
	Troubleshooting

	Statistical comparisons of group means
	Tukey type of comparison: all-against-all
	Dunnett-type comparison: one-against-all
	Pairs-type comparison of specific wells
	User-defined comparisons of interest
	Troubleshooting

	Discretisation
	Discretisation and phylogenetic data export
	Discretisation and export of text
	Discretisation and export of tables
	Fine-tuning the discretisation

	Discussion and conclusion
	Acknowledgements

