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Abstract

mhurdle is a package for R enabling the estimation of a wide set of regression models
where the dependent variable is left censored at zero, which is typically the case in house-
hold expenditure surveys. These models are of particular interest to explain the presence
of a large proportion of zero observations for the dependent variable by means of up to
three censoring mechanisms, called hurdles. For the analysis of censored household ex-
penditure data, these hurdles express a good selection mechanism, a desired consumption
mechanism and a purchasing mechanism, respectively. mhurdle models are specified in a
fully parametric form and estimated using the maximum likelihood method for random
samples. Model evaluation and selection are tackled by means of goodness of fit measures
and Vuong tests. Software rationale and user’s guidelines are presented and illustrated
with a real-world example.

Keywords: Households’ expenditure survey analysis, censored regression models, hurdle mod-
els, Tobit models, maximum likelihood estimation, goodness of fit measures, Vuong tests,
R.

1. Introduction

Data collected by means of households’ expenditure survey may present a large proportion
of zero expenditures due to many households recording, for one reason or another, no expen-
diture for some items. Analyzing these data requires to model any expenditure with a large
proportion of nil observations as a dependent variable left censored at zero.

Since the seminal paper of Tobin (1958), a large econometric literature has been developed
to deal correctly with this problem of zero observations. The problem of censored data has
also been treated for a long time in the statistics literature dealing with survival models.

In applied microeconometrics, different decision mechanisms have been put forward to explain
the appearance of zero expenditure observations. The original Tobin’s model takes only one
of these mechanisms into account. With mhurdle, up to three mechanisms generating zero
expenditure observations may be introduced in the model 1. More specifically, we consider
the following three zero expenditure generating mechanisms.

1This package is an improved version of a package first developed as part of a PhD dissertation carried
out by Stéphane Hoareau (2009) at the University of Réunion under the supervision of Fabrizio Carlevaro and
Yves Croissant.



2 Multiple Hurdle Tobit Models in R: The mhurdle Package

A good selection mechanism (hurdle 1) . According to this mechanism, the consumer2

first decides which goods to include in its choice set and, as a consequence, he can
discard some marketed goods because he dislikes them (like meat for vegetarians or
wine for non-drinkers) or considers them harmful (like alcohol, cigarettes, inorganic
food, holidays in dangerous countries), among others.
This censoring mechanism has been introduced in empirical demand analysis by Cragg
(1971). It allows to account for the non-consumption of a good as a consequence of
a fundamentally non-economic decision motivated by ethical, psychological or social
considerations altering the consumer’s preferences.

A desired consumption mechanism (hurdle 2) . According to this mechanism, once a
good has been selected, the consumer decides which amount to consume and, as a con-
sequence of his preferences, resources and selected good prices, its rational decision can
turn out to be a negative desired consumption level leading to a nil consumption.
The use of this mechanism, to explain the presence of zero observations in family ex-
penditure surveys, was introduced by Tobin (1958). Its theoretical relevance has been
later rationalised by the existence of corner solutions to the microeconomic problem of
rational choice of the neoclassical consumer. See section 10.2 of Amemiya (1985), for
an elementary presentation of this issue, and chapter 4 of Pudney (1989), for a more
comprehensive one.

A purchasing mechanism (hurdle 3) . According to this mechanism, once a consump-
tion decision has been taken, the consumer sets up the schedule at which to buy the
good and, as a consequence of its purchasing strategy, zero expenditure may be observed
if the survey by which these data are collected is carried out over a too short period
with respect to the frequency at which the good is bought.
This censoring mechanism has been introduced in empirical demand analysis by Deaton
and Irish (1984). It allows to account for the non-purchase of a good not because the
good is not consumed but because it is a durable or a storable good infrequently bought.
By the same token, this mechanism allows to derive from observed expenditures, the
rate of use of a durable good or the rate of consumption of a stored non durable good.

For each of these censoring mechanisms, a continuous latent variable is defined, indicating that
censoring is in effect when the latent variable is negative. These latent variables are modelled
as the sum of a linear function of explanatory variables and of a normal random disturbance,
with a possible correlation between the disturbances of different latent variables in order to
account for a possible simultaneity of the decisions modelled by censoring mechanisms. To
model possible departures of the observed dependent variable to normality, we use flexible
transformations allowing to rescale skewed or leptokurtic random variables to normality. By
combining part or the whole set of these censoring mechanisms, we generate a set of non-
nested parametric models that can be used to explain censored expenditure data depending
on the structural censoring mechanisms that a priori information suggests to be at work.

These formal models have been primarily developed to deal with censored household expen-
diture data, and numerous applications have been carried out in this field. Complementing a

2The consumer we are reffering to is that of the microeconomic theory, an abstract economic agent respon-
sible of the decisions of a consumption unit that may be an individual, a family, a household. According to
the economic litterature, we term this concept “the consumer” by convenience.



Fabrizio Carlevaro, Yves Croissant, Stéphane Hoareau 3

previous survey by Smith (2002), Table 1 gives an updated overview of these studies. We note
a late popularity of Cragg’s approach, as the first applications of hurdle models are published
in the late of 1980s, namely almost two decades after the publication of Cragg’s paper in
Econometrica. Since then, a large variety of demand models including one or two among
the previous three censoring mechanisms are estimated. However, none of these studies use
the three censoring mechanisms we consider, jointly. From the 1990s on, many studies ac-
count for deviations of the desired consumption relation to homoscedasticity and normality
by modelling the standard error of this variable as a non negative parametric function of some
explanatory variables and by transforming its distribution to normality using either the Box-
Cox or the inverse hyperbolic sine transformations. The estimation of a correlation coefficient
between disturbances is also performed in several of these studies, with an increasing succes
over time, in terms of statistical significance of estimates.
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6 Multiple Hurdle Tobit Models in R: The mhurdle Package

The practical scope of multiple hurdle Tobit models is not restricted to empirical demand
analysis but has been fruitfully used in other fields of economics. This includes labor eco-
nomics (Elek, Köllö, Reizer, and Szabó 2011), contingent valuation studies (Saz-Salazar
and Rausell-Köster 2008; Mart́ınez-Espineira 2006), finance (Moffatt 2005), sport activities
(Humphreys and Ruseski 2010), internet use (Wodjao 2020), gambling (Humphreys, Lee, and
Soebbing 2009), production (Akpan, Nkanta, and Essien 2012; Mal, Anik, Bauer, and Schmitz
2012; Okello, Kirui, and Gitonga 2012; Teklewold, Dadi, Yami, and Dana 2006)

Our hurdle models are specified as fully parametric models allowing estimation and inference
within an efficient maximum likelihood framework. In order to identify a relevant model
specification, goodness of fit measures for model evaluation and selection, as well as Vuong
tests for discriminating between nested, strictly non nested and overlapping models have been
implemented in mhurdle package. Vuong tests remarkably permit to compare two competing
models when both, only one, or neither of them contain the true mechanism generating the
sample of observations. More precisely, such tests allow to assess which of the two competing
models is closest to the true unknown model according to the Kullback-Leibler information
criterion. Therefore, such symmetric tests are not intended, as classical Neyman-Pearson
tests, to pinpoint the chimeric true model, but to identify a best parametric model specifi-
cation (with respect to available observations) among a set of competing specifications. As
a consequence, they can provide inconclusive results, which prevent from disentangling some
competing models, and when they are conclusive, they don’t guarantee an identification of
the relevant model specification.

Survival models are implemented in R with the survival package of Therneau (2013). It has
also close links with the problem of selection bias, for which some methods are implemented
in the sampleSelection package of Toomet and Henningsen (2008). It is also worth mention-
ing that a convenient interface to survreg, called tobit, particularly aimed at econometric
applications is available in the AER package of Kleiber and Zeileis (2008). More enhanced
censored regression models (left and right censoring, random effect models) are available in
the censReg package (Henningsen 2013). Some flavor of hurdle models have also been devel-
oped for count data and are implemented by the hurdle of the pscl package (Zeileis, Kleiber,
and Jackman 2008).

The paper is organised as follows: Section 2 presents the rationale of our modelling strategy.
Section 3 presents the theoretical framework for model estimation, evaluation and selection.
Section 4 discusses the software rationale used in the package. Section 5 illustrates the use of
mhurdle with a real-world example. Section 6 concludes.

2. Modelling strategy

2.1. Model specification

Our modelling strategy is intended to model the level y of expenditures of a household for
a given good or service during a given period of observation. To this purpose, we use up to
three zero expenditure generating mechanisms, called hurdles, and a demand function.

Each hurdle is represented by a probit model resting on one of the following three latent
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dependent variables relations: 
y∗1 = β>1 x1 + ε1

y∗2 = β>2 x2 + ε2

y∗3 = β>3 x3 + ε3

(1)

where x1, x2, x3 stand for column-vectors of explanatory variables (called covariates in the
followings), β1, β2, β3 for column-vectors of the impact coefficients of the explanatory vari-
ables on the continuous latent dependent variables y∗1, y∗2, y∗3 and ε1, ε2, ε3 for normal random
disturbances. Since variables y∗1 and y∗3 are never observed, contrary to y∗2, the units of mea-
surement of ε1 and ε3 are not identified. Hence, these disturbances are normalized by setting
their variances equal to 1, i.e. by identifying them to standard normal random variables.

• Hurdle 1 models the household decision of selecting or not selecting the good we consider
as a relevant consumption good, complying with household’s ethical, psychological and
social convictions and habits. This good selection mechanism explains the outcome of a
binary choice that can be coded by a binary variable I1 taking value 1 if the household
decides to enter the good in its basket of relevant consumption goods and 0 otherwise.
The outcome of this binary choice is modelled by associating the decision to select the
good to positive values of the latent variable y∗1 and that to reject the good to negative
values of y∗1. Therefore, good selection or rejection is modelled as a probability choice
where selection occurs with probability P (I1 = 1) = P (y∗1 > 0) and rejection with
probability P (I1 = 0) = P (y∗1 ≤ 0) = 1− P (y∗1 > 0).
Note that if this mechanism is inoperative, this probit model must be replaced by a
singular probability choice model where P (I1 = 1) = 1 and P (I1 = 0) = 0.

• Hurdle 2 models the household decision of consuming or not consuming the selected
good, given its actual economic conditions. This desired consumption mechanism ex-
plains the outcome of a binary choice coded by a binary variable I2 taking value 1 if the
household decides to consume the good and 0 otherwise. The outcome of this binary
choice is modelled by associating the decision to consume the selected good to a positive
value of its desired consumption level, represented by the latent variable y∗2, and that of
not to consume the good to negative values of y∗2. Therefore, when this zero expenditure
generating mechanism is operative, it also models the level of desired consumption ex-
penditures by means of a Tobit model identifying the desired consumption expenditures
to the value of latent variable y∗2, when it is positive, and to zero, when it is negative.
Conversely, when the desired consumption mechanism is inoperative, implying that the
desired consumption cannot be a corner solution of a budget constrained problem of
utility minimisation, we must replace not only the probit model explaining the variable
I2 by a singular probability choice model where P (I2 = 1) = 1, but also the Tobit
demand function by a demand model enforcing non-negative values on the latent vari-
able y∗2. Cragg (1971) suggested two types of functional forms for this demand model,
namely a log-normal functional form :

ln y∗2 = β>2 x2 + ε2 (2)

and a truncated normal functional form where y∗2 is generated by a linear relationship
y∗2 = β>2 x2 + ε2 with ε2 distributed according to a normal distribution left-truncated at
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ε2 = −β>2 x2. Nevertheless, to avoid a cumbersome analytic presentation of our models,
in the following we only consider the log-normal model specification. More flexible
generalizations of these functional forms will be discussed in section 2.3.

• Hurdle 3 models the household decision to purchase or not to purchase the good during
the survey period over which expenditure data are collected. This purchasing mechanism
also explains the outcome of a binary choice, coded by a binary variable I3 taking value
1 if the household decides to buy the good during the period of statistical observation
and 0 otherwise. The probit model we use associates the purchasing decision to positive
values of latent variable y∗3 and that of not purchasing to negative values of y∗3.
By assuming that consumption and purchases are uniformly distributed over time, but
according to different timetables entailing a frequency of consumption higher than that
of purchasing, we can also interpret the probability P (I3 = 1) = P (y∗3 > 0) as measuring
the share of purchasing frequency to that of consumption during the observation period.
This allows to relate the observed level of expenditures y to the unobserved level of
consumption y∗2 during the observation period, using the following identity:

y =
y∗2

P (I3 = 1)
I1I2I3. (3)

When the purchasing mechanism is inoperative, the previous probit model must be
replaced by a singular probability choice model where P (I3 = 1) = 1. In such a case,
the observed level of expenditures is identified to the level of consumption, implying
y = y∗2I1I2.

A priori information (theoretical or real-world knowledge) may suggest that one or more of
these censoring mechanisms are not in effect. For instance, we know in advance that all
households purchase food regularly, implying that the first two censoring mechanisms are
inoperative for food. In this case, the relevant model is defined by only two relations: one
defining the desired consumption level of food, according to a log-normal or a truncated normal
specification, and the other the decision to purchase food during the observation period.

Figure 1 outlines the full set of special models that can be generated by selecting which of
these three mechanisms are in effect and which are not. It shows that 8 different models can
be dealt with by means of mhurdle package. To use a mnemonically rule, we number the
models by 3 binary digits, each of which indicates if a censoring mechanism is or is not in
effect, using figures 1 and 0, respectively. For example, 011 indicates the model for which
hurdle 1 (good selection mechanism) is not in effect while hurdles 2 (desired consumption
mechanism) and 3 (purchasing mechanism) are.

Among these models, one is not concerned by censored data, namely model 000. This model
is relevant only for modelling uncensored samples. All the other models are potentially able
to analyse censored samples by combining up to the three censoring mechanisms described
above. With the notable exception of the standard Tobit model 010, that can be estimated
also by the survival package of Therneau (2013) or the AER package of Kleiber and Zeileis
(2008), these models cannot be found in an other R package.

Some of mhurdle models have already been used in applied econometric literature. In par-
ticular, model 100 is a single-hurdle good selection model originated by Cragg (1971) by
assuming independence between disturbances ε1 and ε2. The dependent version of this model
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may be viewed as a sample selection model in which only the desired consumption is observed,
but it diffears from this model populazied by Heckman (1979) to illustrate linear regression
model estimation given sample selection, in that desired consumption is generated by a de-
mand model enforcing non negative values on latent variable y∗2. Still, in many applications
presented in Table 1, Heckman’s sample selection model is used as a dependent single-hurdle
good selection model in which good selection decision is assumed to dominate good consump-
tion decision. From our point of view, this model is theoretically misspecified to analyse a
latent dependent variable that could take negative values while assuming that hurdle 2 is not
in effect.

The double-hurdle model 110 combining independent good selection (hurdle 1) and desired
consumption (hurdle 2) censoring mechanisms is also due to Cragg (1971). An extension of
this double-hurdle model to dependent censoring mechanisms has been originated by Blundell
and Meghir (1987).

P-Tobit model 011 is due to Deaton and Irish (1984) and explains zero purchases by combin-
ing the desired consumption censoring mechanism (hurdle 2) with the purchasing censoring
mechanism (hurdle 3). Model 001 is a single-hurdle model not yet used in applied demand
analysis, where the censoring mechanism in effect is that of infrequent purchases (hurdle 3).

Among the original models encompassed by mhurdle, models 101 is a double-hurdle model
combining good selection (hurdle 1) and purchasing (hurdle 3) mechanisms to explain censored
samples. Model 111 is an original triple-hurdle model originated in Hoareau (2009). This
model explains censored purchases either as the result of good rejection (hurdle 1), negative
desired consumption (hurdle 2) or infrequent purchases (hurdle 3).

To derive the form of the probability distribution of the observable dependent variable y, we
must specify the joint distribution of the random disturbances entering the structural relations
of these models.

• Models 111 and 101 are trivariate hurdle models as they involve disturbances ε1, ε2 and
ε3, distributed according to the trivariate normal density function:

1

σ
φ
(
ε1,

ε2
σ
, ε3; ρ12, ρ13, ρ23

)
, (4)

where

φ(z1, z2, z3; ρ12, ρ13, ρ23) =
exp

{
−ρ11z2

1+ρ22z2
2+ρ33z2

3−2[ρ12z1z2+ρ13z1z3+ρ23z2z3]
2

}
√

(2π)3 | R |
,

with
|R| = 1− ρ2

12 − ρ2
13 − ρ2

23 + 2ρ12ρ13ρ23,

ρ11 =
1− ρ2

23

| R |
, ρ22 =

1− ρ2
13

| R |
, ρ33 =

1− ρ2
12

| R |
,

ρ12 =
ρ12 − ρ13ρ23

| R |
, ρ13 =

ρ13 − ρ12ρ23

| R |
, ρ23 =

(ρ23 − ρ12ρ13)

| R |
,

denotes the density function of a standard trivariate normal distribution and ρ12, ρ13,
ρ23 the correlation coefficients between the couples of normal standard random variables
z1 and z2, z1 and z3, z2 and z3, respectively.



Fabrizio Carlevaro, Yves Croissant, Stéphane Hoareau 11

• Models 011 and 001 are bivariate hurdle models as they involve disturbances ε2 and ε3,
distributed according to the bivariate normal density function:

1

σ
φ
(ε2
σ
, ε3; ρ23

)
, (5)

where

φ(z1, z2; ρ) =
exp

{
− z2

1+z2
2−2ρz1z2

2(1−ρ2)

}
2π
√

1− ρ2

denotes the density function of a standard bivariate normal distribution with correlation
coefficient ρ.

• Models 110 and 100 are also bivariate hurdle models but they involve disturbances ε1
and ε2 which density function is therefore written as:

1

σ
φ
(
ε1,

ε2
σ

; ρ12

)
. (6)

• Finally, models 010 and 000 are univariate hurdle models involving only disturbance ε2,
which density function writes therefore:

1

σ
φ
(ε2
σ

)
, (7)

where

φ(z1) =
exp

{
− z2

1
2

}
√

2π

denotes the density function of a standard univariate normal distribution.

While the assumption of correlated disturbances is intended to account for the interdepen-
dence between latent variables y∗1, y∗2 and y∗3 unexplained by covariates x1, x2 and x3, a priori
information (theoretical or real-world knowledge) may also suggest to set to zero some or all
correlations between the random disturbances entering these models, entailing a partial or
total independence between model relations. The use of this a priori information generates,
for each trivariate or bivariate hurdle model of Figure 1, a subset of special models all nested
within the general model from which they are derived. For a trivariate hurdle model the num-
ber of special models so derived is equal to 7, but for a bivariate hurdle model only one special
model is generated, namely the model obtained by assuming the independence between the
two random disturbances of the model.

In the following, we shall work out the distribution of our hurdle models in their general
case, but considering the difficulties of implementing trivariate hurdle models in their full
generality, for these models only the special cases of independence or dependence between
one of hurdles 1 or 3 and the desired consumption equation, which seems the most relevant
for empirical applications, have been programmed in the present version of mhurdle. To
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identify the presence or absence of assumed dependence between couples of disturbances of
a given mhurdle special model, we add to the 3 binary digit number of the model a letter
i , if independence is assumed, and a letter d , otherwise. For exemple, 101dii indicates a
trivariate model 101 for which the couple of disturbances (ε1, ε2) are assumed to be correlated,
while (ε1, ε3) and (ε2, ε3) are not.

2.2. Likelihood function

As for the standard Tobit model, the probability distribution of the observed censored variable
y of our hurdle models is a discrete-continuous mixture, which assigns a probability mass
P (y = 0) to y = 0 and a density function f+(y) to any y > 0, with:

P (y = 0) +

∫ ∞
0

f+(y)dy = 1. (8)

The probability mass P (y = 0) = 1 − P (y > 0) may be computed by integrating the joint
density function of the latent variables entering the hurdle model over their positive values.

• For trivariate hurdle model 111, using the change of variables:
z1 = y∗1 − β>1 x1

z2 =
y∗2 − β>2 x2

σ

z3 = y∗3 − β>3 x3

(9)

this approach leads to:

P (y = 0) = 1−
∫ ∞
−β>1 x1

∫ ∞
−
β>2 x2
σ

∫ ∞
−β>3 x3

φ(z1, z2, z3; ρ12, ρ13, ρ23)dz1dz2dz3

= 1− Φ(β>1 x1,
β>2 x2

σ
, β>3 x3; ρ12, ρ13, ρ23),

(10)

where Φ(z1, z2, z3; ρ12, ρ13, ρ23) denotes the distribution function of a standard trivariate
normal distribution with correlation coefficients ρ12, ρ13 and ρ23.

• For trivariate hurdle model 101, using the change of variables:
z1 = y∗1 − β>1 x1

z2 =
ln y∗2 − β>2 x2

σ

z3 = y∗3 − β>3 x3

(11)

this approach leads to:

P (y = 0) = 1−
∫ ∞
−β>1 x1

∫ ∞
−∞

∫ ∞
−β>3 x3

φ(z1, z2, z3; ρ12, ρ13, ρ23)dz1dz2dz3

= 1− Φ(β>1 x1, β
>
3 x3; ρ13),

(12)
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where Φ(z1, z2; ρ) denotes the distribution function of a standard bivariate normal dis-
tribution with correlation coefficient ρ.

• The probability mass P (y = 0) for bivariate hurdle models 011 and 110 and univariate
hurdle model 010 can be derived from that of trivariate model 111 by eliminating hurdles
1, 3, 1 and 3, respectively. Likewise, this probability for bivariate hurdle models 100

and 001 can be derived from that of trivariate hurdle model 101 by eliminating hurdles
1 and 3, respectively. Corresponding formulas of P (y = 0) for all this special cases
implemented in R are presented in Table 2, using the following notations:

Φ1 = Φ(β>1 x1), Φ2 = Φ

(
β>2 x2

σ

)
, Φ3 = Φ(β>3 x3),

Φ12 =

(
β>1 x1,

β>2 x2

σ
; ρ12

)
, Φ23 =

(
β>2 x2

σ
, β>3 x3; ρ23

)
,

where Φ(z) denotes the distribution function of a standard univariate normal distribu-
tion.

The density function f+(y) may be computed by performing: first the change of variable
y∗2 = P (I3 = 1)y = Φ3y on the joint density function of the latent variables entering the
hurdle model; then by integrating this transformed density function over the positive values
of latent variables y∗1 and y∗3.

• For trivariate hurdle model 111 this transformed density function is written as:

Φ3

σ
φ

(
y∗1 − β>1 x1,

Φ3y − β>2 x2

σ
, y∗3 − β>3 x3; ρ12, ρ13, ρ23

)
. (13)

To perform the analytical integration of this function, it is useful to rewrite it as the
product of the marginal distribution of y, namely:

Φ3

σ
φ

(
Φ3y − β>2 x2

σ

)
(14)

and of the joint density function of y∗1 and y∗3 conditioned with respect to y, which can
be written as follows:

1

σ1|2σ3|2
φ

(
y∗1 − µ1|2

σ1|2
,
y∗3 − µ3|2

σ3|2
; ρ13|2

)
, (15)

with:

µ1|2 = β>1 x1 + ρ12
Φ3y − β>2 x2

σ
, µ3|2 = β>3 x3 + ρ23

Φ3y − β>2 x2

σ
,

σ2
1|2 = 1− ρ2

12, σ2
3|2 = 1− ρ2

23, ρ13|2 =
ρ13 − ρ12ρ23√

1− ρ2
12

√
1− ρ2

23

.
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Using this factorization of the density function of y∗1, y and y∗3, we obtain:

f+(y) =
Φ3

σ
φ

(
Φ3y − β>2 x2

σ

)
×
∫ ∞

0

∫ ∞
0

1

σ1|2σ3|2
φ

(
y∗1 − µ1|2

σ1|2
,
y∗3 − µ3|2

σ3|2
; ρ13|2

)
dy∗1dy

∗
3

=
Φ3

σ
φ

(
Φ3y − β>2 x2

σ

)∫ ∞
−
µ1|2
σ1|2

∫ ∞
−
µ3|2
σ3|2

φ(z1, z3; ρ13|2)dz1dz3

=
Φ3

σ
φ

(
Φ3y − β>2 x2

σ

)

× Φ

(
β>1 x1 + ρ12

Φ3y−β>2 x2

σ√
1− ρ2

12

,
β>3 x3 + ρ23

Φ3y−β>2 x2

σ√
1− ρ2

23

; ρ13|2

)
.

(16)

• For trivariate hurdle model 101, we proceed as for hurdle model 111 by substituting
the joint normal density function (13), by the following joint normal/log-normal density
function:

1

σy
φ

(
y∗1 − β>1 x1,

ln(Φ3y)− β>2 x2

σ
, y∗3 − β>3 x3; ρ12, ρ13, ρ23

)
. (17)

To integrate this density function with respect to the positive values of y∗1 and y∗2, we
rewrite it as the product of the marginal distribution of y, which is log-normal:

1

σy
φ

(
ln(Φ3y)− β>2 x2

σ

)
(18)

and of the joint density function of y∗1|y and y∗3|y, which is bivariate normal:

1

σ1|2σ3|2
φ

(
y∗1 − µ1|2

σ1|2
,
y∗3 − µ3|2

σ3|2
; ρ13|2

)
, (19)

with:

µ1|2 = β>1 x1 + ρ12
ln(Φ3y)− β>2 x2

σ
, µ3|2 = β>3 x3 + ρ23

ln(Φ3y)− β>2 x2

σ
,

σ2
1|2 = 1− ρ2

12, σ2
3|2 = 1− ρ2

23, ρ13|2 =
ρ13 − ρ12ρ23√

1− ρ2
12

√
1− ρ2

23

.

By integrating this factorisation of the density function of y∗1, y and y∗3, over the positive
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values of y∗1 and y∗3, we obtain:

f+(y) =
φ
(

ln(Φ3y)−β>2 x2

σ

)
σy

∫ ∞
−
µ1|2
σ1|2

∫ ∞
−
µ3|2
σ3|2

φ(z1, z3; ρ13|2)dz1dz3

=
φ
(

ln(Φ3y)−β>2 x2

σ

)
σy

× Φ

(
β>1 x1 + ρ12

ln(Φ3y)−β>2 x2

σ√
1− ρ2

12

,
β>3 x3 + ρ23

ln(Φ3y)−β>2 x2

σ√
1− ρ2

23

; ρ13|2

)
.

(20)

• The density function f+(y) for bivariate hurdle models 011 and 110 and univariate
hurdle model 010 can be derived from that of trivariate model 111 by eliminating hurdles
1, 3, 1 and 3, respectively. Likewise, this density function for bivariate hurdle models
100 and 001 can be derived from that of trivariate hurdle model 101 by eliminating
hurdles 1 and 3, respectively. Corresponding formulas for f+(y) for all this special cases
implemented in R are presented in Table 2.

From these results it is easy to derive the likelihood function of a random sample of n ob-
servations of the censored dependent variable y. As these observations are all independently
drawn from the same conditional (on covariates x1, x2 and x3) discrete-continuous distribu-
tion, which assigns a conditional probability mass P (y = 0) to the observed value y = 0 and
a conditional density function f+(y) to the observed values y > 0, the log-likelihood function
for an observation yi can be written as :

lnLi =

{
lnP (yi = 0) if yi = 0
ln f+(yi) if yi > 0

(21)

and the log-likelihood for the entire random sample:

lnL =
n∑
i=1

lnLi =
∑
i|yi=0

lnP (yi = 0) +
∑
i|yi>0

ln f+(yi). (22)

2.3. Heteroscedasticity and nonnormality

Contrary to the classical linear regression model which estimation is robust with respect to
deviations from the assumptions of homoscedasticity and normality of disturbances, the max-
imum likelihood estimation of a Tobit model become inconsistent under heteroscedasticity
and nonnormality of disturbances. Therefore, it is important to have methods allowing to
test whether these assumptions are acceptable, on grounds of empirical evidence provided by
a sample of observations, and to suggest how to respecify the model in case where a misspec-
ification is brought out. In this section, we shall tackle this problem by using more flexible
specifications of the desired consumption relation, where homoscedasticity and normality as-
sumptions appear as special cases. Our choices are inspired by model specifications identified
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in our survey of hurdle Tobit model applications reported in Table 1. Stated in general
terms, our generalizations of models presented in section 2.1 are written as:

y∗1 = β>1 x1 + z1

T (y∗2) = β>2 x2 + σ(β>0 x0)z2

y∗3 = β>3 x3 + z3

(23)

where T (y∗2) denotes a monotonic transformation of desired consumption variable y∗2, σ(β>0 x0)
a positive monotonic transformation of a linear function of a vector of covariates x0, selected to
explain the heteroscedasticity of desired consumption, z1, z2 and z3 standard normal random
variables, with z2 possibly truncated at the bounds of an interval ]B1, B2[ ensuring that the
range of values of β>2 x2 + σ(β>0 x0)z2 corresponds to the domain of definition of the inverse
transformation y∗2 = T−1(β>2 x2 + σ(β>0 x0)z2).

With these assumptions in mind, we can derive the form of the observable dependent variable

y =
T−1(β>2 x2 + σ(β>0 x0)z2)

P (I3 = 1)
I1I2I3. (24)

from the joint distribution of random variables z1, z2 and z3, which is written as:

φ (z1, z2, z3; ρ12, ρ13, ρ23)

Φ(B2)− Φ(B1)
. (25)

Using the change of variables: 
z1 = y∗1 − β>1 x1

z2 =
T (y∗2)− β>2 x2

σ(β>0 x0)
z3 = y∗3 − β>3 x3

(26)

we derive the joint density function of latent variables y∗1, y∗2 and y∗3:

f(y∗1, y
∗
2, y
∗
3) =

T
′
(y∗2)

σ(β>0 x0)

φ
(
y∗1 − β>1 x1,

T (y∗2)−β>2 x2

σ(β>0 x0)
, y∗3 − β>3 x3)

)
Φ(B2)− Φ(B1)

, (27)

where T
′
(y∗2) stands for the derivative of T (y∗2). Using this density function we compute the

probability mass P (y = 0) = 1− P (y > 0) as follows:

P (y = 0) = 1−
∫ ∞

0

∫ ∞
0

∫ ∞
0

φ(y∗1, y
∗
2, y
∗
3; ρ12, ρ13, ρ23)

Φ(B2)− Φ(B1)
dy∗1dy

∗
2dy
∗
3

= 1−
∫ ∞
−β>1 x1

∫ B2

T (0)−β>2 x2

σ(β>0 x0)

∫ ∞
−β>3 x3

φ(z1, z2, z3; ρ12, ρ13, ρ23)

Φ(B2)− Φ(B1)
dz1dz2dz3

= 1−
Φ(β>1 x1,

β>2 x2−T (0)

σ(β>0 x0)
, β>3 x3; ρ12, ρ13, ρ23)− Φ(β>1 x1,−B2, β

>
3 x3; ρ12, ρ13, ρ23)

Φ(B2)− Φ(B1)
.

(28)
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To compute the density function f+(y) , we first perform the change of variable y∗2 = Φ3y on
the joint density function , leading to the joint density function of variables y∗1, y and y∗3:

f(y∗1, y, y
∗
3) =

Φ3T
′
(Φ3y)

σ(β>0 x0)

φ
(
y∗1 − β>1 x1,

T (Φ3y)−β>2 x2

σ(β>0 x0)
, y∗3 − β>3 x3)

)
Φ(B2)− Φ(B1)

. (29)

Then we integrate this transformed density function, rewritten as the product of the marginal
density function of y, namely:

Φ3T
′
(Φ3y)

σ(β>0 x0)

φ
(
T (Φ3y)−β>2 x2

σ(β>0 x0)

)
Φ(B2)− Φ(B1)

, (30)

and of the joint density function of y∗1 and y∗2 conditioned with respect to y, stated by formula
, over the positive values of latent variables y∗1 and y∗3. By this way we get:

f+(y) =
Φ3T

′
(Φ3y)

σ(β>0 x0)

φ
(
T (Φ3y)−β>2 x2

σ(β>0 x0)

)
Φ(B2)− Φ(B1)

× Φ

β>1 x1 + ρ12
T (Φ3y)−β>2 x2

σ(β>0 x0)√
1− ρ2

12

,
β>3 x3 + ρ23

T (Φ3y)−β>2 x2

σ(β>0 x0)√
1− ρ2

23

; ρ13|2

. (31)

A natural choice for the heteroscedastic model σ(β>0 x0) is given by the exponential functional
form σ(β>0 x0) = exp{β>0 x0}, as exponential is a strictly increasing function mapping the set
of real numbers ] − ∞,+∞[ onto the the set of positive real numbers ]0,+∞[, and leads
to homoscedasticity when the linear function β>0 x0 is a constant. This allows to test the
assumption of homoscedasticity by inserting an intercept among parameters β0 and assessing
whether the other parameters are statistically significant or not.

The main drawbacks of this functional form lies in its implicit assumption of unboundedness
of the variance of disturbance ε2 with respect to covariates x0. When a priori information
suggests that this conditional variance remains bounded with respect to any possible val-
ues of these covariates, it is best to consider a functional model of the form σ(β>0 x0) =
exp{αF (β>0 x0)}, where F (.) is a distribution function mapping the set of real numbers
] −∞,+∞[ onto the unit interval ]0, 1[, and α a parameter playing the role of the intercept
in the exponential functional form. Therefore, testing the assumption of homoscedasticity
amounts to assessing the statistical non significance of parameter vector β0 without an in-
tercept, and setting the standard deviation of ε2 equal to σ = exp{αF (0)}. For a practical
application of this parametric model of heteroscedasticity, a menu of functional forms of F (.)
have been programmed in mhurdle, including the distribution functions of standard normal,
logistic, Cauchy and Gompertz random variables.

As far as the choice of transformation T (y∗2) is concerned, two families of parametric functions
have been considered, in order to generate departures from normality towards skewed and
leptokurtic (more sharply peaked) distributions, of the kind encountered in collected economic
data.
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To generate skewed distributions of y∗2 we use the two parameters Box and Cox (1964) trans-
formation, as suggested by Chaze (2005). This transformation is written as:

T (y∗2) =

{
(y∗2+γ)λ−1

λ if λ 6= 0
ln(y∗2 + γ) if λ = 0

(32)

with λ a parameter characterizing the non linearity of the transformation. As shown in Figure
1, this transformation is linear for λ = 1, convex for λ > 1, and concave for λ < 1, with a
ceiling asymptote at −1/λ when λ < 0. γ is a location parameter, restricting the domain
where the transformation holds, to the interval ]− λ,+∞[. Hence, the image of this interval
by the Box-Cox transformation is given by:

T (]− γ,+∞[) =


]− 1/λ,+∞[ if λ > 0
]−∞,+∞[ if λ = 0
]−∞,−1/λ[ if λ < 0

(33)

As the inverse Box-Cox transformation is written as:

y∗2 =

{
{λ(β>2 x2 + σ(β>0 x0)z2) + 1}1/λ − γ if λ 6= 0
exp{β>2 x2 + σ(β>0 x0)z2} − γ if λ = 0

(34)

it turns out that z2 is truncated at the bounds of the interval ]B1, B2[, with:

B1 =

{
−β>1 x1+(1/λ)

σ(β>0 x0)
if λ > 0

−∞ if λ ≤ 0
(35)

and

B2 =

{
+∞ if λ ≥ 0

−β>1 x1+(1/λ)

σ(β>0 x0)
if λ < 0

(36)

Hence:

Φ(B2)− Φ(B1) =

{
Φ(sign(λ)

β>1 x1+(1/λ)

σ(β>0 x0)
) if λ 6= 0

1 if λ = 0
(37)

with

sign(λ) =

{
+ if λ > 0
− if λ < 0

(38)

Finally, the distribution of the observed variable y is obtained by inserting these results in
formulas and , jointly with the derivative of the Box-Cox transformation, T

′
(y∗2) = (y∗2+γ)λ−1.

Note that when γ = 0, the Box-Cox transformation holds only for y∗2 > 0, corresponding to
the restriction enforced to the desired consumption relation, when hurdle 2 is not in effect, by
means of Cragg’s log-normal or truncated normal functional forms. These functional forms
arise as special cases of the Box-Cox transformation, when λ = 0 and λ = 1, respectively.
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Thus, testing the statistical significance of parameter γ, against the alternative γ > 0, amounts
to testing the assumption that hurdle 2 is not in effect within the framework of a nested
model. Conversely, when γ < 0 the Box-Cox transformation holds for y∗2 > −γ meaning that
−γ stands for a ”committed” consumption of a basic necessity, while γ > 0 typify a luxury
good whose consumption occurs only above a given income threshold.

The way the Box-Cox transformation generates the profile of the density function of y∗2 from
that of z2 can be illustrated by considering the special case of β>2 x2 = 0 and σ(β>0 x0) = 1. In
this special case, the marginal density function of y∗2 is defined for y∗2 ≥ 0,and takes the form
of the product of the density function of z2, written as a function of y∗2:

φ(
y∗λ2 −1
λ )

Φ(sign(λ) 1
λ)

(39)

times the value of the Jacobian of the Box-Cox transformation:

J = y
∗(λ−1)
2 . (40)

This Jacobian magnifies or reduces the value of the density function of z2 depending on
whether J > 1 or J < 1, respectively. According to the values of λ, three cases must be
considered.

• When λ = 1, J = 1 whatever the value of y∗2. Hence, the shape of the density function
of y∗2 is the same as that of z2, namely a normal random variable left truncated at y∗2 = 0
and with a mode at y∗2 = 1.

• When λ > 1, J is an unbounded increasing function of y∗2, taking value 0 at y∗2 = 0 and
1 at y∗2 = 1, while the density function of z2 at y∗2 = 0 holds finite. Hence, the density
function of y∗2 starts from 0 and shifts the mode beyond y∗2 = 1. Furthermore, the
Jacobian being a linear function of y∗2 when λ = 2, a concave function when 1 < λ < 2,
and a convex function when λ > 2, the concentration of the density function around its
mode increases with the value of λ, until the collapse of the entire probability mass at
y∗2 = 1, when λ→∞.

• When λ < 1, J is a decreasing function of y∗2, from +∞ at y∗2 = 0, to 0 when y∗2 →∞,
taking value 1 at y∗2 = 1, while the density function of z2 at y∗2 = 0 holds finite or takes
value 0 depending on whether 0 < λ < 1 or λ ≤ 0. Hence, contrary to the previous
case, the mode of the density function of y∗2 shifts short of y∗2 = 1, while, at the origin,
the density function of y∗2 tends to +∞ and turns out to be an undetermined product
depending on whether 0 < λ < 1 or λ ≤ 0. The application of Hospital’s rule allows
to remove the indetermination of this limit, which turns out to be equal to 0. Note
that the same tendency towards a concentration of the density function of y∗2 around
its degenerated limit at y∗2 = 1 appears when λ → −∞. Note also that the J-shaped
profile of this density function, when 0 < λ < 1, has a mode preceded by an antimode
that can coalesce into a point of inflexion.

All these profiles are illustrated in Figures 2.
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To generate leptokurtic distributions of y∗2 we use the transformation popularized by Johnson
(1949), based on the inverse hyperbolic sine function, namely:

T (y∗2) =
1

θ
sinh−1(θy∗2) =

1

θ
ln{θy∗2 +

√
(θy∗2)2 + 1} (41)

with θ a parameter characterizing the non linearity of the transformation. Indeed, as illus-
trated by Figure 3, while, for θ > 0 and finite, the general shape of this transformation is
that of an odd 3 increasing function, from −∞ to +∞, with an inflexion point at y∗2 = 0,
concave for y∗2 > 0 and convex for y∗2 < 0, the transformation becomes linear, when θ → 0,
and constant (equal to 0), when θ → +∞ 4, by progressively loosing its sigmoidal profile.
As these profiles are invariant with respect to a change of sign of θ, this parameter can be
assumed to be non negative, without loss of generality.

To determine the distribution of the observed variable y, we need to insert in formulas and
the expressions of Φ(B2)−Φ(B1) and T

′
(y∗2) for Johnson’s transformation. We first note that

the inverse function of this transformation, which is written:

y∗2 =
sinh(θ(β>2 x2 + σ(β>0 x0)z2))

θ

=
exp{θ(β>2 x2 + σ(β>0 x0)z2)} − exp{−θ(β>2 x2 + σ(β>0 x0)z2)}

2θ

(42)

does not require a truncation of the support of z2, implying that B1 = −∞, B2 = +∞, and
hence Φ(B2)− Φ(B1) = 1.

Secondly, the derivative of Johnson’s transformation, namely:

T
′
(y∗2) =

1√
(θy∗2)2 + 1

(43)

is a bell-shaped positive pair function 5 taking constant values 1 and 0 when θ → 0 and
θ → +∞, respectively.

To analyze the profile of the density function of y∗2 generated by this transformation, we
consider, as we did before for the Box-Cox transformation, the special case of β>2 x2 = 0
and σ(β>0 x0) = 1. In this special case, the marginal density function of y∗2 takes the form
of the product of the density function of φ(T (y∗2)) times the value of the Jacobian T

′
(y∗2).

As a function of θ, this formula generates a family of bell-shaped density functions which
kurticity increases with the value of θ, from metakurticity (that of the normal distribution)
when θ = 0, to extreme leptokurticity resulting in a concentration of all the density function
at point y∗2 = 0, when θ → +∞, as shown in Figure 4. Therefore, the inverse hyperbolic sine
transformation must be used only when hurdle 2 is in effect.

3. Model estimation, evaluation and selection

3A function f(x) is said odd if f(−x) = −f(x) whatever x, implying that f(0) = 0.
4These limits can be obtained easily by using Hospital’s rule.
5A function f(x) is said pair if f(−x) = f(x) whatever x.
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The econometric framework described in the previous section provides a theoretical back-
ground for tackling the problems of model estimation, evaluation and selection within the
statistical theory of classical inference.

3.1. Model estimation

The full parametric specification of our multiple hurdle models allows to efficiently estimate
their parameters by means of the maximum likelihood principle. Indeed, it is well known
from classical estimation theory that, under the assumption of a correct model specification
and for a likelihood function sufficiently well behaved, the maximum likelihood estimator is
asymptotically efficient within the class of consistent and asymptotically normal estimators
6.

More precisely, the asymptotic distribution of the maximum likelihood estimator θ̂ for the
parameter vector θ of a multiple hurdle model, is written as:

θ̂
A∼ N(θ,

1

n
IA(θ)−1), (44)

where
A∼ stands for “asymptotically distributed as” and

IA(θ) = plim
1

n

n∑
i=1

E

(
∂2 lnLi(θ)

∂θ∂θ>

)
= plim

1

n

n∑
i=1

E

(
∂ lnLi(θ)

∂θ

∂ lnLi(θ)

∂θ>

)
for the asymptotic Fisher information matrix of a sample of n independent observations.

More generally, any inference about a differentiable vector function of θ, denoted by γ = h(θ),
can be based on the asymptotic distribution of its implied maximum likelihood estimator
γ̂ = h(θ̂). This distribution can be derived from the asymptotic distribution of θ̂ according
to the so called delta method:

γ̂
A∼ h(θ) +

∂h

∂θ>
(θ̂ − θ) A∼ N

(
γ,

1

n

∂h

∂θ>
IA(θ)−1∂h

>

∂θ

)
. (45)

The practical use of these asymptotic distributions requires to replace the theoretical variance-
covariance matrix of these asymptotic distributions with consistent estimators, which can be

obtained by using ∂h(θ̂)
∂θ>

as a consistent estimator for ∂h(θ)
∂θ>

and either 1
n

∑n
i=1

∂2 lnLi(θ̂)
∂θ∂θ>

or

1
n

∑n
i=1

∂ lnLi(θ̂)
∂θ

∂ lnLi(θ̂)
∂θ>

as a consistent estimator for IA(θ). The last two estimators are di-
rectly provided by two standard iterative methods used to compute the maximum likelihood
parameter’s estimate, namely the Newton-Raphson method and the Berndt, Hall, Hall, Haus-
man or bhhh method, respectively, mentioned in section 4.3.

3.2. Model evaluation and selection using goodness of fit measures

Two fundamental principles should be used to appraise the results of a model estimation,
namely its economic relevance and its statistical and predictive adequacy. The first principle
deals with the issues of accordance of model estimate with the economic rationale underlying

6See Amemiya (1985) chapter 4, for a more rigorous statement of this property.
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the model specification and of its relevance for answering the questions for which the model has
been built. These issues are essentially context specific and, therefore, cannot be dealt with
by means of generic criteria. The second principle refers to the issues of empirical soundness
of model estimate and of its ability to predict sample or out-of-sample observations. These
issues can be tackled by means of formal tests of significance, based on the previously presented
asymptotic distributions of model estimates, and by measures of goodness of fit/prediction,
respectively.

To assess the goodness of fit of mhurdle estimates, two pseudo R2 coefficients are provided.
The first one is an extension of the classical coefficient of determination, used to explain the
fraction of variation of the dependent variable explained by the covariates included in a linear
regression model with intercept. The second one is an extension of the likelihood ratio index
introduced by McFadden (1974) to measure the relative gain in the maximised log-likelihood
function due to the covariates included in a qualitative response model.

To define a pseudo coefficient of determination, we rely on the non linear regression model
explaining the dependent variable of a multiple hurdle model. This model is written as:

y = E(y) + u, (46)

where u stands for a zero expectation, heteroskedastic random disturbance and E(y) for the
expectation of the censored dependent variable y:

E(y) = 0× P (y = 0) +

∫ ∞
0

yf+(y)dy =

∫ ∞
0

yf+(y)dy. (47)

To compute this expectation, we reformulate it as a multiple integral of the joint density
function of y∗1, y and y∗3 multiplied by y, over the positive values of these variables.

• For trivariate hurdle model 111, using the density function (13) and the change of
variables:


z1 = y∗1 − β>1 x1

z2 =
Φ3y − β>2 x2

σ

z3 = y∗3 − β>3 x3

(48)

this reformulation of E(y) is written as:

E(y) =

∫ ∞
−β>1 x1

∫ ∞
−
β>2 x2
σ

∫ ∞
−β>3 x3

β>2 x2 + σz2

Φ3
φ (z1, z2, z3; ρ12, ρ13, ρ23) dz1dz2dz3

=
β>2 x2

Φ3
Φ

(
β>1 x1,

β>2 x2

σ
, β>3 x3; ρ12, ρ13, ρ23

)
+

σ

Φ3

∫ ∞
−β>1 x1

∫ ∞
−
β>2 x2
σ

∫ ∞
−β>3 x3

z2φ (z1, z2, z3; ρ12, ρ13, ρ23) dz1dz2dz3.

(49)
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To perform the analytical integration of the second term of the right-hand side of this
formula, it is useful to rewrite the density function of z1, z2 and z3 as the product of the
marginal density function of z1 and z2, namely φ (z1, z2; ρ13) and of the density function
of z2|z1, z3, which can be written as follows:

φ
(
z2−µ2|1,3
σ2|1,3

)
σ2|1,3

, (50)

where:

µ2|1,3 = %1z1 + %3z3, σ2
2|1,3 =

1− ρ2
12 − ρ2

13 − ρ2
23 + 2ρ12ρ13ρ23

1− ρ2
13

,

with:

%1 =
ρ12 − ρ13ρ23

1− ρ2
13

, %3 =
ρ23 − ρ12ρ13

1− ρ2
13

.

Using this factorisation of the density function of z1, z2 and z3, we obtain:

∫ ∞
−β>1 x1

∫ ∞
−
β>2 x2
σ

∫ ∞
−β>3 x3

z2φ (z1, z2, z3; ρ12, ρ13, ρ23) dz1dz2dz3

=

∫ ∞
−β>1 x1

∫ ∞
−β>3 x3

[∫ ∞
−
β>2 x2
σ

z2φ

(
z2 − µ2|1,3

σ2|1,3

)
dz2

σ2|1,3

]
φ (z1, z2; ρ13) dz1dz3.

(51)

By performing the change of variable:

z =
z2 − µ2|1,3

σ2|1,3
, (52)

the integral with respect to z2 simplifies to:

µ2|1,3Φ

 β>2 x2

σ + µ2|1,3

σ2|1,3

+ σ2|1,3φ

 β>2 x2

σ + µ2|1,3

σ2|1,3

 . (53)

By inserting this result in formula (51), we finally obtain:

E(y) =
β>2 x2

Φ3
Φ

(
β>1 x1,

β>2 x2

σ
, β>3 x3; ρ12, ρ13, ρ23

)
+

σ

Φ3

∫ ∞
−β>1 x1

∫ ∞
−β>3 x3

[
(%1z1 + %3z3) Φ

(
β>2 x2

σ + %1z1 + %3z3

σ2|1,3

)

+ σ2|1,3φ

(
β>2 x2
σ

+%1z1+%3z3
σ2|1,3

)]
φ (z1, z3; ρ13) dz1dz3.

(54)
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• For trivariate hurdle model 101, we proceed as for hurdle model 111 by first substituting
the joint normal density function (13) by the joint normal/log-normal density function
(17), then by performing the change of variables:

z1 = y∗1 − β>1 x1

z2 =
ln (Φ3y)− β>2 x2

σ

z3 = y∗3 − β>3 x3

(55)

This leads to the following expression of the expected value of y:

E(y) =

∫ ∞
−β>1 x1

∫ ∞
−∞

∫ ∞
−β>3 x3

exp{β>2 x2 + σz2}
Φ3

×φ (z1, z2, z3; ρ12, ρ13, ρ23) dz1dz2dz3 =
exp{β>2 x2}

Φ3

×
∫ ∞
−β>1 x1

∫ ∞
−β>3 x3

[∫ ∞
−∞

exp{σz2}φ
(
z2 − µ2|1,3

σ2|1,3

)
dz2

σ2|1,3

]
φ (z1, z3; ρ13) dz1dz3

(56)

obtained by factorising the density function of z1, z2 and z3 as the product of the
marginal density function of z1 and z3 times the density function of z2|z1, z3.
By performing the change of variable (52), the integral with respect to z2 simplifies to:

∫ ∞
−∞

exp{σ(µ2|1,3 + σ2|1,3z)}φ(z)dz = exp

{
σµ2|1,3 +

σ2σ2
2|1,3

2

}
. (57)

By inserting this result in formula (56), we finally obtain:

E(y) =

exp

{
β>2 x2 +

σ2σ2
2|1,3
2

}
Φ3

×
∫ ∞
−β>1 x1

∫ ∞
−β>3 x3

exp{σ (%1z1 + %3z3)}φ (z1, z3; ρ13) dz1dz3.

(58)

• E(y) for bivariate hurdle models 011 and 110 and univariate hurdle model 010 can
be derived from that of trivariate model 111 by eliminating hurdles 1, 3, 1 and 3,
respectively. Likewise, the expectation of y for bivariate hurdle models 100 and 001

can be derived from that of trivariate hurdle model 101 by eliminating hurdles 1 and 3,
respectively. Corresponding formulas of E(y|y > 0) = E(y)/P (y > 0) for all this special
cases implemented in R are presented in Table 2, using the following notations:

Ψ2|1 = ρ12φ1Φ

(
β>2 x2

σ − ρ12β
>
1 x1√

1− ρ2
12

)
+ φ2Φ

(
β>1 x1 − ρ12

β>2 x2

σ√
1− ρ2

12

)
,

Ψ2|3 = ρ23φ3Φ

(
β>2 x2

σ − ρ23β
>
3 x3√

1− ρ2
23

)
+ φ2Φ

(
β>3 x3 − ρ23

β>2 x2

σ√
1− ρ2

23

)
,



26 Multiple Hurdle Tobit Models in R: The mhurdle Package

where φ1 = φ(β>1 x1), φ2

(
β>2 x2

σ

)
and φ3 = φ(β>3 x3).

Note that formulas of E(y|y > 0) for dependent trivariate hurdle models presented in
Table 2 are obtained by using closed forms of the following integrals :

∫ ∞
−β>x

[
ρzΦ

(
β>2 x2

σ + ρz√
1− ρ2

)
+
√

1− ρ2φ

(
β>2 x2

σ + ρz√
1− ρ2

)]
φ(z)dz

= ρφ
(
β>x

)
Φ

(
β>2 x2

σ − ρβ>x√
1− ρ2

)
+ φ

(
β>2 x2

σ

)
Φ

(
β>x− ρβ

>
2 x2

σ√
1− ρ2

)
,

∫ ∞
−β>x

exp {σρz}φ(z)dz = exp

{
σ2ρ2

2

}
Φ
(
β>x+ σρ

)
.

Denoting by ŷi the fitted values of yi obtained by estimating the best mean-square error
predictor of yi, namely E(yi), with the maximum likelihood estimate of model parameters,
we define a pseudo coefficient of determination for a multiple hurdle model using the following
formula:

R2 = 1− RSS

TSS
, (59)

with RSS =
∑

(yi − ŷi)2 the residual sum of squares and TSS =
∑

(yi − ŷ0)2 the total sum
of squares, where ŷ0 denotes the maximum likelihood estimate of E(yi) in the multiple hurdle
model without covariates (intercept-only model 7). Note that this goodness of fit measure
cannot exceed one but can be negative, as a consequence of the non linearity of E(yi) with
respect to the parameters.

The extension of the McFadden likelihood ratio index for qualitative response models to
multiple hurdle models is straightforwardly obtained by computing this index formula:

ρ2 = 1− lnL(θ̂)

lnL(α̂)
=

lnL(α̂)− lnL(θ̂)

lnL(α̂)
, (60)

using the maximised log-likelihood functions of a multiple hurdle model with covariates,
lnL(θ̂), and without covariates, lnL(α̂), respectively. This goodness of fit measure takes
values within zero and one and, as it can be easily inferred from the above second expression
of ρ2, it measures the relative increase of the maximised log-likelihood function due to the
use of explanatory variables with respect to the maximised log-likelihood function of a naive
intercept-only model.

Model selection deals with the problem of discriminating between alternative model specifi-
cations used to explain the same dependent variable, with the purpose of finding the one best
suited to explain the sample of observations at hand. This decision problem can be tackled
from the point of view of the model specification achieving the best in-sample fit.

7For multiple hurdle models involving many intercepts, the estimation of a specification without covariates
may face serious numerical problems. If the mhurdle software fails to provide such an estimate, the total sum
of squares TSS is computed by substituting the sample average of y for ŷ0.



Fabrizio Carlevaro, Yves Croissant, Stéphane Hoareau 27

This selection criterion is easy to apply as it consists in comparing one of the above defined
measures of fit, computed for the competing model specifications, after adjusting them for the
loss of sample degrees of freedom due to model parametrisation. Indeed, the value of these
measures of fit can be improved by increasing model parametrisation, in particular when the
parameter estimates are obtained by optimising a criteria functionally related to the selected
measure of fit, as is the case when using the ρ2 fit measure with a maximum likelihood
estimate. Consequently, a penalty that increases with the number of model parameters should
be added to the R2 and ρ2 fit measures to trade off goodness of fit improvements with
parameter parsimony losses.

To define an adjusted pseudo coefficient of determination, we rely on Theil (1971)’s correction
of R2 in a linear regression model, defined by

R̄2 = 1− n−K0

n−K
RSS

TSS
, (61)

where K and K0 stand for the number of parameters of the multiple hurdle model with
covariates and without covariates, respectively 8. Therefore, choosing the model specification
with the largest R̄2 is equivalent to choosing the model specification with the smallest model
residual variance estimate: s2 = RSS

n−K .

To define an adjusted likelihood ratio index, we replace in this goodness of fit measure ρ2

the log-likelihood criterion with the Akaike information criterion AIC = −2 lnL(θ̂) + 2K.
Therefore, choosing the model specification with the largest

ρ̄2 = 1− lnL(θ̂)−K
lnL(α̂)−K0

(62)

is equivalent to choosing the model specification that minimises the Akaike (1973) predictor
of the Kullback-Leibler Information Criterion (KLIC). This criterion measures the distance
between the conditional density function f(y|x; θ) of a possibly misspecified parametric model
and that of the true unknown model, denoted by h(y|x). It is defined by the following formula:

KLIC = E

[
ln

(
h(y|x)

f(y|x; θ∗)

)]
=

∫
ln

(
h(y|x)

f(y|x; θ∗)

)
dH(y, x), (63)

where H(y, x) denotes the distribution function of the true joint distribution of (y, x) and θ∗
the probability limit, with respect to H(y, x), of θ̂ the so called quasi-maximum likelihood
estimator obtained by applying the maximum likelihood when f(y|x; θ) is misspecified.

3.3. Model selection using Vuong tests

Model selection can also be tackled from the point of view of the model specification that is
favoured in a formal test comparing two model alternatives.

This second model selection criterion relies on the use of a test proposed by Vuong (1989).
According to the rationale of this test, the ”best” parametric model specification among a

8When the mhurdle software fails to provide the parameter estimates of the intercept-only model and the
total sum of squares TSS is computed by substituting the sample average of y for ŷ0, K0 is set equal to 1.
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collection of competing specifications is the one that minimises the KLIC criterion or, equiv-
alently, the specification for which the quantity:

E[ln f(y|x; θ∗)] =

∫
ln f(y|x; θ∗)dH(y, x) (64)

is the largest. Therefore, given two competing conditional models with density functions
f(y|x; θ) and g(y|x;π) and parameter vectors θ and π of size K and L, respectively, Vuong
suggests to discriminate between these models by testing the null hypothesis:

H0 : E[ln f(y|x; θ∗)] = E[ln g(y|x;π∗)]⇐⇒ E

[
ln
f(y|x; θ∗)

g(y|x;π∗)

]
= 0,

meaning that the two models are equivalent, against:

Hf : E[ln f(y|x; θ∗)] > E[ln g(y|x;π∗)]⇐⇒ E

[
ln
f(y|x; θ∗)

g(y|x;π∗)

]
> 0,

meaning that specification f(y|x; θ) is better than g(y|x;π), or against:

Hg : E[ln f(y|x; θ∗)] < E[ln g(y|x;π∗)]⇐⇒ E

[
ln
f(y|x; θ∗)

g(y|x;π∗)

]
< 0,

meaning that specification g(y|x;π) is better than f(y|x; θ).

The quantity E[ln f(y|x; θ∗)] is unknown but it can be consistently estimated, under some reg-
ularity conditions, by 1/n times the log-likelihood evaluated at the quasi-maximum likelihood
estimator. Hence 1/n times the log-likelihood ratio (LR) statistic

LR(θ̂, π̂) =
n∑
i=1

ln
f(yi|xi; θ̂)
g(yi|xi; π̂)

(65)

is a consistent estimator of E
[
ln f(y|x;θ∗)

g(y|x;π∗)

]
. Therefore, an obvious test of H0 consists in

verifying whether the LR statistic differs from zero. The distribution of this statistic can be
worked out even when the true model is unknown, as the quasi-maximum likelihood estimators
θ̂ and π̂ converge in probability to the pseudo-true values θ∗ and π∗, respectively, and have
asymptotic normal distributions centred on these pseudo-true values.

The resulting distribution of LR(θ̂, π̂) depends on the relation linking the two competing mod-
els. To this purpose, Vuong differentiates among three types of competing models, namely:
nested, strictly non nested and overlapping.

A parametric model Gπ defined by the conditional density function g(y|x;π) is said to be
nested in parametric model Fθ with conditional density function f(y|x; θ), if and only if any
conditional density function of Gπ is equal to a conditional density function of Fθ almost
everywhere (disregarding any zero probability sub-set of (y, x) values, with respect to the
true distribution function H(y, x)). This means that we can write a parametric constraint in
the form θ = T (π), allowing to express model Gπ as a particular case of model Fθ. Within
our multiple hurdle special models this is the case when comparing two specifications differing
only with respect to the presence or the absence of correlated disturbances. For these models,
it is necessarily the case that f(y|x; θ∗) ≡ g(y|x;π∗). Therefore H0 is tested against Hf .
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If model Fθ is misspecified, it has been shown by Vuong that:

• under H0, the quantity 2LR(θ̂, π̂) converges in distribution towards a weighted sum of
K + L iid χ2(1) random variables, where the weights are the K + L almost surely real
and non negative eigenvalues of the following (K + L)× (K + L) matrix:

W =

[
−BfA−1

f −BfgA−1
g

B>fgA
−1
f BgA

−1
g

]
,

where

Af = E

(
∂2 ln f(y|x; θ∗)

∂θ∂θ>

)
, Ag = E

(
∂2 ln g(y|x;π∗)

∂π∂π>

)
,

Bf = E

(
∂ ln f(y|x; θ∗)

∂θ

∂ ln f(y|x; θ∗)

∂θ>

)
, Bg = E

(
∂ ln g(y|x;π∗)

∂π

∂ ln g(y|x;π∗)

∂π>

)
,

Bfg = E

(
∂ ln f(y|x; θ∗)

∂θ

∂ ln g(y|x;π∗)

∂π>

)
.

To simplify the computation of this limiting distribution, one can alternatively use the
weighted sum of K iid χ2(1) random variables, where the weights are the K almost
surely real and non negative eigenvalues of the following smaller K ×K matrix:

W = Bf

[
DA−1

g D> −A−1
f

]
,

where D = ∂T (π∗)
∂π>

.

• under Hf , the same statistic converge almost surely towards +∞.

Performing this standard LR test for nested models, requires to replace the theoretical ma-
trices W and W by a consistent estimator. Such an estimator is obtained by substituting
matrices Af , Ag, Bf , Bg and Bfg for their sample analogue:

Âf =
1

n

n∑
i=1

∂2 ln f(yi|xi; θ̂)
∂θ∂θ>

, Âg =
1

n

n∑
i=1

∂2 ln g(yi|xi; π̂)

∂π∂π>
,

B̂f =
1

n

n∑
i=1

∂ ln f(yi|xi; θ̂)
∂θ

∂ ln f(yi|xi; θ̂)
∂θ>

, B̂g =
1

n

n∑
i=1

∂ ln g(yi|xi; θ̂)
∂θ

∂ ln g(yi|xi; θ̂)
∂θ>

,

B̂fg =
1

n

n∑
i=1

∂ ln f(yi|xi; θ̂)
∂θ

∂ ln g(yi|xi; θ̂)
∂θ>

and D for D̂ = ∂T (π̂)/∂π>.

The density function of this asymptotic test statistic has not been worked out analytically.
Therefore, we compute it by simulation.
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Hence, for a test with critical value c, H0 is rejected in favour of Hf if 2LR(θ̂, π̂) > c or if the

p-value associated to the observed value of 2LR(θ̂, π̂) is less than the significance level of the
test.

Note that, if model Fθ is correctly specified, the asymptotic distribution of the LR statistic
is, as expected, a χ2 random variable with K − L degrees of freedom.

Two parametric models Fθ and Gπ defined by conditional distribution functions f(y|x; θ)
and g(y|x;π) are said to be strictly non-nested, if and only if no conditional distribution
function of model Fθ is equal to a conditional distribution function of Gπ almost everywhere,
and conversely. Within multiple hurdle special models this is the case when comparing two
specifications differing with respect either to the censoring mechanisms in effect or to the
functional form of the desired consumption equation. For these models, it is necessarily the
case that f(y|x; θ∗) 6= g(y|x;π∗) implying that both models are misspecified under H0.

For such strictly non-nested models, Vuong has shown that:

• under H0, the quantity n−1/2LR(θ̂, π̂) converges in distribution towards a normal ran-
dom variable with zero expectation and variance:

ω2 = V

(
ln
f(y|x; θ∗)

g(y|x;π∗)

)
computed with respect to the distribution function of the true joint distribution of (y, x).

• under Hf , the same statistic converge almost surely towards +∞.

• under Hg, the same statistic converge almost surely towards −∞.

Hence, H0 is tested against Hf or Hg using the standardised LR statistic:

TLR =
LR(θ̂, π̂)√

nω̂
, (66)

where ω̂2 denotes the following strongly consistent estimator for ω2:

ω̂2 =
1

n

n∑
i=1

(
ln
f(yi|xi; θ̂)
g(yi|xi; π̂)

)2

−

(
1

n

n∑
i=1

ln
f(yi|xi; θ̂)
g(yi|xi; π̂)

)2

.

As a consequence, for a test with critical value c, H0 is rejected in favour of Hf if TLR > c
or if the p-value associated to the observed value of TLR in less than the significance level of
the test. Conversely, H0 is rejected in favour of Hg if TLR < −c or if the p-value associated
to the observed value of |TLR| in less than the significance level of the test.

Note that, if one of models Fθ or Gπ is assumed to be correctly specified, the Cox (1961,
1962) LR test of non nested models needs to be used. Because this test is computationally
awkward to implement and not really one of model selection, as it can lead to reject both
competing models, it has not been programmed in mhurdle.

Two parametric models Fθ and Gπ defined by conditional distribution functions f(y|x; θ) and
g(y|x;π) are said to be overlapping, if and only if part of the conditional distribution function
of model Fθ is equal to the conditional distribution function of Gπ but none of these models
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is nested in the other. Within multiple hurdle special models this is the case when comparing
two specifications differing only with respect to the covariates taken into consideration, some
of them being common to both models and others specific. For these models it is not clear
a priori as to whether or not f(y|x; θ∗) = g(y|x;π∗) almost everywhere, except if we know a
priori that at least one of the two competing models is correctly specified. As a consequence,
the form of the asymptotic distribution of LR(θ̂, π̂) under H0 is unknown, which prevents
from performing a model selection test based on this statistic.

In the general case where both competing models are wrongly specified, Vuong suggests a
sequential procedure which consists in testing first whether or not the variance ω2 equals zero
(since f(y|x; θ∗) = g(y|x;π∗) almost everywhere if and only if ω2 = 0) and then, according to
the outcome of this test, in using the appropriate asymptotic LR(θ̂, π̂) distribution to perform
the model selection test.

To test Hω
0 : ω2 = 0 against Hω

A : ω2 6= 0, Vuong suggests to use, as a test statistic, the above
defined strongly consistent estimator for ω2, ω̂2, and proves that:

• under Hω
0 , the quantity nω̂2 converges in distribution towards the same limiting dis-

tribution like that of statistic 2LR(θ̂, π̂) when used for discriminating two misspecified
nested models.

• under Hω
A, the same statistic converge almost surely towards +∞.

Therefore, performing this variance test requires to compute the eigenvalues of a consistent
estimate of matrix W or W , and derive by simulation the density function of the corresponding
weighted sum of iid χ2(1) random variables.

Hence, for a test with critical value c, Hω
0 is rejected in favour of Hω

A if nω̂2 > c or if the
p-value associated to the observed value of nω̂2 is less than the significance level of the test.

Note, that an asymptotically equivalent test is obtained by replacing in statistics nω̂2, ω̂2 by:

ω̃2 =
1

n

n∑
i=1

(
ln
f(yi|xi; θ̂)
g(yi|xi; π̂)

)2

.

The second step in discriminating two overlapping models depends on the outcome of the
variance test.

• If Hω
0 is not rejected, one should conclude that the two models cannot be discriminated

given the data, since assuming ω2 = 0 implies that H0 means that the two models are
equivalent.

• If Hω
0 is rejected, the test of H0 against Hf or Hg must be carried out using the

standardised LR statistic TLR, as for discriminating between two strictly non-nested
models. Indeed, H0 is still possible when ω2 6= 0. Note, that this sequential procedure
of testing H0 against Hf or Hg has a significance level bounded above by the maximum
of the significance levels used for performing the variance and the standardised LR tests.

Finally, if one of the two competing models is supposed to be correctly specified, then the two
models are equivalent if and only if the other model is correctly specified and if and only if
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the conditional density functions of the two models are identical almost everywhere. In this
case we can bypass the variance test and directly construct a model selection test based on
the 2LR(θ̂, π̂) test statistic used for discriminating between two nested models.

4. Software rationale

There are three important issues to be addressed to correctly implement in R the modelling
strategy described in the previous sections. The first one is to provide a good interface
to describe the model to be estimated. The second one is to find good starting values for
computing model estimates. The third one is to have flexible optimisation tools for likelihood
maximisation.

4.1. Model syntax

In R, the model to be estimated is usually described using formula objects, the left-hand side
denoting the censored dependent variable y and the right-hand side the functional relation
explaining y as a function of covariates. For example, y ~ x1 + x2 * x3 indicates that y

linearly depends on variables x1, x2, x3 and on the interaction term x2 times x3.

For the models implemented in mhurdle, four kinds of covariates should be specified: those
of

• the good selection equation (hurdle 1) denoted x1,

• the desired consumption equation (hurdle 2), denoted x2,

• the purchasing equation (hurdle 3), denoted x3,

• the variance equation, denoted x4.

To define a model with several kinds of covariates, a general solution is given by the Formula
package developed by Zeileis and Croissant (2010), which provides extended formula objects.
To define a model where y is the censored dependent variable, x11 and x12 two covariates for
the good selection equation, x21 and x22 two covariates for the desired consumption equation,
and x31 and x32 two covariates for the purchasing equation, we use the following commands
:

R> library("Formula")

R> f <- Formula(y ~ x11 + x12 | x21 + x22 | x31 + x32)

4.2. Starting values and optimisation

For the models we consider, the log-likelihood function will be, in general, not concave. More-
over, this kind of models are highly non linear with respect to parameters, and therefore
difficult to estimate. For these reasons, the question of finding good starting values for the
iterative computation of parameter estimates is crucial.

As a less computer intensive alternative to maximum likelihood estimation, Heckman (1976)
has suggested a two step estimation procedure based on a respecification of the censored
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variable linear regression model, sometimes called “Heckit” model, avoiding inconsistency of
the ordinary least-squares estimator. This two step estimator is consistent but inefficient. It
is implemented in package sampleSelection (Toomet and Henningsen 2008).

According to Carlevaro, Croissant, and Hoareau (2008) experience in applying this estimation
procedure to double hurdle models, this approach doesn’t seem to work well with correlated
hurdle models. Indeed, except for the very special case of models 100, 010 and 001, the
probability of observing a censored purchase is not that of a simple probit model (see Table
2).

As noted previously, for uncorrelated single hurdle models, the estimation may be performed
in a sequence of two simple estimations, namely the maximum likelihood estimation of a
standard dichotomous probit model, followed by the ordinary least-squares estimation of a
linear, log-linear or linear-truncated regression model. In the last case, package truncreg
(Croissant 2009) is used.

Two kinds of algorithms are currently used for maximum likelihood estimation. The first kind
of algorithms can be called “Newton-like” methods. With these algorithms, at each iteration,
the Hessian matrix of the log-likelihood is computed, using either the second derivatives of
the log-likelihood (Newton-Raphson method) or the outer product of the gradient (Berndt,
Hall, Hall, Hausman or bhhh method). This approach is very powerful if the log-likelihood
is well-behaved, but it may perform poorly otherwise and fail after a few iterations.

The second algorithm, called Broyden, Fletcher, Goldfarb, Shanno or bfgs method, updates
at each iteration an estimate of the Hessian matrix of the log-likelihood. It is often more
robust and may perform better in cases where the formers don’t work.

Two optimisation functions are included in core R: nlm, which uses the Newton-Raphson
method, and optim , which uses the bfgs method (among others). The recently developed
maxLik package by Toomet and Henningsen (2012) provides a unified framework. With a
unified interface, all the previously described methods are available.

The behaviour of maxLik can be controlled by the user using mhurdle arguments like print.level
(from 0-silent to 2-verbal), iterlim (the maximum number of iterations), methods (the
method used, one of "nr", "bhhh" or "bfgs") that are passed to maxLik.

Some models require the computation of the bivariate normal cumulative density function.
We use the pbivnorm package (code by Alan Genz. R code by Brenton Kenkel and based on
Adelchi Azzalini’s ’mnormt’ package. 2012) which provides a vectorised (and therefore fast
and convenient) function to compute the bivariate normal cdf.

5. Examples

The package is loaded using:

R> library("mhurdle")

To illustrate the use of mhurdle, we use one surveys conducted by the Bureau of Labour
Statistics of the U.S. Department of Labour, called the ”Interview Survey”. Data from 25813
households on all expenditures are collected, on a quarterly basis. The micro-data files are
publicly available on the website of the Bureau of Labour Statistics, and may be down-
loaded and used without permission. We use a small subset of 1000 randomly selected house-
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holds. The total expenditure is divided in 14 main chapters (food, alcool, housing, apparel,
transport, health, entertainment, personal care, reading, eduction, tobacco, miscellanous ex-
penditures, cash contributions and insurance) and we also report expenditures on fees and
admissions (called shows) which is part of the entertainment chapter and trip expenditures
(called vacations on the data set).

All the expenditures are in tousands of USD, measured on an annual basis and are divided
by the number of consumption units (obtained by counting for one the first adult of the
household, 0.7 the subsequent adults and 0.5 every other person aged under 18).

R> data("Interview", package = "mhurdle")

R> head(Interview, 3)

month size cu income linc linc2 smsa sex race hispanic educ

1 5 1 1.0 13.37900 -1.2753120 1.62642081 yes female white yes 7

2 4 4 2.5 72.40440 0.4132687 0.17079103 yes female white no 13

3 8 2 1.7 55.80412 0.1528493 0.02336291 yes female white no 12

age age2 car food alcool housing apparel transport health

1 37 1369 0 1.733333 0.0000000 2.548000 0.0000000 0.000000 0.000000

2 -11 121 1 5.216000 0.0000000 8.857600 0.2080000 2.667200 2.600000

3 31 961 3 3.568628 0.5835294 6.316863 0.5976471 2.286275 2.257882

entertainment perscare reading education tobacco miscexp cashcont

1 0.000 0.0000000 0.0000000 0 0 0.00000000 0.0000000

2 1.344 0.0640000 0.0000000 0 0 0.00000000 0.0000000

3 0.680 0.4941176 0.2988235 0 0 0.09411765 0.8117647

insurance shows foodaway vacations

1 0.0000 0.0000000 0.000000 0

2 8.8912 0.0800000 3.136000 0

3 0.0000 0.1176471 1.223529 0

R> mean(Interview$shows == 0)

[1] 0.694

R> max(Interview$shows)

[1] 6.844706

The covariates are :

income the anual net income by consumption unit,

smsa does the household live in a SMSA (yes or no),

age the age of the reference person of the household,

educ the number of year of education of the reference person of the household,

sex the sex of the reference person of the household (male and female),
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size the number of persons in the household,

month the month of the interview (between 1 and 12),

5.1. Estimation

The estimation is performed using the mhurdle function, which has the following arguments:

formula: a formula describing the model to estimate. It should have between two and four
parts on the right-hand side specifying, in the first part, the good selection equation
covariates, in the second part, the desired consumption equation covariates, in the third
part, the purchasing equation covariates and in the fourth part, the covariates of the
variance equation.

data: a data frame containing the observations of the variables present in the formula.

subset, weights, na.action: these are arguments passed on to the model.frame function
in order to extract the data suitable for the model. These arguments are present in the
lm function and in most of the estimation functions.

start: the starting values. If NULL, the starting values are computed as described in section
4.2.

dist: this argument indicates the functional form of the desired consumption equation, which
may be either log-normal "ln" (the default), two-parameters log-normal "ln2", normal
"n", truncated normal "tn", Box-Cox "bc", two-parameters Box-Cox "bc2" or inverse
Hyperbolic Sine "ihs",

scaled: if TRUE, the dependent variable is divided by the geometric mean of the positive
values,

corr: this boolean argument indicates whether the disturbance of the different equations are
correlated, the default value is FALSE,

robust: if TRUE, transformations of some parameters are used, so that they lie in the required
range (positive values for the standard deviation and for the position parameter, between
-1 and +1 for the coefficients of correlation),

... further arguments that are passed to the optimisation function maxLik.

One equation models

We start with models that only contain the consumption equation. In this case, the only
source of null consumption is the lack of ressources. In this case, the distribution of y∗ must
admit negative values, this is the case for the two-parameters box-cox normal distribution,
the log-normal distribution with a position parameter and the normal distribution (this later
case corresponds to the standard tobit model). We use the expenditures on vacation as an
exemple and the results are presented in table 3, using the texreg library.
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normal tobit log-normal tobit box-cox tobit

h2.(Intercept) −12.99∗∗∗ −2.08 −2.30∗∗

(1.54) (2.44) (0.72)
h2.I(car > 0)TRUE 1.25 0.24 0.26

(1.04) (0.23) (0.18)
h2.size 1.05∗∗ 0.20 0.21∗∗

(0.40) (0.16) (0.08)
h2.linc 5.35∗∗∗ 0.91 0.97∗∗∗

(0.74) (0.69) (0.21)
h2.linc2 0.23 −0.10 −0.11

(0.68) (0.16) (0.15)
h2.age −0.01 −0.00 −0.00

(0.03) (0.01) (0.01)
h2.age2 0.00 0.00 0.00

(0.00) (0.00) (0.00)
sd.sd 8.65∗∗∗ 1.50 1.60∗∗∗

(0.20) (1.12) (0.29)
tr −0.03

(0.32)
pos 1.05 0.98∗∗

(0.92) (0.31)

Num. obs. 1000 1000 1000
Log Likelihood -758.51 -658.61 -658.62
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 3: Estimation of one-equation models

R> Sn <- mhurdle(vacations ~ 0 | I(car > 0) + size + linc + linc2 + age + age2,

+ Interview, dist = "n", h2 = TRUE, corr = FALSE,

+ method = "bhhh", print.level = 0)

R> Sbc <- update(Sn, dist = "bc")

R> Sln <- update(Sn, dist = "ln")

R> library(texreg)

R> texreg(list(Sn, Sbc, Sln),

+ custom.model.names = c("normal tobit", "log-normal tobit", "box-cox tobit"),

+ caption = "Estimation of one-equation models",

+ label = "tab:oneq", pos = "ht")

Simple selection models

The original independent single hurdle models proposed by Cragg (1971) required the distinct
estimation of two models : a probit to explain the null vs the positive observations and an
estimation on the truncated sample in order to explain the level of consumption of those
who consume the good. This latter estimation can be realised with the hypothesis that the



Fabrizio Carlevaro, Yves Croissant, Stéphane Hoareau 37

distribution of the errors are truncated normal, log-normal or box-cox normal. We use the
expenditure on food-away as an exemple and the results are presented in table 4.

R> Stn <- mhurdle(foodaway ~ size + smsa + age + age2 | linc + linc2, Interview,

+ dist = "n", h2 = FALSE, corr = FALSE, method = "bhhh", print.level = 0)

R> Sbc <- update(Stn, dist = "bc")

R> Sln <- update(Stn, dist = "ln")

The dependent model is easily obtained by setting the corr argument to TRUE. For the log-
normal model, we obtain :

R> Slnd <- update(Sln, corr = TRUE)

R> coef(summary(Slnd), "corr")

Estimate Std. Error t-value Pr(>|t|)

corr -0.8735068 0.03420676 -25.53609 0

The coefficient of correlation between the selection and the consumption is in this case highly
significant.

R> texreg(list(Stn, Sln, Sbc),

+ custom.model.names = c("truncated-normal", "log-normal", "box-cox"),

+ caption = "Estimation of single hurdle selection models",

+ label = "tab:sep", pos = "ht")

P-tobit model

Apparel is a good candidate to illustrate the estimation of a P-tobit model as the infrequency
of purchase is clearly the only source of null expenditure in this case. To explain the probability
of purchasing during the quarter of the survey, we use the month (as expenditures in apparels
can be concentrated on certain periods during the year because of the sales) and the fact that
the household lives in a smsa. No corner solution is allowed as the good is consumed even
for households with low ressources, so we choose a log-normal distribution.

R> ptobit <- mhurdle(apparel ~ 0 | linc + linc2 | factor(month) + smsa,

+ Interview, corr = TRUE, dist = "ln", h2 = FALSE,

+ method = "bhhh")

To illustrate the use of mhurdle, we estimate several models explaining the expenditure on
fees and admission. The expenditure is supposed to depends on income and its square, age
and its square, education, the size of the household and the fact that the household lives
in a smsa. We first estimate a triple hurdle model, using educ and size as covariates for
the selection equation and age and smsa as covariates for the purchasing equation. We use
a two-parameter log-normal distribution and a general structure of correlation between the
errors of the three equations is estimated.
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truncated-normal log-normal box-cox

h1.(Intercept) 0.64∗∗∗ 0.64∗∗∗ 0.64∗∗∗

(0.16) (0.16) (0.16)
h1.size 0.02 0.02 0.02

(0.04) (0.04) (0.04)
h1.smsayes 0.35∗∗ 0.35∗∗ 0.35∗∗

(0.13) (0.13) (0.13)
h1.age −0.01∗ −0.01∗ −0.01∗

(0.00) (0.00) (0.00)
h1.age2 −0.00 −0.00 −0.00

(0.00) (0.00) (0.00)
h2.(Intercept) −19.12∗ 0.12∗∗∗ 0.16∗∗∗

(9.33) (0.04) (0.04)
h2.linc 20.30∗∗ 0.70∗∗∗ 0.72∗∗∗

(7.88) (0.05) (0.04)
h2.linc2 −4.99 −0.01 0.01

(2.59) (0.05) (0.05)
sd.sd 5.86∗∗∗ 0.86∗∗∗ 0.86∗∗∗

(1.23) (0.02) (0.02)
tr 0.08∗∗

(0.03)

Num. obs. 1000 1000 1000
Log Likelihood -1550.64 -1505.17 -1500.78
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4: Estimation of single hurdle selection models
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R> H3D <- mhurdle(shows ~ educ + size | linc + linc2 | age + age2 + smsa,

+ Interview, dist = "ln", h2 = TRUE, corr = TRUE, method = "bhhh")

The independent version of the same model is obtained by setting the corr argument to
FALSE.

R> H3I <- update(H3D, corr = FALSE)

A three equation - two hurdles model is obtained by making the second hurdle ineffective,

R> H2D <- update(H3D, h2 = FALSE)

We then estimate a double-hurdle selection model by using a two-part formula with educ,
size, age and smsa in the first part which describe the selection process:

R> S2D <- mhurdle(shows ~ educ + size + age + age2 + smsa | linc + linc2,

+ Interview, dist = "ln", h2 = TRUE, corr = TRUE, method = "bhhh")

Finaly, we estimate a double-hurdle p-tobit model, all the covariates which were in the first
part of the formula being moved to the third part:

R> P2D <- mhurdle(shows ~ 0 | linc + linc2 | educ + size + age + age2 + smsa,

+ Interview, dist = "ln", h2 = TRUE, corr = TRUE, method = "bhhh")

5.2. Methods

A summary method is provided for mhurdle objects :

R> summary(H3D)

Call:

mhurdle(formula = shows ~ educ + size | linc + linc2 | age +

age2 + smsa, data = Interview, dist = "ln", h2 = TRUE, corr = TRUE,

method = "bhhh")

Frequency of 0: 0.694

BHHH maximisation method

45 iterations, 0h:0m:1s

g'(-H)^-1g = 0.000121

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

h1.(Intercept) -1.51710780 0.61786864 -2.4554 0.014073 *
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h1.educ 0.12270773 0.04100103 2.9928 0.002764 **

h1.size 0.21831543 0.09235265 2.3639 0.018082 *

h2.(Intercept) 0.18925615 0.23700720 0.7985 0.424566

h2.linc 0.70949799 0.08172746 8.6813 < 2.2e-16 ***

h2.linc2 0.09630606 0.05295770 1.8185 0.068981 .

h3.(Intercept) 0.16209936 0.29148871 0.5561 0.578137

h3.age -0.04029869 0.01914732 -2.1047 0.035320 *

h3.age2 0.00088737 0.00062155 1.4277 0.153388

h3.smsayes 0.66856877 0.27613351 2.4212 0.015470 *

sd.sd 0.91141074 0.15295485 5.9587 2.543e-09 ***

corr12 -0.59929329 0.22205211 -2.6989 0.006957 **

corr13 -0.75827415 0.39347672 -1.9271 0.053966 .

corr23 0.30786399 0.32667919 0.9424 0.345986

mu 0.78683766 0.18780995 4.1895 2.795e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -993.03 on 15 Df

R^2 :

Coefficient of determination : -0.084765

Likelihood ratio index : 0.51719

This method displays the percentage of 0 in the sample, the table of parameter estimates,
and two measures of goodness of fit.

coef, vcov, logLik, fitted and predict methods are provided in order to extract part of
the results.

Parameter estimates and the estimated asymptotic variance matrix of maximum likelihood
estimators are extracted using the usual coef and vcov functions. mhurdle object methods
have a second argument indicating which subset has to be returned (the default is to return
all).

R> coef(H3D, "h2")

(Intercept) linc linc2

0.18925615 0.70949799 0.09630606

R> coef(H3D, "h1")

(Intercept) educ size

-1.5171078 0.1227077 0.2183154

R> coef(H3D, "sd")

sd

0.9114107
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R> coef(summary(H3D), "h3")

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.1620993584 0.2914887149 0.5561085 0.57813667

age -0.0402986918 0.0191473160 -2.1046653 0.03532045

age2 0.0008873679 0.0006215521 1.4276645 0.15338845

smsayes 0.6685687685 0.2761335069 2.4211794 0.01547024

R> vcov(H3D, "h3")

(Intercept) age age2 smsayes

(Intercept) 8.496567e-02 -1.671992e-03 3.135901e-05 -3.546625e-02

age -1.671992e-03 3.666197e-04 -1.038823e-05 -2.233757e-03

age2 3.135901e-05 -1.038823e-05 3.863270e-07 6.150671e-05

smsayes -3.546625e-02 -2.233757e-03 6.150671e-05 7.624971e-02

Log-likelihood may be obtained for the estimated model or for a “naive” model, defined as a
model without covariates :

R> logLik(H3D)

'log Lik.' -993.0319 (df=15)

R> logLik(H3D, naive = TRUE)

'log Lik.' -2056.782 (df=4)

Fitted values are obtained using the fitted method. The output is a matrix whose two
columns are the estimated probability of censoring P(y = 0) and the estimated expected
value of an uncensored dependent variable observation E(y|y > 0).

R> head(fitted(H3D))

A predict function is also provided, which returns the same two columns for given values of
the covariates.

R> predict(H3D,

+ newdata = data.frame(

+ comics = c(0, 1, 2),

+ gender = c("female", "female", "male"),

+ age = c(20, 18, 32),

+ educ = c(10, 20, 5),

+ incum = c(4, 8, 2),

+ size = c(2, 1, 3)))
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For model evaluation and selection purposes, goodness of fit measures and Vuong tests de-
scribed in section 3 are provided. These criteria allow to select the most empirically relevant
model specification.

Two goodness of fit measures are provided. The first measure is an extension to limited
dependent variable models of the classical coefficient of determination for linear regression
models. This pseudo coefficient of determination is computed both without (see formula 59)
and with (see formula 61) adjustment for the loss of sample degrees of freedom due to model
parametrisation. The unadjusted coefficient of determination allows to compare the goodness
of fit of model specifications having the same number of parameters, whereas the adjusted
version of this coefficient is suited for comparing model specifications with a different number
of parameters.

R> rsq(H3D, type = "coefdet")

The second measure is an extension to limited dependent variable models of the likelihood
ratio index for qualitative response models. This pseudo coefficient of determination is also
computed both without (see formula 60) and with (see formula 62) adjustment for the loss of
sample degrees of freedom due to model parametrisation, in order to allow model comparisons
with the same or with a different number of parameters.

R> rsq(H3D, type = "lratio", adj = TRUE)

[1] 0.5108499

The Vuong test based on the TLR statistic, as presented in section 3.3 (see formula 66), is also
provided as a criteria for model selection within the family of 8 strictly non-nested models of
Figure 19 :

R> vuongtest(S2D, P2D)

Vuong Test (non-nested)

data: S2D-P2D

z = -2.4301, p-value = 0.007546

According to this outcome, the null hypothesis stating the equivalence between the two models
is rejected in favour of the alternative hypothesis stating that P2D is better than S2D.

Testing the hypothesis of no correlation between the good selection mechanism, the purchas-
ing mechanism and the desired consumption equation can be performed as a Vuong test of
selection between two nested models, differing only with respect to the value of the corre-
lation coefficients, namely the test of the hypothesis H0 : ρ12 = ρ13 = ρ23 = 0, specifying
an independent mhurdle model, against the alternative hypothesis specifying a corresponding
dependent mhurdle model. This test is performed using the log-likelihood ratio (LR) statistic

9Note that Vuong tests for strictly non-nested models can be performed using the vuong function of the
pscl package of Jackman (2012) for glm models and some specific count data models.
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(65). As explained in section 3.3, the critical value or the p-value to be used to perform this
test is not the same depending on the model builder believes or not that his unrestricted
model is correctly specified. In the first case, the p-value is computed using the standard chi
square distribution, whereas in the second case a weighted chi square distribution is used.

R> vuongtest(H3D, H3I, type = 'nested', hyp = TRUE)

Vuong Test (nested)

data: H3D-H3I

chisq = 8.7817, df = 3, p-value = 0.03234

R> vuongtest(H3D, H3I, type = 'nested', hyp = FALSE)

Vuong Test (nested)

data: H3D-H3I

wchisq = 8.7817, sev = 11.798, p-value = 0.44

According to these outcomes, the null hypothesis of zero correlation is rejected if the unre-
stricted model is assumed to be correctly specified and accepted otherwise.

Finally, to illustrate the use of the Vuong test for discriminating between two overlapping
models, we consider a slightly different selection model obtained by removing the age covariate
and adding the sex covariate :

R> S2Db <- mhurdle(shows ~ educ + size + sex + smsa | linc + linc2,

+ Interview, dist = "ln", h2 = TRUE, corr = TRUE, method = "bhhh")

In this case, the Vuong test is performed in two steps. Firstly a test of the null hypothesis
ω2 = 0, meaning that the two models are equivalent, is undertaken.

R> vuongtest(S2D, S2Db, type="overlapping")

Vuong Test (overlapping)

data: S2D-S2Db

wchisq = 14.654, sev = 182.36, p-value = 0.823

The null hypothesis is not rejected.

If one of two overlapping models is assumed to be correctly specified, we can bypass the first
step of this Voung test (the variance test) and proceed as if we had to discriminate between
two nested models.

R> vuongtest(S2D, S2Db, type="overlapping", hyp=TRUE)
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Vuong Test (overlapping)

data: S2D-S2Db

wchisq = 12.534, sev = -11.564, p-value < 2.2e-16

6. Conclusion

mhurdle aims at providing a unified framework allowing to estimate and assess a variety
of extensions of the standard Tobit model particularly suitable for single-equation demand
analysis not currently implemented in R. It explains the presence of a large proportion of
zero observations for a dependent variable by means of up to three censoring mechanisms,
called hurdles. Inspired by the paradigms used for analysing censored household expenditure
data, these hurdles express: (i) a non economic decision mechanism for a good rejection or
selection motivated by ethical, psychological or social considerations; (ii) an economic decision
mechanism for the desired level of consumption of a previously selected good, which can turn
out to be negative leading to a nil consumption; (iii) an economic or non economic decision
mechanism for the time frequency at which the desired quantity of a selected good is bought
or consumed. Unexplained interdependence between latent variables is modelled by assuming
a possible correlation between the random disturbances in the model relations. Despite the
particular area of application from which the above mentioned censoring mechanisms stem,
the practical scope of mhurdle models doesn’t seem to be restricted to empirical demand
analysis.

To provide an operational and efficient statistical framework, mhurdle models are specified
in a fully parametric form allowing statistical estimation and testing within the maximum
likelihood inferential framework. Tools for model evaluation and selection are provided, based
on the use of goodness of fit measure extensions of the classical coefficient of determination
and of the likelihood ratio index of McFadden, as well as on the use of Vuong tests for
nested, strictly non-nested and overlapping model comparison when none, one or both of two
competing models are misspecified.

Tests of mhurdle computing procedures with a wide variety of simulated and observational
data have proved the performance and robustness of mhurdle package. Still, extensions and
improvements of the software are continuing.
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Ph.D. thesis, Faculty of Law and Economics, University of La Réunion.
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Faculté des sciences économiques et sociales
Université de Genève
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BP 7151
F-97715 Saint-Denis Messag Cedex 9
Telephone: +33/262/938446
E-mail: yves.croissant@univ-reunion.fr
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