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1 Introduction

One of R’s most useful features is its interactive interpreter. This makes it very easy to learn and
experiment with R. It allows you to use R like a calculator to perform arithmetic operations, display
data sets, generate plots, and create models.

Before too long, new R users will find a need to perform some operation repeatedly. Perhaps
they want to run a simulation repeatedly in order to find the distribution of the results. Perhaps
they need to execute a function with a variety a different arguments passed to it. Or maybe they
need to create a model for many different data sets.

Repeated executions can be done manually, but it becomes quite tedious to execute repeated
operations, even with the use of command line editing. Fortunately, R is much more than an
interactive calculator. It has its own built-in language that is intended to automate tedious tasks,
such as repeatedly executing R calculations.

R comes with various looping constructs that solve this problem. The for loop is one of the
more common looping constructs, but the repeat and while statements are also quite useful. In
addition, there is the family of “apply” functions, which includes apply, lapply, sapply, eapply,
mapply, rapply, and others.

The foreach package provides a new looping construct for executing R code repeatedly. With
the bewildering variety of existing looping constructs, you may doubt that there is a need for yet
another construct. The main reason for using the foreach package is that it supports parallel
execution, that is, it can execute those repeated operations on multiple processors/cores on your
computer, or on multiple nodes of a cluster. If each operation takes over a minute, and you want to
execute it hundreds of times, the overall runtime can take hours. But using foreach, that operation
can be executed in parallel on hundreds of processors on a cluster, reducing the execution time back
down to minutes.

But parallel execution is not the only reason for using the foreach package. There are other
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reasons that you might choose to use it to execute quick executing operations, as we will see later
in the document.

2 Getting Started

Let’s take a look at a simple example use of the foreach package. Assuming that you have the
foreach package installed, you first need to load it:

> library(foreach)

Note that all of the packages that foreach depends on will be loaded as well.

Now I can use foreach to execute the sqrt function repeatedly, passing it the values 1 through
3, and returning the results in a list, called x1:

> x <- foreach(i=1:3) %do% sqrt(i)

> x

[[1]]

[1] 1

[[2]]

[1] 1.414214

[[3]]

[1] 1.732051

This is a bit odd looking, because it looks vaguely like a for loop, but is implemented using a
binary operator, called %do%. Also, unlike a for loop, it returns a value. This is quite important.
The purpose of this statement is to compute the list of results. Generally, foreach with %do% is
used to execute an R expression repeatedly, and return the results in some data structure or object,
which is a list by default.

You will note in the previous example that we used a variable i as the argument to the sqrt

function. We specified the values of the i variable using a named argument to the foreach function.
We could have called that variable anything we wanted, for example, a, or b. We could also specify
other variables to be used in the R expression, as in the following example:

1Of course, sqrt is a vectorized function, so you would never really do this. But later, we’ll see how to take
advantage of vectorized functions with foreach.
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> x <- foreach(a=1:3, b=rep(10, 3)) %do% (a + b)

> x

[[1]]

[1] 11

[[2]]

[1] 12

[[3]]

[1] 13

Note that parentheses are needed here. We can also use braces:

> x <- foreach(a=1:3, b=rep(10, 3)) %do% {

+ a + b

+ }

> x

[[1]]

[1] 11

[[2]]

[1] 12

[[3]]

[1] 13

We call a and b the iteration variables, since those are the variables that are changing during
the multiple executions. Note that we are iterating over them in parallel, that is, they are both
changing at the same time. In this case, the same number of values are being specified for both
iteration variables, but that need not be the case. If we only supplied two values for b, the result
would be a list of length two, even if we specified a thousand values for a:

> x <- foreach(a=1:1000, b=rep(10, 2)) %do% {

+ a + b

+ }

> x

[[1]]

[1] 11
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[[2]]

[1] 12

Note that you can put multiple statements between the braces, and you can use assignment
statements to save intermediate values of computations. However, if you use an assignment as a
way of communicating between the different executions of your loop, then your code won’t work
correctly in parallel, which we will discuss later.

3 The .combine Option

So far, all of our examples have returned a list of results. This is a good default, since a list can
contain any R object. But sometimes we’d like the results to be returned in a numeric vector, for
example. This can be done by using the .combine option to foreach:

> x <- foreach(i=1:3, .combine='c') %do% exp(i)

> x

[1] 2.718282 7.389056 20.085537

The result is returned as a numeric vector, because the standard R c function is being used to
concatenate all the results. Since the exp function returns numeric values, concatenating them with
the c function will result in a numeric vector of length three.

What if the R expression returns a vector, and we want to combine those vectors into a matrix?
One way to do that is with the cbind function:

> x <- foreach(i=1:4, .combine='cbind') %do% rnorm(4)

> x

result.1 result.2 result.3 result.4

[1,] -0.2631003 0.6669240 -0.6050195 -0.9532493

[2,] 1.1509607 0.2959858 -2.7017901 -0.4413844

[3,] 1.5070645 -0.3037263 -0.7504123 -1.3971771

[4,] -0.8151153 1.0949137 -0.2822434 -0.3578997

This generates four vectors of four random numbers, and combines them by column to produce
a 4 by 4 matrix.

We can also use the "+" or "*" functions to combine our results:
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> x <- foreach(i=1:4, .combine='+') %do% rnorm(4)

> x

[1] 1.483443 -2.187227 -2.118622 -1.876694

You can also specify a user-written function to combine the results. Here’s an example that
throws away the results:

> cfun <- function(a, b) NULL

> x <- foreach(i=1:4, .combine='cfun') %do% rnorm(4)

> x

NULL

Note that this cfun function takes two arguments. The foreach function knows that the func-
tions c, cbind, and rbind take many arguments, and will call them with up to 100 arguments (by
default) in order to improve performance. But if any other function is specified (such as "+"), it
assumes that it only takes two arguments. If the function does allow many arguments, you can
specify that using the .multicombine argument:

> cfun <- function(...) NULL

> x <- foreach(i=1:4, .combine='cfun', .multicombine=TRUE) %do% rnorm(4)

> x

NULL

If you want the combine function to be called with no more than 10 arguments, you can specify
that using the .maxcombine option:

> cfun <- function(...) NULL

> x <- foreach(i=1:4, .combine='cfun', .multicombine=TRUE, .maxcombine=10) %do% rnorm(4)

> x

NULL

The .inorder option is used to specify whether the order in which the arguments are combined is
important. The default value is TRUE, but if the combine function is "+", you could specify .inorder

to be FALSE. Actually, this option is important only when executing the R expression in parallel,
since results are always computed in order when running sequentially. This is not necessarily true
when executing in parallel, however. In fact, if the expressions take very different lengths of time to
execute, the results could be returned in any order. Here’s a contrived example, that executes the
tasks in parallel to demonstrate the difference. The example uses the Sys.sleep function to cause
the earlier tasks to take longer to execute:
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> foreach(i=4:1, .combine='c') %dopar% {

+ Sys.sleep(3 * i)

+ i

+ }

[1] 4 3 2 1

> foreach(i=4:1, .combine='c', .inorder=FALSE) %dopar% {

+ Sys.sleep(3 * i)

+ i

+ }

[1] 4 3 2 1

The results of the first of these two examples is guaranteed to be the vector c(4, 3, 2, 1). The
second example will return the same values, but they will probably be in a different order.

4 Iterators

The values for the iteration variables don’t have to be specified with only vectors or lists. They can
be specified with an iterator, many of which come with the iterators package. An iterator is an
abstract source of data. A vector isn’t itself an iterator, but the foreach function automatically
creates an iterator from a vector, list, matrix, or data frame, for example. You can also create an
iterator from a file or a data base query, which are natural sources of data. The iterators package
supplies a function called irnorm which can return a specified number of random numbers for each
time it is called. For example:

> library(iterators)

> x <- foreach(a=irnorm(4, count=4), .combine='cbind') %do% a

> x

result.1 result.2 result.3 result.4

[1,] -1.3696449 -0.4216739 0.5418848 -0.59086145

[2,] 0.1095264 0.1351470 0.6300390 0.54517893

[3,] 1.2515556 0.7417000 -0.3278136 1.67604343

[4,] 0.4337255 1.4090146 -0.3372301 0.07118343

This becomes useful when dealing with large amounts of data. Iterators allow the data to be
generated on-the-fly, as it is needed by your operations, rather than requiring all of the data to be
generated at the beginning.

For example, let’s say that we want to sum together a thousand random vectors:
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> set.seed(123)

> x <- foreach(a=irnorm(4, count=1000), .combine='+') %do% a

> x

[1] 9.097676 -13.106472 14.076261 19.252750

This uses very little memory, since it is equivalent to the following while loop:

> set.seed(123)

> x <- numeric(4)

> i <- 0

> while (i < 1000) {

+ x <- x + rnorm(4)

+ i <- i + 1

+ }

> x

[1] 9.097676 -13.106472 14.076261 19.252750

This could have been done using the icount function, which generates the values from one to
1000:

> set.seed(123)

> x <- foreach(icount(1000), .combine='+') %do% rnorm(4)

> x

[1] 9.097676 -13.106472 14.076261 19.252750

but sometimes it’s preferable to generate the actual data with the iterator (as we’ll see later
when we execute in parallel).

In addition to introducing the icount function from the iterators package, the last example also
used an unnamed argument to the foreach function. This can be useful when we’re not intending to
generate variable values, but only controlling the number of times that the R expression is executed.

There’s a lot more that I could say about iterators, but for now, let’s move on to parallel
execution.
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5 Parallel Execution

Although foreach can be a useful construct in its own right, the real point of the foreach package
is to do parallel computing. To make any of the previous examples run in parallel, all you have to
do is to replace %do% with %dopar%. But for the kinds of quick running operations that we’ve been
doing, there wouldn’t be much point to executing them in parallel. Running many tiny tasks in
parallel will usually take more time to execute than running them sequentially, and if it already runs
fast, there’s no motivation to make it run faster anyway. But if the operation that we’re executing
in parallel takes a minute or longer, there starts to be some motivation.

5.1 Parallel Random Forest

Let’s take random forest as an example of an operation that can take a while to execute. Let’s say
our inputs are the matrix x, and the factor y:

> x <- matrix(runif(500), 100)

> y <- gl(2, 50)

We’ve already loaded the foreach package, but we’ll also need to load the randomForest package:

> library(randomForest)

If we want want to create a random forest model with a 1000 trees, and our computer has four
cores in it, we can split up the problem into four pieces by executing the randomForest function
four times, with the ntree argument set to 250. Of course, we have to combine the resulting
randomForest objects, but the randomForest package comes with a function called combine that
does just that.

Let’s do that, but first, we’ll do the work sequentially:

> rf <- foreach(ntree=rep(250, 4), .combine=combine) %do%

+ randomForest(x, y, ntree=ntree)

> rf

Call:

randomForest(x = x, y = y, ntree = ntree)

Type of random forest: classification

Number of trees: 1000

No. of variables tried at each split: 2
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To run this in parallel, we need to change %do%, but we also need to use another foreach option
called .packages to tell the foreach package that the R expression needs to have the randomForest
package loaded in order to execute successfully. Here’s the parallel version:

> rf <- foreach(ntree=rep(250, 4), .combine=combine, .packages='randomForest') %dopar%

+ randomForest(x, y, ntree=ntree)

> rf

Call:

randomForest(x = x, y = y, ntree = ntree)

Type of random forest: classification

Number of trees: 1000

No. of variables tried at each split: 2

If you’ve done any parallel computing, particularly on a cluster, you may wonder why I didn’t
have to do anything special to handle x and y. The reason is that the %dopar% function noticed
that those variables were referenced, and that they were defined in the current environment. In that
case %dopar% will automatically export them to the parallel execution workers once, and use them
for all of the expression evaluations for that foreach execution. That is true for functions that are
defined in the current environment as well, but in this case, the function is defined in a package, so
we had to specify the package to load with the .packages option instead.

5.2 Parallel Apply

Now let’s take a look at how to make a parallel version of the standard R apply function. The
apply function is written in R, and although it’s only about 100 lines of code, it’s a bit difficult to
understand on a first reading. However, it all really comes down two for loops, the slightly more
complicated of which looks like:

> applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) {

+ ans <- vector("list", d2)

+ for(i in 1:d2) {

+ tmp <- FUN(array(newX[,i], d.call, dn.call), ...)

+ if(!is.null(tmp)) ans[[i]] <- tmp

+ }

+ ans

+ }

> applyKernel(matrix(1:16, 4), mean, 4, 4)

[[1]]

[1] 2.5
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[[2]]

[1] 6.5

[[3]]

[1] 10.5

[[4]]

[1] 14.5

I’ve turned this into a function, because otherwise, R will complain that I’m using “...” in an
invalid context.

This could be executed using foreach as follows:

> applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) {

+ foreach(i=1:d2) %dopar%

+ FUN(array(newX[,i], d.call, dn.call), ...)

+ }

> applyKernel(matrix(1:16, 4), mean, 4, 4)

[[1]]

[1] 2.5

[[2]]

[1] 6.5

[[3]]

[1] 10.5

[[4]]

[1] 14.5

But this approach will cause the entire newX array to be sent to each of the parallel execution
workers. Since each task needs only one column of the array, we’d like to avoid this extra data
communication.

One way to solve this problem is to use an iterator that iterates over the matrix by column:

> applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) {

+ foreach(x=iter(newX, by='col')) %dopar%

+ FUN(array(x, d.call, dn.call), ...)
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+ }

> applyKernel(matrix(1:16, 4), mean, 4, 4)

[[1]]

[1] 2.5

[[2]]

[1] 6.5

[[3]]

[1] 10.5

[[4]]

[1] 14.5

Now we’re only sending any given column of the matrix to one parallel execution worker. But it
would be even more efficient if we sent the matrix in bigger chunks. To do that, we use a function
called iblkcol that returns an iterator that will return multiple columns of the original matrix.
That means that the R expression will need to execute the user’s function once for every column in
its submatrix.

> applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) {

+ foreach(x=iblkcol(newX, 3), .combine='c', .packages='foreach') %dopar% {

+ foreach(i=1:ncol(x)) %do% FUN(array(x[,i], d.call, dn.call), ...)

+ }

+ }

> applyKernel(matrix(1:16, 4), mean, 4, 4)

[[1]]

[1] 2.5

[[2]]

[1] 6.5

[[3]]

[1] 10.5

[[4]]

[1] 14.5

Note the use of the %do% inside the %dopar% to call the function on the columns of the submatrix
x. Now that we’re using %do% again, it makes sense for the iterator to be an index into the matrix
x, since %do% doesn’t need to copy x the way that %dopar% does.
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6 List Comprehensions

If you’re familar with the Python programming language, it may have occurred to you that the
foreach package provides something that is not too different from Python’s list comprehensions.
In fact, the foreach package also includes a function called when which can prevent some of the
evaluations from happening, very much like the “if” clause in Python’s list comprehensions. For
example, you could filter out negative values of an iterator using when as follows:

> x <- foreach(a=irnorm(1, count=10), .combine='c') %:% when(a >= 0) %do% sqrt(a)

> x

[1] 1.0553077 0.5392918 0.7645755

I won’t say much on this topic, but I can’t help showing how foreach with when can be used to
write a simple quick sort function, in the classic Haskell fashion:

> qsort <- function(x) {

+ n <- length(x)

+ if (n == 0) {

+ x

+ } else {

+ p <- sample(n, 1)

+ smaller <- foreach(y=x[-p], .combine=c) %:% when(y <= x[p]) %do% y

+ larger <- foreach(y=x[-p], .combine=c) %:% when(y > x[p]) %do% y

+ c(qsort(smaller), x[p], qsort(larger))

+ }

+ }

> qsort(runif(12))

[1] 0.04440530 0.05022171 0.11479983 0.21219047 0.34206449 0.36032454

[7] 0.36215118 0.58724007 0.60025134 0.66297912 0.83644167 0.98191059

Not that I recommend this over the standard R sort function. But it’s a pretty interesting
example use of foreach.

7 Conclusion

Much of parallel computing comes to doing three things: splitting the problem into pieces, executing
the pieces in parallel, and combining the results back together. Using the foreach package, the
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iterators help you to split the problem into pieces, the %dopar% function executes the pieces in
parallel, and the specified .combine function puts the results back together. We’ve demonstrated
how simple things can be done in parallel quite easily using the foreach package, and given some
ideas about how more complex problems can be solved. But it’s a fairly new package, and we will
continue to work on ways of making it a more powerful system for doing parallel computing.
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