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Abstract

Estimation of simple descriptive statistics becomes cumbersome, if
the sample cannot be considered to be a (completely) random draw
from the population for which descriptives should be interpreted. This
occurs in weighted samples or clustered samples. The same is true
if the variables of interest stem from a multiple imputation process
and occur, for example, as plausible values. In the estimation of
standard error, we then have to account for two possible sources of
uncertainty: first the uncertainty due to a clustered sample, and sec-
ond the uncertainty due to multiple imputed data. This tutorial de-
scribes some basic analyses to compute descriptives in complex survey
designs using the R package eatRep, which was designed mainly to
supply replications methods in R. Such methods are appropriate to
analyze both clustered and multiple imputed data as well. To date,
the Jackknife-1 (JK1), Jackknife-2 (JK2) and the balanced repeated
replicates (BRR) methods are supported. Some functions overlap with
methods provided in the computer software WesVar (Westat, 2000)—
in this case the package only allows for executing these analyses in R,
which may be easier to implement due to a syntax related interface.
Some methods in WesVar are not completely implemented in eatRep

yet, for example bootstrapping methods. For bootstrapping, alterna-
tive R packages (e.g. boot) may be used. However, some methods are
only implemented in eatRep, for example analyses for nested imputed
data, linear logistic regression models, or trend analyses. Examples
considering the latter one are not yet included in this vignette. The
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examples 6 to 6d from the help page of the defineModel function
in the eatModel package contain some exhaustive demonstrations of
trend analyses.

eatRep heavily relies on the survey package (Lumley, 2012) which
functions has been extended by methods for multiple imputed data.
While the functional principle of survey is based on replication of con-
ventional analyses, eatRep is based on replication of survey analyses
to take multiple imputed data into account.

1 Introduction

In a completely random sample, the mean

x̄ = n−1

n∑
i=1

(xi) (1)

is an unbiased estimate for the corresponding mean

µ = N−1

N∑
i=1

(xi) (2)

of the underlying population the sample was drawn from. This does not hold
for dispersion measures (variance and standard deviation), as the variance in
a sample is always less than the variance in the population the sample was
drawn from. The transformation, however, is very easy made: The variance
in a sample is multiplied by n/(n− 1) to obtain population variance, where
n is the sample size. Based on

σ2 = N−1

N∑
i=1

(xi − µ)2 (3)

for the population with N elements, we apply

s2 = (n− 1)−1

n∑
i=1

(xi − x̄)2 (4)

to estimate population variance from a sample of size n. In a weighted sample,
i.e. if the population weights differ between examinees in the sample, mean
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and variance may be estimated by incorporating these population weights.
(In a completely random sample, these weights equal 1 for each examinee.)

x̄w =
n∑

i=1

(wi

W
xi

)
, (5)

s2w =
n∑

i=1

wi

W − 1
(xi − x̄)2, (6)

where wi is the case weight of the ith person, and W is the sum over all case
weights, i.e. W =

∑
wi. To summary, the crucial point in the estimation

of population variance estimates is the factor n/(n− 1). Unfortunately, this
factor only applies when we sample (conditionally) independently from the
population, as in completely random samples or weighted random samples.
In a clustered sample, however, where schools or classes are sampling units
instead of single persons, the relationship between sample and population
variance is not so clear at all. The reason is that persons within a cluster
(for example pupils in a class) often share a common variance. The sample
variance underestimates the population variance, but more severely than in-
dicated by the factor n/(n−1). To estimate the relationship between sample
and population variance, it is necessary to estimate the variance explained
by the cluster.

Without taking the cluster structure into account, we would not only ob-
tain biased variance estimates but biased standard errors, too (Luke, 2009).
This problem occurs in the same way for estimation of frequency tables,
quantiles or estimates of (linear) regression models. To gain unbiased es-
timates, several replication methods were introduced, which based on the
same principle: To estimate the proportion by which the variance in the
sample is underestimated due to a clustered structure (Lumley, 2004). In the
Jackknife-2 (JK2) procedure this is implemented by reproducing the original
sample to several replicates. In each replicate one clustering unit (e.g. one
class) of only one primary sampling unit (PSU) is replaced by another class,
which therefore occurs two times in the sample. Each replicate is analyzed
if it would have been a completely random sample. Recognize what is to be
expected then: If the variance is explained partially by the clusters, removing
one sampling unit should decrease the variance of the sample slighty. Con-
versely, the point estimates of each replication sample should vary slightly.
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The variance in the point estimates between the replicates is used to esti-
mate the corresponding standard errors. Otherwise, if there is no variance
between clusters, removing one cluster would have no effect on the variance
estimate, and the point estimates between replicates would have no or only
very little variance. In this case replication methods will result in exactly
the same variance estimates and standard errors as they would follow from
conventional analysis. The balanced repeated replicates (BRR) method is
quite similar. The original sample is reproduced to several replicates. In
each replicate one clustering unit (e.g. one class) of each PSU is replaced by
another class, which therefore occurs two times in the sample. Each repli-
cate then is analyzed if it would have been a completely random sample. For
further details, see Rust and Rao (1996).

For the purpose of illustration, assume a simple population mean which
has to be estimated from a completely random sample of N = 1000. To
estimate the standard error of this mean, we may apply a rather laborious
method: to draw 100 samples (with replacement) from our original sample,
each of N = 1000, and compute the mean in each sample. The standard
deviation of the 100 mean estimates is the standard error of the mean. Of
course, this bootstrap method is far to cumbersome, as in a random sample
the standard error can be estimated in a much more easier way. However,
in a clustered sample, an extension of this bootstrap method is appropriate
indeed. Several software (Westat, 2000) and free R packages such as survey

(Lumley, 2012) do allow for several replication methods.

The situation is becoming still more complicated when the variables in
the data to be analysed occur as (multiple) imputed data, for example as
plausible values. Where missing values may cause biased parameters, analy-
ses are conducted with imputed data. Often, the original data which includes
missing values is reproduced several times, whereas the missing entries are
filled with a set of plausible values, which results in several imputed data
sets. To gain unbiased parameter estimates, the analyses are conducted for
each data set separately and pooled afterwards according to Rubin (1987).

If we have both, a clustered sample with multiple imputed data, both
methods have to be combined. This leads to a replication of replications.
Analyses have to be repeated to account for the clustered structure, and the
results of these replications have to be repeated to account for multiple im-
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puted data. In the following, we refer to “cluster replicates” and “imputation
replicates” to differentiate between both.

2 Estimate some population descriptives

In this example, we use some artificial data from the context of educational
research. We may think of a stratified clustered sample of German fourth-
grade primary school students whose reading competencies are measured.
Proficiency estimates obtained from a Item response Theory (IRT) marginal
model are included as plausible values. Each plausible value may be recog-
nized as an imputation of the latent competence construct. The data are
represented in the long format.

> library(eatRep)
> data(reading)
> str(reading)

'data.frame': 27714 obs. of 11 variables:
$ idstud : chr "LandA01010401" "LandA01010401" "LandA01010401" "LandA01010401" ...
$ wgtSTUD : num 60 60 60 60 60 ...
$ sex : Factor w/ 2 levels "female","male": 1 1 1 1 1 1 2 2 2 2 ...
$ country : Factor w/ 3 levels "LandA","LandB",..: 1 1 1 1 1 1 1 1 1 1 ...
$ JKZone : num 40 40 40 40 40 40 40 40 40 40 ...
$ JKrep : num 0 0 0 0 0 0 0 0 0 0 ...
$ income : num 2136 2136 2136 2154 2154 ...
$ imputation: Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2 3 1 ...
$ nest : Factor w/ 2 levels "1","2": 2 2 2 1 1 1 2 2 2 1 ...
$ score : num 636 707 672 631 708 ...
$ passed : num 1 1 1 1 1 1 1 1 1 1 ...

Requesting the data structure provides us with information about the
number and type of variables and the number of examinees. "idstud" is
a person identifier for 4,619 distinct examinees, "wgtSTUD" a person weight,
"sex" denotes each person’s sex, "country" denotes the country the person
comes from. "JKZone" and "JKrep" denote jackknifing variables which con-
tains information about which unit has to be replaced by which other unit
in which replicate of the original data. "income" is each person’s financial
income. The next two variables, "nest" and "imputation" describe the mul-
tiple imputed structure of the data. The data stem from a nested multiple
imputation model with 2 nests and 3 imputations in each nest. The prin-
ciles of nested imputations will be elucidated later; for the moment, we may
content ourself with data from the first nest only, i.e. we split the data and
only cosider cases for which nest = 1. We may think of "score" as the
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the plausible value estimate for the reading competence. Hence, if nest = 1
and imputation = 3, the value in the "score" columns refers to the third
plausible value in the first nest for the reading competence. Please note that
the three imputations of the reading competence occur as one variable in the
data set. Hence, each individual is represented in several rows. This is quite
usual if multiple imputed data is presented in a long format dataset. eatRep

strictly requires the long format. To transform wide-format data frame into
long-format data frames (and vice versa), use the reshape2 package. Please
note further that the dataset does not contain any replicates, only the infor-
mation required for generating them, captured in the "JKZone" and "JKrep"

variables.

2.1 Populations means, standard deviations, variances
and mean differences

We now want to compute the means by each country, considering the clus-
tered structure as well as the multiple imputed data structure. The replicates
do not need to be created separately, as they will be generated in each analy-
sis automatically. Even in large data sets this takes only a few seconds. First
we create a subset which only contains data from the first nest. The analysis
then is conducted with this subset.

> readN1<- subset(reading, nest == 1 )
> means <- jk2.mean(datL = readN1, ID = "idstud", wgt = "wgtSTUD", type = "JK2",
+ PSU = "JKZone", repInd = "JKrep", imp = "imputation", groups = "country",
+ dependent = "score")

1 analyse(s) overall according to: 'group.splits = 1'.
Assume unnested structure with 3 imputations.
Create 81 replicate weights according to JK2 procedure.
...

When applying the jackknife method, the primary sampling unit (PSU)
often is the jackknife zone (JKZone), and the replication indicator often is the
jackknife replicate indicator (JKrep). While the function is operating, some
additional information is displayed on console. First we see that one analysis
is run according to ’group.splits = 1’. We will subsequently exemplify this
enigmatic message. Further, we see that jk2.mean assumes an “unnested”,
i.e. a structure with three imputations. This refers to what we’ve called
“imputation replicates”. The output then speaks about 81 replicate weights
which are created due to 81 distinct jackknifing zones in the JKZone variable.
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This information refers to the “cluster replicates” and implies that the sub-
sequent analysis has to be repeated 81 times for each imputation. Overall,
3 × 81 = 243 analyses are run overall.

In each of the 81 replication samples, one unit (e.g. school) of a certain
jackknifing zone is missing and the weights of the other unit of the same zone
are doubled. The data in all other zones remain unchanged. The analyses
are repeated 81 times, using the same plausible value as the dependent vari-
able. Only the weights vary between the “cluster replicates”: each of the 81
replicates once a time is used as the weighting variable. Each of the 81 anal-
ysis revealed slighty different results. This variation is used to estimate the
sampling variance which then is used to compute the standard error, which is
pooled across 81 “cluster replicates”. When finished, the analysis approaches
the second “imputation replicate” and switches to the second plausible value
which now is used as the dependent variable in 81 analyses due to the 81
“cluster replicates”. After all, three pooled estimates and three pooled stan-
dard errors resulted which differ slightly in each “imputation replicate”. The
three estimates and standard errors are pooled according to Rubin (1987).
To sum up, the pooled results are pooled again to account for both: multiple
imputed data in a clustered sample.

The little dots continuously appearing on the console therefore refer to
“imputation replicates” and are intended to work as a rough progress bar.
Each dot represents one “imputation replication”. When the procedure fin-
ished, the results are pooled in the case of more than one imputation.

> means[c(1:4,19:20),]

group depVar modus parameter coefficient value country
1 LandA score noch_leer Ncases est 1.187318e+05 LandA
2 LandA score noch_leer Ncases se 1.726642e+03 LandA
3 LandB score noch_leer Ncases est 5.398038e+04 LandB
4 LandB score noch_leer Ncases se 1.135124e+03 LandB
19 LandA score noch_leer sd est 1.041336e+02 LandA
20 LandA score noch_leer sd se 2.071056e+00 LandA

The output is a data frame in the long format with 30 rows and at least
six columns. To keep the overview, only a few selected rows are displayed
here. For each subpopulation denoted by the groups statement (here: LandA,
LandB and LandC), each dependent variable (here: only the reading compe-
tence), each parameter (we requested mean, variance, standard deviation and
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sample size or population size) and each coefficient (i.e., the estimate and the
corresponding standard error) the corresponding value is given. However, the
output more suited for further processing than for clear arragement, as the
values are displayed in the long format as well as in exponential notation, for
example. To display the results in the more common wide format, use the
reshape2 package. Alternatively, an abbreviated display of the results is pro-
vided by the dM function (whereas dM stands for “display means”). You may
think of dM as a simple summary function which is not intended for saving
results or further processing as the results are displayed in an abbreviated
(i.e., rounded) manner to offer clear arrangement on console. The dM function
has an additional argument to omit displaying parameters or coefficients you
are not interested at the moment.

> dM(means, omitTerms = c("var", "Ncases","NcasesValid", "meanGroupDiff") )

group depVar mean_est mean_se sd_est sd_se country
1 LandA score 515.749 5.320 104.134 2.071 LandA
2 LandB score 492.773 5.627 103.384 4.199 LandB
3 LandC score 511.811 4.030 103.330 3.080 LandC

Can we see see how the results would change if we do not consider the
clustered structure? Yes, we can. We simply leave out the jackknifing argu-
ments JKZone and JKrep. The type argument then is automatically ignored
likewise, whether specified or not. The results will be pooled only due to
multiple imputed data:

> means <- jk2.mean(datL = readN1, ID = "idstud", wgt = "wgtSTUD",
+ imp = "imputation", groups = "country", dependent = "score")

1 analyse(s) overall according to: 'group.splits = 1'.
Assume unnested structure with 3 imputations.

> dM(means, omitTerms = c("var", "Ncases","NcasesValid", "meanGroupDiff") )

group depVar mean_est mean_se sd_est sd_se country
1 LandA score 515.749 2.665 104.135 NaN LandA
2 LandB score 492.773 3.218 103.386 NaN LandB
3 LandC score 511.811 2.745 103.333 NaN LandC

We see that the means are completely unaffected, but the standard de-
viation now is lower. Consequently, also the standard errors for the mean
estimates are considerably lower. (Standard errors for standard deviations
and for variances are not implemented yet.) If we decide to leave out the
weights as well, we would additionally expect to receive different means now:
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> means <- jk2.mean(datL = readN1, ID = "idstud",
+ imp = "imputation", groups = "country", dependent = "score")

1 analyse(s) overall according to: 'group.splits = 1'.
Assume unnested structure with 3 imputations.

> dM(means, omitTerms = c("var", "Ncases","NcasesValid", "meanGroupDiff") )

group depVar mean_est mean_se sd_est sd_se country
1 LandA score 518.783 2.810 101.224 NaN LandA
2 LandB score 493.894 2.940 101.277 NaN LandB
3 LandC score 514.113 2.775 100.405 NaN LandC

If we additionally decide to ignore the imputations and treat, for exam-
ple, the first plausible value as it would have been a fully observed measure
of the latent competency, the function call would be the following:

> means <- jk2.mean(datL = subset(readN1,imputation==1), ID = "idstud",
+ imp = "imputation", groups = "country", dependent = "score")

1 analyse(s) overall according to: 'group.splits = 1'.
Assume unnested structure with 1 imputations.

> dM(means, omitTerms = c("var", "Ncases","NcasesValid", "meanGroupDiff") )

group depVar mean_est mean_se sd_est country
1 LandA score 520.085 2.506 102.088 LandA
2 LandB score 492.841 2.528 100.262 LandB
3 LandC score 514.523 2.684 99.963 LandC

The estimation of standard errors now no longer accounts for the un-
certainty due to imputation. Furthermore, also the mean estimates have
changed as the estimation now is based only on the first plausible value.

Two possible interesting features should be emphasized in the following.
First assume that we do not have one, but two grouping variables, namely
country and sex. As we have three countries and two sex values, the whole
population is splitted into 3 × 2 = 6 subpopulations for which descriptives
can be requested. If we additionally are interested in the descriptives of
the whole population or the descriptives within each country, but together
for both sex groups, we can use the group.splits argument to particularly
specify the groups we are interested in. Let us consider for example the two
grouping variables country and sex. If group.splits equals 2 (the default,
i.e., the number of grouping variables), descriptives for the 3×2 = 6 subpop-
ulations are computed. If group.splits is 1:2, descriptives for each country
(e.g., across sex) and each sex group (e.g. across countries) additionally are
computed. If group.splits is 0:2, descriptives also for the whole population
(e.g. across sex and countries) are computed.
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The second feature is about mean differences. Suppose you are interested
in sex differences within each country. The grouping variable for which mean
differences should be computed has to be specified in the group.differences.by
argument. For a grouping variable with K levels, all K!/(2!× (K−2)!) com-
parisons are computed. It is important that the group defined in group.differences.by

also has to occur in the groups statement, otherwise group.differences.by

will be ignored. To estimate sex differences within each country, sex and
country have to be part of the groups statement, whereas only sex has to be
used in the group.differences.by argument. Both features are illustrated
in the following example:

> means <- jk2.mean(datL = readN1, ID = "idstud", wgt = "wgtSTUD", type = "JK2",
+ PSU = "JKZone", repInd = "JKrep", imp = "imputation", groups = c("sex","country"),
+ group.splits = c(0,2), group.differences.by = "sex", dependent = "score")

2 analyse(s) overall according to: 'group.splits = 0 2'.
Assume unnested structure with 3 imputations.
Create 81 replicate weights according to JK2 procedure.
......

First note the group.splits is set to c(0,2), which means that we re-
quest descriptives for the whole population and the 6 subpopulations. Conse-
quently, two analyses are conducted. The group.differences.by only applies
for the second analysis, as the gender group is not considered relating to the
whole population analysis. To estimate sex differences across all countries,
only sex has to be part of the group statement, and only sex has to be used
in the group.differences.by argument. The output of the analysis is nearly
the same as we would have omitted the group.differences.by argument, but
now, some additional lines have joined. Again, we may use the dM function
to display the part of the results we are interested in—note that now we do
not exclude meanGroupDiff from the results to summarize:

> dM(means, omitTerms = c("var","Ncases", "NcasesValid"))

group depVar mean_est mean_se meanGroupDiff_est
1 country=LandA____female.vs.male score NA NA -34.529
2 country=LandB____female.vs.male score NA NA -15.307
3 country=LandC____female.vs.male score NA NA -19.671
4 female_LandA score 534.061 6.030 NA
5 female_LandB score 500.607 6.071 NA
6 female_LandC score 521.785 4.849 NA
7 male_LandA score 499.532 6.799 NA
8 male_LandB score 485.300 6.820 NA
9 male_LandC score 502.114 5.623 NA
10 wholeGroup score 508.857 3.675 NA

meanGroupDiff_se sd_est sd_se sex country
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1 7.232 NA NA female.vs.male LandA
2 6.318 NA NA female.vs.male LandB
3 6.872 NA NA female.vs.male LandC
4 NA 99.255 3.744 female LandA
5 NA 98.768 4.378 female LandB
6 NA 100.097 4.166 female LandC
7 NA 105.682 3.866 male LandA
8 NA 107.116 5.420 male LandB
9 NA 105.533 3.596 male LandC
10 NA 104.336 1.702 <NA> <NA>

The output now changed slightly: additionally to several group columns,
one column for group membership is provided. The last line labelled whole-

Group provides results concerning the whole population. The line labelled
male_LandC contains values for the males in LandC. Moreover, three mean
differences were computed. In each federal state, the difference between males
and females is given.

2.2 Frequency tables

Computation of frequency tables works in the same manner as in the exam-
ples mentioned before. Representative for several possible analyses only one
example is given below. Consider the score column we used as the dependent
variable in all previous analyses. Suppose we define a cut score criterion, i.e.
all persons with at least 500 points passed, the other ones failed. We now
may be interested whether the percentage of pass/fails differs between coun-
tries. We henceforward consider the column passed as dependent variable
which is a simple indicator, i.e. a categorical variable with two categories
(computation of frequency tables for variables with more than two categories
are possible, too). Categorical variables are often represented as factors in
R, which is quite straightforward. However, the "passed" variable is of class
numeric. This is an inconsistency which may cause annoying misinterpreta-
tions when such variables are called in functions related to the generalized
linear model like aov(), glm() etc. For the computations of frequency tables
it is not necessary to convert the variable class to factor.

We now are interested in the relative frequencies of this groups in the
different countries and within each country for different groups of gender. As
before, we want to take the cluster structure and multiple imputations into
account. Moreover, we are interested whether the distribution of pass/fail is
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different for males vs. females within specific countries. This is done via a
chi square test. The test statistic is pooled according to the clustered struc-
ture and the imputations. To call for the chi square test, we can use the
group.differences.by argument:

> freqs <- jk2.table( datL = readN1, ID = "idstud", wgt = "wgtSTUD", type = "JK2",
+ PSU = "JKZone", repInd = "JKrep", imp = "imputation", groups = c("country", "sex"),
+ group.differences.by = "sex", dependent = "passed")

1 analyse(s) overall according to: 'group.splits = 2'.
Assume unnested structure with 3 imputations.
Create 81 replicate weights according to JK2 procedure.
...

> dT(freqs, percent = TRUE)

group depVar _est _se country sex
1 LandA_female passed 64.2 2.4 LandA female
2 LandA_male passed 52.2 3.1 LandA male
3 LandB_female passed 50.7 2.7 LandB female
4 LandB_male passed 46.6 2.6 LandB male
5 LandC_female passed 60.0 2.8 LandC female
6 LandC_male passed 54.2 3.2 LandC male
7 country=LandA____female.vs.male passed -12.0 3.1 LandA female.vs.male
8 country=LandB____female.vs.male passed -4.1 3.1 LandB female.vs.male
9 country=LandC____female.vs.male passed -5.7 4.6 LandC female.vs.male

The output is a single data frame in the long format. To make the output
more pleasing to the eye, a short summary function dT is just waiting to do
her job, to summarize the results. The first column refers to the groups spec-
ified in the analysis (in our example: country and sex). The next column
gives the name of the dependent variable (i.e. “passed”). The “labels” of the
dependent variable now are captured in the column names of the summary
table. We see that in country "LandA" 35.8 percent of the females and 47.8
percent of the males do not pass. As in the examples mentioned before,
these analyses may be conducted without considering clustered structure.
See whether the standard errors will change.

The output of the summary function dT does not contain results of the
chi square test. So far, we have to extract the results by ourself:

> options(scipen=4)
> freqs[which(freqs[,"parameter"] == "chiSquareTest"),]

[1] group depVar modus parameter coefficient value
[7] country sex
<0 rows> (or 0-length row.names)
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In each of the three countries a chi square test was conducted separately.
For LandA, the p is <.001, hence the distribution of passed/failed significantly
differs between males and females in LandA. However, LandB and LandC reveals
another picture—there are no sex differences in the rate of pass/fail. As we
have imputed data, we additionallz have an chi square approximation. See
the help page of micombine.chisquare of the miceadds package for further
details.

Let’s devote little attention to the problem of missing values. In the ex-
ample mentioned above, it does not seem plausible to assume missing values
on the "passed" variable. Without available data for an examinee, the case
will be excluded from the data previously. But consider a questionnaire where
pupils are asked about there parents’ profession, for example to compute the
family’s highest socio-economical income (HISEI). Some examinees might
have choosen the option “I don’t know my parents’ profession”. Conceptu-
ally, it makes considerably more sense to define a separate category during
the data preparation, for example “lowest HISEI”, “medium HISEI”, “highest
HISEI”, “unknown HISEI”. Families without valid HISEI information then
will be considered as a separate group in the analyses. Applying jk2.table

then will give frequencies for four groups. However, if the “Dont’t know”
cases appear as “NA” values, it is possible to define them as a distinct cat-
egory for which relative frequencies can be computed. Only for illustration,
let us generate some missing values in some of the imputations and repeat
the analysis subsequently. You will see that a new category has joined to the
output, which is labelled "<NA>".

> readN1[,"passedNA"] <- readN1[,"passed"]
> readN1[ sample(nrow(readN1), 100, FALSE) ,"passedNA"] <- NA
> freqs2<- jk2.table( datL = readN1, ID = "idstud", wgt = "wgtSTUD", type = "JK2",
+ PSU = "JKZone", repInd = "JKrep", imp = "imputation", groups = c("country", "sex"),
+ dependent = "passedNA", separate.missing.indicator = TRUE)

1 analyse(s) overall according to: 'group.splits = 2'.
Assume unnested structure with 3 imputations.
Create 81 replicate weights according to JK2 procedure.
...

> dT(freqs2)

group depVar 0_est 0_se 1_est 1_se <NA>_est <NA>_se country sex
1 LandA_female passedNA 35.6 2.3 63.6 2.3 0.7 0.4 LandA female
2 LandA_male passedNA 47.4 3.1 51.8 3.0 0.8 0.4 LandA male
3 LandB_female passedNA 48.8 2.7 50.4 2.7 0.7 0.3 LandB female
4 LandB_male passedNA 53.1 2.7 46.0 2.6 0.9 0.5 LandB male
5 LandC_female passedNA 39.8 2.7 59.4 2.5 0.7 0.6 LandC female
6 LandC_male passedNA 45.5 3.2 53.9 3.3 0.6 0.3 LandC male
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2.3 Quantiles

Estimation of quantiles for numerical variables is possible using the function
jk2.quantile. All related analyses mentioned up to this point apply in the
same way. Note that these analyses apply for numerical dependent variables.
See the examples in the help file of jk2.quantile().

3 Generalized linear models

Considering multiple imputations and clustered structure in the estimation
of generalized linear models is based on the same principles as aforemen-
tioned. However, some additional comments due to specific characteristics
of regression models have to be made. First we now have another type of
variable—independent variables, which may occur as multiple imputed vari-
ables, too. Second, we have to specify the regression expression, as in glm(),
for example. Third, we will have to specify the kind of regression we propose
to estimate, for example linear or logistic regression. We start with a simple
example using the same data as before.

> mod1 <- jk2.glm(datL = readN1, ID = "idstud", wgt = "wgtSTUD", type = "JK2",
+ PSU = "JKZone", repInd = "JKrep", imp = "imputation", groups = "country",
+ formula = score~sex*income, family=gaussian(link="identity") )

1 analyse(s) overall according to: 'group.splits = 1'.
Assume unnested structure with 3 imputations.
Create 81 replicate weights according to JK2 procedure.
...

As we might have expected, the outcome is a single data frame in the long
format. And long really means long! For our purpose, it may be sufficient
to content ourself with the summary provided by dG. But beforehand let us
consider how many regression analyses are conducted and how many results
we expect to find. The message on the console speaks of about “1 analy-
sis overall” according to two group.splits = 1. But strictly speaking, we
have estimated three regression analyses, as the model is fitted in each group
separately. As we specified one group variable dividing the data into three
distinct groups, for which we instruct jk2.glm() to fit the regression model
separately, we find results of the three models in the results. More specifi-
cally, for each country, an intercept and two regression coefficients according
to gender and INCOME are estimated. The dG function allows us to have a
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look only at a specific result out of the 3 analyses. analyses = 1:2 advises
the function to display the results of the first and second analysis. First we
should consider that each single analyses is characterized by two variables,
the group for which the model is fitted, and the dependent variable. In the
heading we find information about both. The actual regression results are
displayed underneath.

> res <- dG(mod1, analyses = 1:2)

groups: country = LandA
dependent Variable: score

parameter est se t.value p.value
1 (Intercept) -22.476 67.101 -0.335 0.738
2 income 0.276 0.032 8.509 0.000
3 sexmale -171.308 85.158 -2.012 0.044
4 sexmale:income 0.069 0.042 1.667 0.096

R-squared: 0.155; SE(R-squared): 0
Nagelkerkes R-squared: 0.614; SE(Nagelkerkes R-squared): 0
1659 observations and 1655 degrees of freedom.
------------------------------------------------------------------

groups: country = LandB
dependent Variable: score

parameter est se t.value p.value
1 (Intercept) -40.461 86.390 -0.468 0.640
2 income 0.270 0.042 6.447 0.000
3 sexmale -112.739 111.276 -1.013 0.311
4 sexmale:income 0.048 0.055 0.879 0.380

R-squared: 0.113; SE(R-squared): 0
Nagelkerkes R-squared: 0.521; SE(Nagelkerkes R-squared): 0
1573 observations and 1569 degrees of freedom.

Remember what was said about factors in the chapter about frequency
tables: The gender variable now has to be defined explicitly to be of class
factor! Otherwise, albeit gender variable may be coded as 0/1, it would be
treated to be a continuous numeric variable. With only two levels—male and
female—this may have no effect on the results, but consider a factor variable
with three levels, which may be coded 0, 1 and 2. We are interested in two
coefficients which correspond to the effect of level 1 vs. level 0 and the effect
of level 2 vs. level 0. If we refrain from defining the variable to be of class
factor, only one coefficient is computed, and the variable is assumed to be
continuous. What we see additionally is that R implicitly defined the female
group to be the reference—the regression parameter was labelled sexmale.
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Now we try something different. First we define "passed" to be our de-
pendent variable. This leads to a binomial regression model which models
whether the probability of pass/fail depends on certain independent vari-
ables. Secondly, we also use country as a predictor (instead of a grouping
variable). This is to test whether the effect of sex varies across countries.
To simplify displaying the results, we use the same workaround as in the
example before.

> mod1 <- jk2.glm(datL = readN1, ID = "idstud", wgt = "wgtSTUD", type = "JK2",
+ PSU = "JKZone", repInd = "JKrep", imp = "imputation",
+ formula = passed~country*sex, family=binomial(link="logit") )

1 analyse(s) overall according to: 'group.splits = 0'.
Assume unnested structure with 3 imputations.
Create 81 replicate weights according to JK2 procedure.
...

> res <- dG(mod1)

groups:
dependent Variable: passed

parameter est se t.value p.value
1 (Intercept) 0.582 0.103 5.655 0.000
2 countryLandB -0.553 0.148 -3.728 0.000
3 countryLandB:sexmale 0.330 0.155 2.137 0.033
4 countryLandC -0.178 0.163 -1.091 0.275
5 countryLandC:sexmale 0.260 0.223 1.166 0.244
6 sexmale -0.495 0.127 -3.886 0.000

R-squared: 0.014; SE(R-squared): 0
Nagelkerkes R-squared: 0.012; SE(Nagelkerkes R-squared): 0
4619 observations and 4613 degrees of freedom.

Inspecting the output, we found that the probability of success signifi-
cantly depends on the country an examinee stems from and on an examinee’s
sex. The probability of passing the test is significantly lower for males and
for examinees who stem from "LandB". Examinees who stem from "LandC" do
not significanty differ in their probability of passing the test from examinees
who stem from the reference country, "LandA". Moreover, the disadvantage
of boys is not consistent across countries: In "LandB", this difference is sig-
nificantly less substantial.
Please note that—although we have only defined one independent variable—
we obtain two regression coefficients for the two categories of the country
variable. Again, R choosed its favorite reference group by itself. The effects
are expressed in relation to LandA. To interpretate the effects, the coefficients
may be transformed to odds ratios:
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> exp(mod1[c(1,3,5,7,9),"value"])

[1] 1.789915 Inf Inf 1.014515 1.012512

In LandB the odds ratio to pass is 0.58 times the corresponding odds ratio
in LandA. The following subsections address two little questions one might
ask oneself.

3.1 How to change reference group at costumer’s op-
tion

As we saw in the preceding section, R choosed the reference group of factor
variables by itself. Persuading R to meet our needs is easier said than done.
The essentially easiest way is to redefine the factor variable and choose its
levels manually. We will demonstrate this procedure about the gender vari-
able in our fictitious data set. Remember the first example in section 3—R
choosed the females to be the reference. Why? Simply because female comes
before male in the alphabet. Let’s redefine the gender variable:

> readN1[,"sexRecoded"] <- factor(readN1[,"sex"], levels = c("male", "female") )

The simple intervention provokes R to use the first label mentioned in the
levels-argument as reference group when repeating the last example:

> mod1 <- jk2.glm(datL = readN1, ID = "idstud", wgt = "wgtSTUD", type = "JK2",
+ PSU = "JKZone", repInd = "JKrep", imp = "imputation",
+ formula = passed~country*sexRecoded, family=binomial(link="logit") )

1 analyse(s) overall according to: 'group.splits = 0'.
Assume unnested structure with 3 imputations.
Create 81 replicate weights according to JK2 procedure.
...

> res <- dG(mod1)

groups:
dependent Variable: passed

parameter est se t.value p.value
1 (Intercept) 0.087 0.123 0.707 0.480
2 countryLandB -0.223 0.172 -1.298 0.195
3 countryLandB:sexRecodedfemale -0.330 0.155 -2.137 0.033
4 countryLandC 0.082 0.153 0.536 0.592
5 countryLandC:sexRecodedfemale -0.260 0.223 -1.166 0.244
6 sexRecodedfemale 0.495 0.127 3.886 0.000

R-squared: 0.014; SE(R-squared): 0
Nagelkerkes R-squared: 0.012; SE(Nagelkerkes R-squared): 0
4619 observations and 4613 degrees of freedom.
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3.2 Which of both determination coefficients should I
pay attention?

The output of each jk2.glm() analysis also contains the pooled determination
coefficient, R2, most frequently the conventional R2 and Nagelkerke’s R2.
However, in linear regression models, i.e. if the identity link is used, assuming
normally distributed errors, the conventional R2 should be used to interpret
explained variance. In log-linear regression models, i.e. if the binomial link
function is used, Nagelkerke’s R2 should be used. The reason for reporting
both coefficients is the programming disability of the package developer.

4 Nested imputations

The next to last chapter of this little tutorial is reserved to the problem of
nested imputation. The general concept is described in Rubin (2003). At
this point, only some specific aspects which are relevant in large scale as-
sessments, are mentioned briefly. Weirich et al. (2014) described the same
procedure more elaboratively. Suppose you want to estimate IRT proficien-
cies (often denoted θ) in a specific domain. Applying an extensive marginal
model which comprehends of item responses and background information as
well, the posterior distribution of each examinees’ θ is specified. Without any
certain proficiency value of a specific examinee, plausible values are drawn
from the posterior of each examinee. Conceptually, plausible values are mul-
tiple imputations of the inherently missing variable θ and may analyzed in
standard statistic procedures. To obtain valid estimates and standard errors,
the results have to be pooled according to Rubin (1987).

Suppose you have missing data in the background variables as well, which
have to be imputed in the first step, which may result in M = 5 data sets. For
each data set a marginal IRT model is specified and N = 20 plausible values
are drawn. Overall 5 × 20 = 100 plausible values in a dependency structure
will result from the analysis. Formally, we now have nested imputed data.
To pool the results, the formulas in Rubin (1987) cannot be applied, as the
plausible values do not stem from a common ‘nest’. The interdependence
has to be taken into account. Whereas the conventional pooling formulas
split the overall variance in the variance within imputation and the variance
between imputation, where the latter one is used to estimate the uncertainty
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due to imputation, the formulas for nested imputation extend the old ones
by splitting the variance between imputation in the within-nest variance and
the variance between nests. See Rubin (2003) for further details. These var-
ied formulas are also implemented in eatRep.

If the data analysed with eatRep stem from a nested multiple imputation
structure, this structure has to be specified. More specifically, the structure
has to be represented in the long-format data frame. eatRep has to know
the number of nests and the number of imputations in each nest. The above
procedure sounds more complicated than it hopefully is.

4.1 Example: Compute descriptives from a nested im-
putation structure

At the beginning of this little tutorial, we have created a subset of our data
set which was used for all analyses so far. Now it’s time to consider the whole
data set. The variable "nest" denotes the nest or first-stage imputation vari-
able. As we only have two nests, only two imputations were created in the
first step. Within each of this two imputations, three plausible values were
drawn from the marginal (or conditioning) model. Hence, we would expect
that the plausible values (captured in column "score") vary between nests
and between imputations, whereas the conditioning variables (e.g. income)
only vary between nests, but not between imputations within each nest! To
date, the eatRep does not provide any consistency checks whether this re-
quirements are fulfilled.

All analyses specified so far treated 3 imputations. Considering the nested
structure now comprises 3 × 2 = 6 imputations. For the purpose of illutra-
tion, we repeat our very first example, using nested imputations now:

> means <- jk2.mean(datL = reading, ID = "idstud", wgt = "wgtSTUD", type = "JK2",
+ PSU = "JKZone", repInd = "JKrep", nest="nest", imp = "imputation",
+ groups = "country", dependent = "score")

1 analyse(s) overall according to: 'group.splits = 1'.
Assume nested structure with 2 nests and 3 imputations in each nest. This will result in 2 x 3 = 6 imputation replicates.
Create 81 replicate weights according to JK2 procedure.
......

> dM(means, omitTerms = c("var", "Ncases", "NcasesValid", "meanGroupDiff"))
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group depVar mean_est mean_se sd_est sd_se country
1 LandA score 513.910 6.425 102.399 3.669 LandA
2 LandB score 492.774 5.887 104.842 5.114 LandB
3 LandC score 499.787 21.244 105.895 5.363 LandC

The only thing we have to change is that we use now the whole data and
additionally specify the variable which denotes the “nests”.

4.2 Example: Fit a linear regression model in a nested
imputation structure

The principles of considering the nested structure are quite the same as in
the preceding example. We now want to predict “reading ability” by sex

and income. Using country as group variable likewise allows for investigating
whether the potential effects vary across countries.

> mod1 <- jk2.glm(datL = reading, ID = "idstud", wgt = "wgtSTUD", type = "JK2",
+ PSU = "JKZone", repInd = "JKrep", nest="nest", imp = "imputation",
+ groups = "country", formula = score~sex+income, family=gaussian(link="identity") )

1 analyse(s) overall according to: 'group.splits = 1'.
Assume nested structure with 2 nests and 3 imputations in each nest. This will result in 2 x 3 = 6 imputation replicates.
Create 81 replicate weights according to JK2 procedure.
......

> res <- dG(mod1)

groups: country = LandA
dependent Variable: score

parameter est se t.value p.value
1 (Intercept) -82.900 57.286 -1.447 0.148
2 income 0.302 0.032 9.507 0.000
3 sexmale -16.524 26.841 -0.616 0.538

R-squared: 0.134; SE(R-squared): 0.001
Nagelkerkes R-squared: 0.548; SE(Nagelkerkes R-squared): 0.013
1659 observations and 1656 degrees of freedom.
------------------------------------------------------------------

groups: country = LandB
dependent Variable: score

parameter est se t.value p.value
1 (Intercept) -100.122 74.154 -1.350 0.177
2 income 0.298 0.035 8.415 0.000
3 sexmale -7.712 15.234 -0.506 0.613

R-squared: 0.11; SE(R-squared): 0
Nagelkerkes R-squared: 0.52; SE(Nagelkerkes R-squared): 0
1573 observations and 1570 degrees of freedom.
------------------------------------------------------------------
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groups: country = LandC
dependent Variable: score

parameter est se t.value p.value
1 (Intercept) -24.751 68.653 -0.361 0.719
2 income 0.267 0.040 6.734 0.000
3 sexmale -9.901 23.106 -0.429 0.668

R-squared: 0.081; SE(R-squared): 0.001
Nagelkerkes R-squared: 0.462; SE(Nagelkerkes R-squared): 0.005
1387 observations and 1384 degrees of freedom.
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