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Abstract

This introduction to the R package depmixS4 is a (slightly) modified version of Visser
and Speekenbrink (2010), published in the Journal of Statistical Software. Please refer to
that article when using depmixS4. The current version is 1.3-4; the version history and
changes can be found in the NEWS file of the package. Below, the major versions are
listed along with the most noteworthy changes.

depmixS4 implements a general framework for defining and estimating dependent mix-
ture models in the R programming language. This includes standard Markov models, la-
tent/hidden Markov models, and latent class and finite mixture distribution models. The
models can be fitted on mixed multivariate data with distributions from the glm family,
the (logistic) multinomial, or the multivariate normal distribution. Other distributions
can be added easily, and an example is provided with the exgaus distribution. Parameters
are estimated by the expectation-maximization (EM) algorithm or, when (linear) con-
straints are imposed on the parameters, by direct numerical optimization with the Rsolnp
or Rdonlp2 routines.

Keywords: hidden Markov model, dependent mixture model, mixture model, constraints.

Version history

See the NEWS file for complete listings of changes; here only the major changes are mentioned.

1.3-0 Added option ‘classification’ likelihood to EM; model output is now pretty-printed
and parameters are given proper names; the fit function has gained arguments for fine
control of using Rsolnp and Rdonlp2.

1.2-0 Added support for missing data, see section 2.3.

1.1-0 Speed improvements due to writing the main loop in C code.

1.0-0 First release with this vignette, a modified version of the paper in the Journal of
Statistical Software.

0.1-0 First version on CRAN.

1. Introduction

Markov and latent Markov models are frequently used in the social sciences, in different areas
and applications. In psychology, they are used for modelling learning processes; see Wickens
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(1982), for an overview, and e.g., Schmittmann, Visser, and Raijmakers (2006), for a recent
application. In economics, latent Markov models are so-called regime switching models (see
e.g., Kim 1994 and Ghysels 1994). Further applications include speech recognition (Rabiner
1989), EEG analysis (Rainer and Miller 2000), and genetics (Krogh 1998). In these latter
areas of application, latent Markov models are usually referred to as hidden Markov models.
See for example Frühwirth-Schnatter (2006) for an overview of hidden Markov models with
extensions. Further examples of applications can be found in e.g., Cappe, Moulines, and
Ryden (2005, Chapter 1). A more gentle introduction into hidden Markov models with
applications is the book by Zucchini and MacDonald (2009).

The depmixS4 package was motivated by the fact that while Markov models are used com-
monly in the social sciences, no comprehensive package was available for fitting such models.
Existing software for estimating Markovian models include Panmark (van de Pol, Langeheine,
and Jong 1996), and for latent class models Latent Gold (Vermunt and Magidson 2003). These
programs lack a number of important features, besides not being freely available. There are
currently some packages in R that handle hidden Markov models but they lack a number of
features that we needed in our research. In particular, depmixS4 was designed to meet the
following goals:

1. to be able to estimate parameters subject to general linear (in)equality constraints;

2. to be able to fit transition models with covariates, i.e., to have time-dependent transition
matrices;

3. to be able to include covariates in the prior or initial state probabilities;

4. to be easily extensible, in particular, to allow users to easily add new uni- or multivariate
response distributions and new transition models, e.g., continuous time observation
models.

Although depmixS4 was designed to deal with longitudinal or time series data, for say T >
100, it can also handle the limit case when T = 1. In this case, there are no time dependencies
between observed data and the model reduces to a finite mixture or latent class model. While
there are specialized packages to deal with mixture data, as far as we know these do not allow
the inclusion of covariates on the prior probabilities of class membership. The possibility
to estimate the effects of covariates on prior and transition probabilities is a distinguishing
feature of depmixS4. In Section 2, we provide an outline of the model and likelihood equations.

The depmixS4 package is implemented using the R system for statistical computing (R De-
velopment Core Team 2010) and is available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=depmixS4.

2. The dependent mixture model

The data considered here have the general form O1:T = (O1
1, . . . , O

m
1 , O1

2, . . . , O
m
2 , . . . ,

O1
T , . . . , O

m
T ) for an m-variate time series of length T . In the following, we use Ot as short-

hand for O1
t , . . . , O

m
t . As an example, consider a time series of responses generated by a single

participant in a psychological response time experiment. The data consists of three variables:
response time, response accuracy, and a covariate which is a pay-off variable reflecting the

http://CRAN.R-project.org/package=depmixS4
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Figure 1: Response times (rt), accuracy (corr) and pay-off values (Pacc) for the first series of
responses in dataset speed.

relative reward for speeded and/or accurate responding. These variables are measured on 168,
134 and 137 occasions respectively (the first series of 168 trials is plotted in Figure 1). These
data are more fully described in Dutilh, Wagenmakers, Visser, and van der Maas (2011), and
in the next section a number of example models for these data is described.

The latent Markov model is usually associated with data of this type, in particular for multi-
nomially distributed responses. However, commonly employed estimation procedures (e.g.,
van de Pol et al. 1996), are not suitable for long time series due to underflow problems. In
contrast, the hidden Markov model is typically only used for ‘long’ univariate time series
(Cappe et al. 2005, Chapter 1). We use the term “dependent mixture model” because one of
the authors (Ingmar Visser) thought it was time for a new name to relate these models1.

The fundamental assumption of a dependent mixture model is that at any time point, the
observations are distributed as a mixture with n components (or states), and that time-
dependencies between the observations are due to time-dependencies between the mixture
components (i.e., transition probabilities between the components). These latter dependencies
are assumed to follow a first-order Markov process. In the models we are considering here,
the mixture distributions, the initial mixture probabilities and transition probabilities can all
depend on covariates zt.

In a dependent mixture model, the joint likelihood of observations O1:T and latent states
S1:T = (S1, . . . , ST ), given model parameters θ and covariates z1:T = (z1, . . . , zT ), can be

1Only later he found out that Leroux and Puterman (1992) already coined the term dependent mixture
models in an application with hidden Markov mixtures of Poisson count data.
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written as:

P(O1:T ,S1:T |θ, z1:T ) = πi(z1)bS1(O1|z1)
T−1∏
t=1

aij(zt)bSt(Ot+1|zt+1), (1)

where we have the following elements:

1. St is an element of S = {1 . . . n}, a set of n latent classes or states.

2. πi(z1) = P(S1 = i|z1), giving the probability of class/state i at time t = 1 with covariate
z1.

3. aij(zt) = P(St+1 = j|St = i, zt), provides the probability of a transition from state i to
state j with covariate zt.

4. bSt is a vector of observation densities bkj (zt) = P(Ok
t |St = j, zt) that provide the

conditional densities of observationsOk
t associated with latent class/state j and covariate

zt, j = 1, . . . , n, k = 1, . . . ,m.

For the example data above, bkj could be a Gaussian distribution function for the response
time variable, and a Bernoulli distribution for the accuracy variable. In the models considered
here, both the transition probability functions aij and the initial state probability functions
π may depend on covariates as well as the response distributions bkj .

2.1. Likelihood

To obtain maximum likelihood estimates of the model parameters, we need the marginal
likelihood of the observations. For hidden Markov models, this marginal (log-)likelihood
is usually computed by the so-called forward-backward algorithm (Baum and Petrie 1966;
Rabiner 1989), or rather by the forward part of this algorithm. Lystig and Hughes (2002)
changed the forward algorithm in such a way as to allow computing the gradients of the
log-likelihood at the same time. They start by rewriting the likelihood as follows (for ease of
exposition the dependence on the model parameters and covariates is dropped here):

LT = P(O1:T ) =

T∏
t=1

P(Ot|O1:(t−1)), (2)

where P(O1|O0) := P(O1). Note that for a simple, i.e., observed, Markov chain these proba-
bilities reduce to P(Ot|O1, . . . ,Ot−1) = P(Ot|Ot−1). The log-likelihood can now be expressed
as:

lT =
T∑
t=1

log[P(Ot|O1:(t−1)]. (3)

To compute the log-likelihood, Lystig and Hughes (2002) define the following (forward) re-
cursion:

φ1(j) := P(O1, S1 = j) = πjbj(O1) (4)

φt(j) := P(Ot, St = j|O1:(t−1)) =

n∑
i=1

[φt−1(i)aijbj(Ot)]× (Φt−1)
−1, (5)
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where Φt =
∑n

i=1 φt(i). Combining Φt = P(Ot|O1:(t−1)), and equation (3) gives the following
expression for the log-likelihood:

lT =
T∑
t=1

log Φt. (6)

2.2. Parameter estimation

Parameters are estimated in depmixS4 using the expectation-maximization (EM) algorithm
or through the use of a general Newton-Raphson optimizer. In the EM algorithm, parameters
are estimated by iteratively maximizing the expected joint log-likelihood of the parameters
given the observations and states. Let θ = (θ1,θ2,θ3) be the general parameter vector
consisting of three subvectors with parameters for the prior model, transition model, and
response models respectively. The joint log-likelihood can be written as:

logP(O1:T ,S1:T |z1:T ,θ) = logP(S1|z1,θ1) +
T∑
t=2

logP(St|St−1, zt−1,θ2)

+
T∑
t=1

logP(Ot|St, zt,θ3) (7)

This likelihood depends on the unobserved states S1:T . In the Expectation step, we replace
these with their expected values given a set of (initial) parameters θ′ = (θ′1,θ

′
2,θ
′
3) and

observations O1:T . The expected log-likelihood:

Q(θ,θ′) = Eθ′(logP(O1:T ,S1:T |O1:T , z1:T ,θ)), (8)

can be written as:

Q(θ,θ′) =

n∑
j=1

γ1(j) logP(S1 = j|z1,θ1)

+
T∑
t=2

n∑
j=1

n∑
k=1

ξt(j, k) logP(St = k|St−1 = j, zt−1,θ2)

+

T∑
t=1

n∑
j=1

m∑
k=1

γt(j) logP(Ok
t |St = j, zt,θ3), (9)

where the expected values ξt(j, k) = P (St = k, St−1 = j|O1:T , z1:T ,θ
′) and γt(j) = P (St =

j|O1:T , z1:T ,θ
′) can be computed effectively by the forward-backward algorithm (see e.g.,

Rabiner 1989). The Maximization step consists of the maximization of (9) for θ. As the right
hand side of (9) consists of three separate parts, we can maximize separately for θ1, θ2 and θ3.
In common models, maximization for θ1 and θ2 is performed by the nnet.default routine in
the nnet package (Venables and Ripley 2002), and maximization for θ3 by the standard glm

routine. Note that for the latter maximization, the expected values γt(j) are used as prior
weights of the observations Ok

t .

The EM algorithm however has some drawbacks. First, it can be slow to converge towards
the end of optimization. Second, applying constraints to parameters can be problematic; in
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particular, EM can lead to wrong parameter estimates when applying constraints. Hence, in
depmixS4, EM is used by default in unconstrained models, but otherwise, direct optimization
is used. Two options are available for direct optimization using package Rsolnp (Ghalanos
and Theußl 2010; Ye 1987), or Rdonlp2 (Tamura 2009; Spellucci 2002). Both packages can
handle general linear (in)equality constraints (and optionally also non-linear constraints).

2.3. Missing data

Missing data can be dealt with straightforwardly in computing the likelihood using the forward
recursion in Equations (4–5). Assume we have observed O1:(t−1) but that observation Ot is
missing. The key idea that, in this case, the filtering distribution, the probabilities φt, should
be identical to the state prediction distribution, as there is no additional information to
estimate the current state. Thus, the forward variables φt are now computed as:

φt(i) = P(St = i|O1:(t−1)) (10)

=

n∑
j=1

φt−1(j)P(St = i|St−1 = j). (11)

For later observations, we can then use this latter equation again, realizing that the filtering
distribution is technically e.g. P(St+1|O1:(t−1),t+1). Computationally, the easiest way to
implement this is to simply set b(Ot|St) = 1 if Ot is missing.

3. Using depmixS4

Two steps are involved in using depmixS4 which are illustrated below with examples:

1. model specification with function depmix (or with mix for latent class and finite mixture
models, see example below on adding covariates to prior probabilities);

2. model fitting with function fit.

We have separated the stages of model specification and model fitting because fitting large
models can be fairly time-consuming and it is hence useful to be able to check the model
specification before actually fitting the model.

3.1. Example data: speed

Throughout this article a data set called speed is used. As already indicated in the introduc-
tion, it consists of three time series with three variables: response time rt, accuracy corr, and
a covariate, Pacc, which defines the relative pay-off for speeded versus accurate responding.
Before describing some of the models that are fitted to these data, we provide a brief sketch
of the reasons for gathering these data in the first place.

Response times are a very common dependent variable in psychological experiments and
hence form the basis for inference about many psychological processes. A potential threat to
such inference based on response times is formed by the speed-accuracy trade-off: different
participants in an experiment may respond differently to typical instructions to ‘respond as
fast and accurate as possible’. A popular model which takes the speed-accuracy trade-off
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into account is the diffusion model (Ratcliff 1978), which has proven to provide accurate
descriptions of response times in many different settings.

One potential problem with the diffusion model is that it predicts a continuous trade-off
between speed and accuracy of responding, i.e., when participants are pressed to respond
faster and faster, the diffusion model predicts that this would lead to a gradual decrease in
accuracy. The speed data set that we analyze below was gathered to test this hypothesis
versus the alternative hypothesis stating that there is a sudden transition from slow and
accurate responding to fast responding at chance level. At each trial of the experiment, the
participant is shown the current setting of the relative reward for speed versus accuracy. The
bottom panel of Figure 1 shows the values of this variable. The experiment was designed to
investigate what would happen when this reward variable changes from reward for accuracy
only to reward for speed only. The speed data that we analyse here are from participant A in
Experiment 1 in Dutilh et al. (2011), who provide a complete description of the experiment
and the relevant theoretical background.

The central question regarding this data is whether it is indeed best described by two modes
of responding rather than a single mode of responding with a continuous trade-off between
speed and accuracy. The hallmark of a discontinuity between slow versus speeded responding
is that switching between the two modes is asymmetric (see e.g. Van der Maas and Molenaar
1992, for a theoretical underpinning of this claim). The fit help page of depmixS4 provides a
number of examples in which the asymmetry of the switching process is tested; those examples
and other candidate models are discussed at length in Visser, Raijmakers, and Van der Maas
(2009).

3.2. A simple model

A dependent mixture model is defined by the number of states and the initial state, state
transition, and response distribution functions. A dependent mixture model can be created
with the depmix function as follows:

R> library("depmixS4")

R> data("speed")

R> set.seed(1)

R> mod <- depmix(response = rt ~ 1, data = speed, nstates = 2,

+ trstart = runif(4))

The first line of code loads the depmixS4 package and data(speed) loads the speed data set.
The line set.seed(1) is necessary to get starting values that will result in the right model,
see more on starting values below.

The call to depmix specifies the model with a number of arguments. The response argument
is used to specify the response variable, possibly with covariates, in the familiar format using
formulae such as in lm or glm models. The second argument, data = speed, provides the
data.frame in which the variables from response are interpreted. Third, the number of
states of the model is given by nstates = 2.

Starting values. Note also that start values for the transition parameters are provided in
this call by the trstart argument. Starting values for parameters can be provided using
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three arguments: instart for the parameters relating to the prior probabilities, trstart,
relating the transition models, and respstart for the parameters of the response models.
Note that the starting values for the initial and transition models as well as multinomial logit
response models are interpreted as probabilities, and internally converted to multinomial logit
parameters (if a logit link function is used). Start values can also be generated randomly
within the EM algorithm by generating random uniform values for the values of γt in (9) at
iteration 0. Automatic generation of starting values is not available for constrained models
(see below). In the call to fit below, the argument emc=em.control(rand=FALSE) controls
the EM algorithm and specifies that random start values should not be generated2.

Fitting the model and printing results. The depmix function returns an object of class
‘depmix’ which contains the model specification, and not a fitted model. Hence, the model
needs to be fitted by calling fit:

R> fm <- fit(mod, emc=em.control(rand=FALSE))

iteration 0 logLik: -305.3

iteration 5 logLik: -305.3

iteration 10 logLik: -305.3

iteration 15 logLik: -305.3

iteration 20 logLik: -305.3

iteration 25 logLik: -305.3

iteration 30 logLik: -305.3

iteration 35 logLik: -305.3

iteration 40 logLik: -305.1

iteration 45 logLik: -304.5

iteration 50 logLik: -276.7

iteration 55 logLik: -89.83

iteration 60 logLik: -88.73

iteration 65 logLik: -88.73

converged at iteration 68 with logLik: -88.73

The fit function returns an object of class ‘depmix.fitted’ which extends the ‘depmix’ class,
adding convergence information (and information about constraints if these were applied, see
below). The class has print and summary methods to see the results. The print method
provides information on convergence, the log-likelihood and the AIC and BIC values:

R> fm

Convergence info: Log likelihood converged to within tol. (relative change)

'log Lik.' -88.73 (df=7)

AIC: 191.5

BIC: 220.1

These statistics can also be extracted using logLik, AIC and BIC, respectively. By compari-
son, a 1-state model for these data, i.e., assuming there is no mixture, has a log-likelihood of

2As of version 1.0-1, the default is have random parameter initialization when using the EM algorithm.
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−305.33, and 614.66, and 622.83 for the AIC and BIC respectively. Hence, the 2-state model
fits the data much better than the 1-state model. Note that the 1-state model can be spec-
ified using mod <- depmix(rt ~ 1, data = speed, nstates = 1), although this model is
trivial as it will simply return the mean and standard deviation of the rt variable.

The summary method of fitted models provides the parameter estimates, first for the prior
probabilities model, second for the transition models, and third for the response models.

R> summary(fm)

Initial state probabilties model

pr1 pr2

1 0

Transition matrix

toS1 toS2

fromS1 0.916 0.084

fromS2 0.116 0.884

Response parameters

Resp 1 : gaussian

Re1.(Intercept) Re1.sd

St1 6.385 0.244

St2 5.510 0.192

Since no further arguments were specified, the initial state, state transition and response
distributions were set to their defaults (multinomial distributions for the first two, and a
Gaussian distribution for the response). The resulting model indicates two well-separated
states, one with slow and the second with fast responses. The transition probabilities indicate
rather stable states, i.e., the probability of remaining in either of the states is around 0.9. The
initial state probability estimates indicate that state 1 is the starting state for the process,
with a negligible probability of starting in state 2.

3.3. Covariates on transition parameters

By default, the transition probabilities and the initial state probabilities are parameterized
using a multinomial model with an identity link function. Using a multinomial logistic model
allows one to include covariates on the initial state and transition probabilities. In this case,
each row of the transition matrix is parameterized by a baseline category logistic multinomial,
meaning that the parameter for the base category is fixed at zero (see Agresti 2002, p. 267 ff.,
for multinomial logistic models and various parameterizations). The default baseline cate-
gory is the first state. Hence, for example, for a 3-state model, the initial state probability
model would have three parameters of which the first is fixed at zero and the other two are
freely estimated. Chung, Walls, and Park (2007) discuss a related latent transition model for
repeated measurement data (T = 2) using logistic regression on the transition parameters;
they rely on Bayesian methods of estimation. Covariates on the transition probabilities can
be specified using a one-sided formula as in the following example:



10 depmixS4: An R Package for Hidden Markov Models

R> set.seed(1)

R> mod <- depmix(rt ~ 1, data = speed, nstates = 2, family = gaussian(),

+ transition = ~ scale(Pacc), instart = runif(2))

R> fm <- fit(mod, verbose = FALSE, emc=em.control(rand=FALSE))

converged at iteration 42 with logLik: -44.2

Note the use of verbose = FALSE to suppress printing of information on the iterations of the
fitting process. Applying summary to the fitted object gives (only transition models printed
here by using argument which):

R> summary(fm, which = "transition")

Transition model for state (component) 1

Model of type multinomial (mlogit), formula: ~scale(Pacc)

Coefficients:

St1 St2

(Intercept) 0 -0.9518

scale(Pacc) 0 1.3924

Probalities at zero values of the covariates.

0.7215 0.2785

Transition model for state (component) 2

Model of type multinomial (mlogit), formula: ~scale(Pacc)

Coefficients:

St1 St2

(Intercept) 0 2.472

scale(Pacc) 0 3.581

Probalities at zero values of the covariates.

0.07788 0.9221

The summary provides all parameters of the model, also the (redundant) zeroes for the base-
line category in the multinomial model. The summary also prints the transition probabilities
at the zero value of the covariate. Note that scaling of the covariate is useful in this regard
as it makes interpretation of these intercept probabilities easier.

3.4. Multivariate data

Multivariate data can be modelled by providing a list of formulae as well as a list of family
objects for the distributions of the various responses. In above examples we have only used
the response times which were modelled as a Gaussian distribution. The accuracy variable in
the speed data can be modelled with a multinomial by specifying the following:

R> set.seed(1)

R> mod <- depmix(list(rt ~ 1,corr ~ 1), data = speed, nstates = 2,

+ family = list(gaussian(), multinomial("identity")),

+ transition = ~ scale(Pacc), instart = runif(2))

R> fm <- fit(mod, verbose = FALSE, emc=em.control(rand=FALSE))
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converged at iteration 31 with logLik: -255.5

This provides the following fitted model parameters (only the response parameters are given
here):

R> summary(fm, which = "response")

Response parameters

Resp 1 : gaussian

Resp 2 : multinomial

Re1.(Intercept) Re1.sd Re2.inc Re2.cor

St1 5.517 0.197 0.475 0.525

St2 6.391 0.239 0.098 0.902

As can be seen, state 1 has fast response times and accuracy is approximately at chance level
(.4747), whereas state 2 corresponds with slower responding at higher accuracy levels (.9021).

Note that by specifying multivariate observations in terms of a list, the variables are con-
sidered conditionally independent (given the states). Conditionally dependent variables must
be handled as a single element in the list. Effectively, this means specifying a multivari-
ate response model. Currently, depmixS4 has one multivariate response model which is for
multivariate normal variables.

3.5. Fixing and constraining parameters

Using package Rsolnp (Ghalanos and Theußl 2010) or Rdonlp2 (Tamura 2009), parameters
may be fitted subject to general linear (in-)equality constraints. Constraining and fixing
parameters is done using the conpat argument to the fit function, which specifies for each
parameter in the model whether it’s fixed (0) or free (1 or higher). Equality constraints can
be imposed by giving two parameters the same number in the conpat vector. When only fixed
values are required, the fixed argument can be used instead of conpat, with zeroes for fixed
parameters and other values (e.g., ones) for non-fixed parameters. Fitting the models subject
to these constraints is handled by the optimization routine solnp or, optionally, by donlp2.
To be able to construct the conpat and/or fixed vectors one needs the correct ordering of
parameters which is briefly discussed next before proceeding with an example.

Parameter numbering. When using the conpat and fixed arguments, complete param-
eter vectors should be supplied, i.e., these vectors should have length equal to the number of
parameters of the model, which can be obtained by calling npar(object). Note that this is
not the same as the degrees of freedom used e.g., in the logLik function because npar also
counts the baseline category zeroes from the multinomial logistic models. Parameters are
numbered in the following order:

1. the prior model parameters;

2. the parameters for the transition models;

3. the response model parameters per state (and subsequently per response in the case of
multivariate time series).
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To see the ordering of parameters use the following:

R> setpars(mod, value = 1:npar(mod))

To see which parameters are fixed (by default only baseline parameters in the multinomial
logistic models for the transition models and the initial state probabilities model):

R> setpars(mod, getpars(mod, which = "fixed"))

When fitting constraints it is useful to have good starting values for the parameters and hence
we first fit the following model without constraints:

R> trst <- c(0.9, 0.1, 0, 0, 0.1, 0.9, 0, 0)

R> mod <- depmix(list(rt ~ 1,corr ~ 1), data = speed, transition = ~ Pacc,

+ nstates = 2, family = list(gaussian(), multinomial("identity")),

+ trstart = trst, instart = c(0.99, 0.01))

R> fm1 <- fit(mod,verbose = FALSE, emc=em.control(rand=FALSE))

converged at iteration 23 with logLik: -255.5

After this, we use the fitted values from this model to constrain the regression coefficients on
the transition matrix (parameters number 6 and 10):

R> pars <- c(unlist(getpars(fm1)))

R> pars[6] <- pars[10] <- 11

R> pars[1] <- 0

R> pars[2] <- 1

R> pars[13] <- pars[14] <- 0.5

R> fm1 <- setpars(mod, pars)

R> conpat <- c(0, 0, rep(c(0, 1), 4), 1, 1, 0, 0, 1, 1, 1, 1)

R> conpat[6] <- conpat[10] <- 2

R> fm2 <- fit(fm1, equal = conpat)

Using summary on the fitted model shows that the regression coefficients are now estimated at
the same value of 12.66. Setting elements 13 and 14 of conpat to zero resulted in fixing those
parameters at their starting values of 0.5. This means that state 1 can now be interpreted
as a ’guessing’ state which is associated with comparatively fast responses. Similarly for
elements 1 and 2, resulting in fixed initial probabilities. The function llratio computes the
likelihood ratio χ2-statistic and the associated p-value with appropriate degrees of freedom for
testing the tenability of constraints; Giudici, Ryden, and Vandekerkhove (2000) shows that
the ‘standard asymptotic theory of likelihood-ratio tests is valid’ in hidden Markov models.
(Dannemann and Holzmann 2007) discusses extension to non-standard situations, e.g. for
testing parameters on the boundary. Note that these arguments (i.e., conpat and conrows)
provide the possibility for arbitrary constraints, also between, e.g., a multinomial regression
coefficient for the transition matrix and the mean of a Gaussian response model. Whether
such constraints make sense is hence the responsibility of the user.
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Figure 2: Balance scale item; this is a distance item (see the text for details).

3.6. Adding covariates on the prior probabilities

To illustrate the use of covariates on the prior probabilities we have included another data set
with depmixS4. The balance data consists of 4 binary items (correct-incorrect) on a balance
scale task (Siegler 1981). The data form a subset of the data published in Jansen and van der
Maas (2002). Before specifying specifying a model for these data, we briefly describe them.

The balance scale task is a famous task for testing cognitive strategies developed by Jean
Piaget (see Siegler 1981). Figure 2 provides an example of a balance scale item. Participants’
task is to say to which side the balance will tip when released, or alternatively, whether it
will stay in balance. The item shown in Figure 2 is a so-called distance item: the number
of weights placed on each side is equal, and only the distance of the weights to the fulcrum
differs between each side.

Children in the lower grades of primary school are known to ignore the distance dimension,
and base their answer only on the number of weights on each side. Hence, they would typically
provide the wrong answer to these distance items. Slightly older children do take distance
into account when responding to balance scale items, but they only do so when the number
of weights is equal on each side. These two strategies that children employ are known as
Rule I and Rule II. Other strategies can be teased apart by administering different items.
The balance data set that we analyse here consists of 4 distance items on a balance scale
task administered to 779 participants ranging from 5 to 19 years of age. The full set of items
consisted of 25 items; other items in the test are used to detect other strategies that children
and young adults employ in solving balance scale items (see Jansen and van der Maas 2002,
for details).

In the following model, age is included as covariate on class membership to test whether,
with age, children apply more complex rules in solving balance scale items. Similarly to the
transition matrix, covariates on the prior probabilities of the latent states (or classes in this
case), are defined by using a one-sided formula prior = ~ age:

R> data("balance")

R> set.seed(1)

R> mod <- mix(list(d1 ~ 1, d2 ~ 1, d3 ~ 1, d4 ~ 1), data = balance,

+ nstates = 3, family = list(multinomial("identity"),

+ multinomial("identity"), multinomial("identity"),

+ multinomial("identity")), respstart = runif(24), prior = ~ age,

+ initdata = balance)
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R> fm <- fit(mod, verbose = FALSE, emc=em.control(rand=FALSE))

converged at iteration 77 with logLik: -917.5

R> fm

Convergence info: Log likelihood converged to within tol. (relative change)

'log Lik.' -917.5 (df=16)

AIC: 1867

BIC: 1942

Note here that we define a mix model instead of a depmix model as these data form indepen-
dent observations. More formally, depmix models extend the class of ‘mix’ models by adding
transition models. As for fitting mix models: as can be seen in Equation 9, the EM algorithm
can be applied by simply dropping the second summand containing the transition parameters,
and this is implemented as such in the EM algorithms in depmixS4.

As can be seen from the print of the fitted model above, the BIC for this model equals 1941.6.
The similarly defined 2-class model for these data has a BIC of 1969.2, and the 4-class model
has BIC equal to 1950.4. Hence, the 3-class seems to be adequate for describing these data.

The summary of the fitted model gives the following (only the prior model is shown here):

R> summary(fm, which = "prior")

Mixture probabilities model

Model of type multinomial (mlogit), formula: ~age

Coefficients:

St1 St2 St3

(Intercept) 0 6.3957 1.7548

age 0 -0.6763 -0.2905

Probalities at zero values of the covariates.

0.00165 0.9888 0.009541

The intercept values of the multinomial logistic parameters provide the prior probabilities of
each class when the covariate has value zero (note that in this case the value zero does not
have much significance, scaling and/or centering of covariates may be useful in such cases).
The summary function prints these values. As can be seen from those values, at age zero, the
prior probability is overwhelmingly at the second class. Inspection of the response parameters
reveals that class 2 is associated with incorrect responding, whereas class 1 is associated with
correct responding; class 3 is an intermediate class with guessing behavior. Figure 3 depicts
the prior class probabilities as function of age based on the fitted parameters.

As can be seen from Figure 3, at younger ages children predominantly apply Rule I, the wrong
strategy for these items. According to the model, approximately 90 % of children at age 5
apply Rule I. The remaining 10 % are evenly split among the 2 other classes. At age 19,
almost all participants belong to class 1. Interestingly, prior probability of the ’guess’ class 2,
first increases with age, and then decreases again. This suggests that children pass through a
phase in which they are uncertain or possibly switch between applying different strategies.
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Figure 3: Class probabilities as a function of age.

package family link

stats binomial logit, probit, cauchit, log, cloglog
stats gaussian identity, log, inverse
stats Gamma inverse, identity, log
stats poisson log, identity, sqrt
depmixS4 multinomial logit, identity (no covariates allowed)
depmixS4 multivariate normal identity (only available through makeDepmix)
depmixS4 ex-gauss identity (only available through makeDepmix as example)

Table 1: Response distribution available in depmixS4.

4. Extending depmixS4

The depmixS4 package was designed with the aim of making it relatively easy to add new
response distributions (as well as possibly new prior and transition models). To make this
possible, the EM routine simply calls the fit methods of the separate response models without
needing access to the internal workings of these routines. Referring to equation 9, the EM
algorithm calls separate fit functions for each part of the model, the prior probability model,
the transition models, and the response models. As a consequence, adding user-specified
response models is straightforward. The currently implemented distributions are listed in
Table 1.

User-defined distributions should extend the ‘response’ class and have the following slots:

1. y: The response variable.

2. x: The design matrix, possibly only an intercept.
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3. parameters: A named list with the coefficients and possibly other parameters (e.g., the
standard deviation in the normal response model).

4. fixed: A vector of logicals indicating whether parameters are fixed.

5. npar: Numerical indicating the number of parameters of the model.

In the speed data example, it may be more appropriate to model the response times with
an exgaus rather than a Gaussian distribution. To do so, we first define an ‘exgaus’ class
extending the ‘response’ class:

R> setClass("exgaus", contains="response")

The so-defined class now needs a number of methods:

1. constructor: Function to create instances of the class with starting values.

2. show: To print the model to the terminal.

3. dens: The function that computes the density of the responses.

4. getpars and setpars: To get and set parameters .

5. predict: To generate predicted values.

6. fit: Function to fit the model using posterior weights (used by the EM algorithm).

Only the constructor and the fit methods are provided here; the complete code can be
found in the help file of the makeDepmix function. The example with the exgaus distribution
uses the gamlss and gamlss.dist packages (Rigby and Stasinopoulos 2005; Stasinopoulos and
Rigby 2007; Stasinopoulos, Rigby, and Akantziliotou 2009; Stasinopoulos, Rigby, Akantzil-
iotou, Heller, Ospina, and Motpan 2010) for computing the density and for fitting the
parameters.

The constructor method return an object of class ‘exgaus’, and is defined as follows:

R> library("gamlss")

R> library("gamlss.dist")

R> setGeneric("exgaus", function(y, pstart = NULL, fixed = NULL, ...)

+ standardGeneric("exgaus"))

R> setMethod("exgaus",

+ signature(y = "ANY"),

+ function(y, pstart = NULL, fixed = NULL, ...) {

+ y <- matrix(y, length(y))

+ x <- matrix(1)

+ parameters <- list()

+ npar <- 3

+ if(is.null(fixed)) fixed <- as.logical(rep(0, npar))

+ if(!is.null(pstart)) {

+ if(length(pstart) != npar) stop("length of 'pstart' must be ", npar)

+ parameters$mu <- pstart[1]



Ingmar Visser, Maarten Speekenbrink 17

+ parameters$sigma <- log(pstart[2])

+ parameters$nu <- log(pstart[3])

+ }

+ mod <- new("exgaus", parameters = parameters, fixed = fixed,

+ x = x, y = y, npar = npar)

+ mod

+ }

+ )

The fit method is defined as follows:

R> setMethod("fit", "exgaus",

+ function(object, w) {

+ if(missing(w)) w <- NULL

+ y <- object@y

+ fit <- gamlss(y ~ 1, weights = w, family = exGAUS(),

+ control = gamlss.control(n.cyc = 100, trace = FALSE),

+ mu.start = object@parameters$mu,

+ sigma.start = exp(object@parameters$sigma),

+ nu.start = exp(object@parameters$nu))

+ pars <- c(fit$mu.coefficients, fit$sigma.coefficients,

+ fit$nu.coefficients)

+ object <- setpars(object,pars)

+ object

+ }

+ )

[1] "fit"

The fit method defines a gamlss model with only an intercept to be estimated and then sets
the fitted parameters back into their respective slots in the ‘exgaus’ object. See the help for
gamlss.distr for interpretation of these parameters.

After defining all the necessary methods for the new response model, we can now define the
dependent mixture model using this response model. The function makeDepmix is included in
depmixS4 to have full control over model specification, and we need it here.

We first create all the response models that we need as a double list:

R> rModels <- list()

R> rModels[[1]] <- list()

R> rModels[[1]][[1]] <- exgaus(speed$rt, pstart = c(5, 0.1, 0.1))

R> rModels[[1]][[2]] <- GLMresponse(formula = corr ~ 1, data = speed,

+ family = multinomial(), pstart = c(0.5, 0.5))

R> rModels[[2]] <- list()

R> rModels[[2]][[1]] <- exgaus(speed$rt, pstart = c(6, 0.1, 0.1))

R> rModels[[2]][[2]] <- GLMresponse(formula = corr ~ 1, data = speed,

+ family = multinomial(), pstart = c(0.1, 0.9))
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Next, we define the transition and prior probability models using the transInit function
(which produces a transInit model, which also extends the ‘response’ class):

R> trstart <- c(0.9, 0.1, 0.1, 0.9)

R> transition <- list()

R> transition[[1]] <- transInit(~ Pacc, nst = 2, data = speed,

+ pstart = c(0.9, 0.1, 0, 0))

R> transition[[2]] <- transInit(~ Pacc, nst = 2, data = speed,

+ pstart = c(0.1, 0.9, 0, 0))

R> inMod <- transInit(~ 1, ns = 2, pstart = c(0.1, 0.9),

+ data = data.frame(1))

Finally, we put everything together using makeDepmix and fit the model:

R> mod <- makeDepmix(response = rModels, transition = transition,

+ prior = inMod, homogeneous = FALSE)

R> fm <- fit(mod, verbose = FALSE, emc=em.control(rand=FALSE))

converged at iteration 43 with logLik: -232.3

Using summary will print the fitted parameters. Note that the use of makeDepmix allows the
possibility of, say, fitting a gaussian in one state and an exgaus distribution in another state.
Note also that according to the AIC and BIC, the model with the exgaus describes the data
much better than the same model in which the response times are modelled as gaussian.

5. Conclusions and future work

depmixS4 provides a flexible framework for fitting dependent mixture models for a large
variety of response distributions. It can also fit latent class regression and finite mixture
models, although it should be noted that more specialized packages are available for this
such as flexmix (Leisch 2004; Grün and Leisch 2008). The package is intended for modelling
(individual) time series data with the aim of characterizing the transition processes underlying
the data. The possibility to use covariates on the transition matrix greatly enhances the
flexibility of the model. The EM algorithm uses a very general interface that allows easy
addition of new response models.

We are currently working on implementing the gradients for response and transition mod-
els with two goals in mind. First, to speed up (constrained) parameter optimization using
Rdonlp2 or Rsolnp. Second, analytic gradients are useful in computing the Hessian of the
estimated parameters so as to arrive at standard errors for those. We are also planning to
implement goodness-of-fit statistics (Titman and Sharples 2008).
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Economic Learning and Social Evolution (ELSE). Han van der Maas provided the speed-
accuracy data (Dutilh et al. 2011) and thereby necessitated implementing models with time-
dependent covariates. Brenda Jansen provided the balance scale data set (Jansen and van der
Maas 2002) which was the perfect opportunity to test the covariates on the prior model
parameters. The examples in the help files use both of these data sets.
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