
MixAll: Clustering Mixed data with Missing Values

Serge Iovleff
University Lille 1

Abstract

The Clustering project is a part of the STK++ library (Iovleff 2012) that can be ac-
cessed from R (R Development Core Team 2013) using the MixAll package. It is possible
to cluster Gaussian, gamma, categorical, Poisson, kernel mixture models or a combination
of these models in case of mixed data. Moreover, if there is missing values in the original
data set, these missing values will be imputed during the estimation process. These impu-
tations can be biased estimators or Monte-Carlo estimators of the Maximum A Posteriori
(MAP) values depending of the algorithm used.

Keywords: R, C++, STK++, Clustering, missing values.

1. Introduction

The Clustering project in STK++ implements a set of mixture model allowing to perform
clustering on various data set using generative models. There is five kinds of generative models
implemented:

1. the diagonal Gaussian mixture models (8 models), see sections 3.1 and 4.1,

2. the gamma mixture models (24 models), see sections 3.4 and 4.3,

3. the categorical mixture models (4 models), see sections 3.2 and 4.2,

4. the Poisson mixture models (6 models), see sections 3.3 and 4.4,

5. the kernel mixture models (4 models), see sections 3.5 and 4.5.

and a special model called ”mixed data” mixture model allowing to cluster mixed data sets
using conditional independance between the different kinds of data, see sections 3.6 and 4.6.

These models and the estimation algorithms can take into account missing values. It is thus
possible to use these models in order to cluster, but also to complete data set with missing
values.

The MixAll package provide an access in (R Development Core Team 2013) to the STK++
(Iovleff 2012) C++ part of the library dedicated to clustering.

In this paper we will first give a general introduction about mixture models and the different
algorithms, initialization methods and strategies that can be used in order to estimate pa-
rameters of mixture models (Section 2). In Section 3 we present the different mixture models
implemented in STK++ that can be estimated using MixAll. Finally we give examples of
clustering on real data set in Section 4.
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2. MixAll Modeling and Estimation Tools

2.1. Short Introduction to Mixture Models

Let X be an arbitrary measurable space and let x = {x1, ...,xn} be n independent vectors in
X such that each xi arises from a probability distribution with density (a mixture model)

f(xi|θ) =

K∑
k=1

pkh(xi|λk,α) (1)

where the pk’s are the mixing proportions (0 < pk < 1 for all k = 1, ...,K and p1+...+pK = 1),
h(·|λk,α) denotes a d-dimensional distribution parameterized by λk and α. The parameters
α do not depend from k and are common to all the components of the mixture. The vector
parameter to be estimated is θ = (p1, . . . , pK ,λ1, . . . ,λK ,α) and is chosen to maximize the
observed log-likelihood

L(θ|x1, . . . ,xn) =
n∑
i=1

ln

(
K∑
k=1

pkh(xi|λk,α)

)
. (2)

In case there is missing data, that is some xi are splited in observed values xoi and missing
values xmi , the log-likelihood to maximize should be the integrated log-likelihood

L(θ|xo1, . . . ,xon) =
n∑
i=1

∫
ln

(
K∑
k=1

pkh(xoi ,x
m
i |λk,α)

)
dxmi . (3)

In the package MixAll, this quantity is approximated using a Monte-Carlo estimator by the
SEM or the SemiSEM algorithms and by a biased estimator by the EM or the CEM algorithms.

It is well known that for a mixture distribution, a sample of indicator vectors or labels z =
{z1, ..., zn}, with zi = (zi1, . . . , ziK), zik = 1 or 0, according to the fact that xi is arising
from the kth mixture component or not, is associated to the observed data x. The sample
z is unknown so that the maximum likelihood estimation of mixture models is traditionally
performed via the EM algorithm Dempster et al. (1997) or by a stochastic version of EM called
SEM (see Mclachlan and Peel (2000)), or by a k-means like algorithm called CEM. In the MixAll
package it is also possible to use an algorithm called SemiSEM which is an intermediate between
the EM and SEM algorithm. In case there is no missing values, SemiSEM and EM are equivalents
(except that the SemiSEM algorithm will run all the iterations as it does not stop using a
tolerance).

2.2. Estimation Algorithms

EM algorithm

Starting from an initial arbitrary parameter θ0, the mth iteration of the EM algorithm consists
of repeating the following I (if there exists missing values), E and M steps.

• I step: The missing values xmi are imputed using the current MAP value given by the
current value θm−1 of the parameter.
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• E step: The current conditional probabilities that zik = 1 for i = 1, . . . , n and k =
1, . . . ,K are computed using the current value θm−1 of the parameter:

tmik = tmk (xi|θm−1) =
pm−1
k h(xi|λm−1

k ,αm−1)∑K
l=1 p

m−1
l h(xi|λm−1

l ,αm−1)
. (4)

• M step: The maximum likelihood estimate θm of θ is updated using the conditional
probabilities tmik as conditional mixing weights. It leads to maximize

L(θ|x1, . . . ,xn, t
m) =

n∑
i=1

K∑
k=1

tmik ln [pkh(xi|λk,α)] , (5)

where tm = (tmik, i = 1, . . . , n, k = 1, . . . ,K). Updated expression of mixture proportions
are, for k = 1, . . . ,K,

pmk =

∑n
i=1 t

m
ik

n
. (6)

Detailed formula for the updating of the λk’s and α are depending of the component
parameterization and are detailed in section 3.

The EM algorithm may converge to a local maximum of the observed data likelihood function,
depending on starting values.

SEM algorithm

The SEM algorithm is a stochastic version of EM incorporating between the E and M steps a
restoration of the unknown component labels zi, i = 1, . . . , n, by drawing them at random
from their current conditional distribution. Starting from an initial parameter θ0, an iteration
of SEM consists of three steps.

• I step: The missing values are simulated using the current value θm−1 of the parameter
and current conditional probabilities tm−1

ik .

• E step: The conditional probabilities tmik (1 ≤ i ≤ n, 1 ≤ k ≤ K) are computed for the
current value of θm−1 as in the E step of EM algorithm (equation 4).

• S step: Generate labels zm = {zm1 , ..., zmn } by assigning each point xi at random to
one of the mixture components according to the categorical distribution with parameter
(tmik, 1 ≤ k ≤ K).

• M step: The maximum likelihood estimate of θ is updated using the generated labels
by maximizing

L(θ|x1, . . . ,xn, t
m) =

n∑
i=1

K∑
k=1

zmik ln [pkh(xi|λk,α)] , (7)

SEM does not converge point wise. It generates a Markov chain whose stationary distribution
is more or less concentrated around the m.l. parameter estimator. A natural parameter
estimate from a SEM sequence θ̄ = (θr)r=1,...,R is the mean

∑R
r=1 θ

r/R of the iterates values.



4 MixAll: Clustering data

At the end of the algorithm, the missing values will be imputed using the MAP value given
by the averaged estimator θ̄.

SemiSEM algorithm

The SemiSEM algorithm is a stochastic version of EM incorporating a restoration of the missing
values xmi , i = 1, . . . , n by drawing them at random from their current conditional distribution.
Starting from an initial parameter θ0, an iteration of SemiSEM consists of three steps.

• I step: The missing values are simulated using the current value θm−1 and current
conditional probabilities tm−1

ik of the parameter as in the SEM algorithm.

• E step: The conditional probabilities tmik (1 ≤ i ≤ n, 1 ≤ k ≤ K) are computed for the
current value of θm−1.

• M step: The maximum likelihood estimate of θ is updated by maximizing conditional
probabilities tmik as conditional mixing weights as in the EM algorithm.

If there is no missing values, SemiSEM algorithm is equivalent to the EM algorithm. If there
is missing values, SemiSEM does not converge point wise. It generates a Markov chain whose
stationary distribution is more or less concentrated around the m.l. parameter estimator. A
natural parameter estimate from a SemiSEM sequence (θr)r=1,...,R is the mean θ̄ =

∑R
r=1 θ

r/R
of the iterates values.

At the end of the algorithm, the missing values are imputed using the MAP value given by
the averaged estimator θ̄.

CEM algorithm

This algorithm incorporates a classification step between the E and M steps of EM. Starting
from an initial parameter θ0, an iteration of CEM consists of three steps.

• I step: The missing values are imputed using the current MAP value given by the
current value θm−1and current conditional probabilities tm−1

ik of the parameter as in the
EM algorithm.

• E step: The conditional probabilities tmik (1 ≤ i ≤ n, 1 ≤ k ≤ K) are computed for the
current value of θ as done in the E step of EM.

• C step: Generate labels zm = {zm1 , ..., zmn } by assigning each point xi to the component
maximizing the conditional probability (tmik, 1 ≤ k ≤ K).

• M step: The maximum likelihood estimate of θ are computed as done in the M step
of SEM.

CEM is a K-means-like algorithm and contrary to EM, it converges in a finite number of
iterations. CEM is not maximizing the observed log-likelihood L (2) but is maximizing in θ
and z1, . . . , zn the complete data log-likelihood

CL(θ, z1, . . . , zn|x1, . . . ,xn) =
n∑
i=1

K∑
k=1

zik ln[pkh(xi|λk)]. (8)
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where the missing component indicator vector zi of each sample point is included in the data
set. As a consequence, CEM is not expected to converge to the maximum likelihood estimate of
θ and yields inconsistent estimates of the parameters especially when the mixture components
are overlapping or are in disparate proportions (see Mclachlan and Peel (2000), Section 2.21).

Creating an Algorithm

All the algorithms (EM, SEM, CEM and SemiSEM) are encoded in a S4 class and can be created
using the utility function clusterAlgo. This function take as input three parameters:

• algo: name of the algorithm to define ("EM", "SEM", "CEM" or "SemiSEM"). Default
value is "EM".

• nbIteration: maximal number of iteration to perform. Default value is 200.

• epsilon: threshold to use in order to stop the iterations (not used by the SEM and
SemiSEM algorithms).

> clusterAlgo()

****************************************

*** MixAll ClusterAlgo:

* algorithm = EM

* number of iterations = 200

* epsilon = 1e-07

****************************************

> clusterAlgo(algo="SemiSEM",nbIteration=100,epsilon=1e-08)

****************************************

*** MixAll ClusterAlgo:

* algorithm = SEMISEM

* number of iterations = 100

* epsilon = 1e-08

****************************************

2.3. Initialization Methods

All the estimation algorithms need a first value of the parameter θ. There is three kinds
of initialization that can be performed: either by generating directly random parameters, or
by using random classes labels/random fuzzy classes and estimating θ0. In order to prevent
unlucky initialization, multiple initialization with a limited number of an algorithm are per-
formed and the best initialization (in the likelihood sense) is conserved. This initialization
method can appear to be disappointing in a large dimension setting because the domain pa-
rameter to be explored becomes very large or when the number of mixture components is
large Baudry and Celeux (2015).

The initialization step is encoded in a S4 class and can be created using the utility function
clusterInit. This function take as input four parameters:
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• method: name of the initialization to perform ("random", "class" or "fuzzy"). Default
value is "class"

• nbInit number of initialization to do. Default value is 5.

• algo name of the algorithm to use during the limited estimation steps (see also 2.2).
Default value is ”EM”.

• nbIteration maximal number of iteration to perform during the initialization algo-
rithm. Default values is 20.

• epsilon threshold to use in order to stop the iterations. Default value: 0.01.

> clusterInit()

****************************************

*** MixAll ClusterInit:

* method = class

* number of init = 5

* algorithm = EM

* number of iterations = 20

* epsilon = 0.01

****************************************

> clusterInit(method="random", nbInit= 2, algo="CEM", nbIteration=10,epsilon=1e-04)

****************************************

*** MixAll ClusterInit:

* method = class

* number of init = 2

* algorithm = CEM

* number of iterations = 10

* epsilon = 1e-04

****************************************

2.4. Estimation Strategy

A strategy is a way to find a good estimate of the parameters of a mixture model and
to avoid local maxima of the likelihood function. A strategy is an efficient three steps
Search/Run/Select way for maximizing the likelihood:

1. Build a search method for generating nbShortRun initial positions. This is based on the
initialization method we describe previously.

2. Run a short algorithm for each initial position.

3. Select the solution providing the best likelihood and launch a long run algorithm from
this solution.
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A strategy is encoded in a S4 class and can be created using the utility function clusterStrategy().
This function have no mandatory argument but the default strategy can be tuned. In table 1
the reader will find a summary of all the input parameters of the clusterStrategy() func-
tion.

Input Parameter Description

nbTry Integer defining the number of tries. nbTry must be a positive
integer. Default value is 1.

nbInit Integer defining the number of initialization to do during the
initialization step. Default is 5.

initAlgo String with the estimation algorithm to use in the ini-
tialization step. Possible values are "EM", "SEM", "CEM",
"SemiSEM". Default value is "EM".

nbInitIteration Integer defining the maximal number of iteration in initAlgo

algorithm. nbInitIteration can be 0. Default value is 20.

initEpsilon Real defining the epsilon value for the initial algorithm.
initEpsilon is not used by the "SEM" and "SemiSEM" al-
gorithms. Default value is 0.01.

nbShortRun Integer defining the number of short run to perform (re-
member the strategy launch an initialization step before each
short run, so you get nbShortRun*nbInit initialization). De-
fault value is 5.

shortRunAlgo String with the estimation algorithm to use in short run(s).
Possible values are "EM", "SEM", "CEM", "SemiSEM". Default
value is "EM".

nbShortIteration Integers defining the maximal number of iterations in a short
run. Default value is 100.

shortEpsilon Real defining the epsilon value in a short run. It is not used
if shortRunAlgo is "SEM" or "SemiSEM". Default value is
1e-04.

longRunAlgo String with the estimation algorithm to use for the long run.
Possible values are "EM", "SEM", "CEM" or "SemiSEM". De-
fault value is "EM".

nbLongIteration Integers defining the maximal number of iterations in the the
long run. Default value is 1000.

longEpsilon Real defining the epsilon value in the long run. It is not used
if shortRunAlgo is "SEM" or "SemiSEM". Default value is
1e-07.

Table 1: List of all the input parameters of the clusterStrategy() function.

> clusterStrategy()

****************************************

*** Cluster Strategy:

* number of try = 1
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* number of short run = 5

****************************************

*** Initialization :

* method = class

* number of init = 5

* algorithm = EM

* number of iterations = 20

* epsilon = 0.01

****************************************

*** short Algorithm :

* algorithm = EM

* number of iterations = 100

* epsilon = 1e-04

****************************************

*** long algorithm :

* algorithm = EM

* number of iterations = 1000

* epsilon = 1e-07

****************************************

Users have to take care that there will be nbInit × nbShortRun starting points θ0 during
the estimation process. The default generate randomly fifty times θ0.

The strategy class is very flexible and allow to tune the estimation process. There is two
defined utility functions for the end-user:

• the clusterFastStrategy for impatient users,

• the clusterSemiSEMStrategy for user with missing values.

For impatient user, the clusterFastStrategy furnish results very quickly. The accuracy of
the result is not guaranteed if the model is a bit difficult to estimate.

> clusterFastStrategy()

****************************************

*** Cluster Strategy:

* number of try = 1

* number of short run = 2

****************************************

*** Initialization :

* method = class

* number of init = 3

* algorithm = EM

* number of iterations = 5

* epsilon = 0.01

****************************************

*** short Algorithm :
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* algorithm = EM

* number of iterations = 10

* epsilon = 0.001

****************************************

*** long algorithm :

* algorithm = EM

* number of iterations = 100

* epsilon = 1e-07

****************************************

The function clusterSemiSEMStrategy is highly recommended if there is missing values int
the data set. The ”SemiSEM” algorithm simulate the missing values and computes a Monte-
Carlo estimator of the θ parameter during the iterations allowing to get unbiased estimators.

> clusterSemiSEMStrategy()

****************************************

*** Cluster Strategy:

* number of try = 2

* number of short run = 5

****************************************

*** Initialization :

* method = class

* number of init = 5

* algorithm = SEMISEM

* number of iterations = 20

* epsilon = 0

****************************************

*** short Algorithm :

* algorithm = SEMISEM

* number of iterations = 50

* epsilon = 0

****************************************

*** long algorithm :

* algorithm = SEMISEM

* number of iterations = 400

* epsilon = 0

****************************************

3. Implemented Mixture Models

3.1. Multivariate (diagonal) Gaussian Mixture Models

A Gaussian density on R is a density of the form:

f(x;µ, σ) =
1√
2πσ

exp

{
−(x− µ)2

2σ2

}
σ > 0. (9)
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A joint diagonal Gaussian density on Rd is a density of the form:

h(x;µ,σ) =

d∏
j=1

f(xj ;µj , σj) σj > 0. (10)

The parameters µ = (µ1, . . . , µd) are the position parameters and the parameters σ =
(σ1, . . . , σd) are the standard-deviation parameters. Assumptions on the standard-deviation
parameters among the variables and the components lead to define four families of mixture
model.

Let us write a multidimensional Gaussian mixture model in the from Gaussian_s* with s*,
the different ways to parameterize the standard-deviation parameters of a Gaussian mixture:

• sjk means that we have one standard-deviation parameter for each variable in each
component,

• sk means that the standard-deviation parameters are the same for all the variables
inside a component,

• sj means that the standard-deviation parameters are different for each variable but are
equals between the components,

• and finally s means that the standard-deviation parameters are all equals.

The gaussian_pk_sjk model is the most general model and has a density function of the
form

f(x|θ) =

K∑
k=1

pk

d∏
j=1

g(xji |µ
j
k, σ

j
k). (11)

On the other side, the gaussian_p_s model is the most parsimonious model and has a density
function of the form

f(x|θ) =
K∑
k=1

1

K

d∏
j=1

g(xji |µ
j
k, σ). (12)

It is possible to get a vector with all Gaussian mixture model names using the clusterDiagGaussianNames
function.

> clusterDiagGaussianNames()

[1] "gaussian_pk_sjk" "gaussian_pk_sj" "gaussian_pk_sk" "gaussian_pk_s"

[5] "gaussian_p_sjk" "gaussian_p_sj" "gaussian_p_sk" "gaussian_p_s"

> clusterDiagGaussianNames("all", "equal", "free")

[1] "gaussian_pk_sk" "gaussian_p_sk"

> clusterValidDiagGaussianNames(c("gaussian_pk_sjk","gaussian_p_ljk"))

[1] FALSE
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3.2. Multivariate categorical Mixture Models

A Categorical probability distribution on a finite space X = {1, . . . , L} is a probability dis-
tribution of the form:

P (x = l) = pl pl > 0, l ∈ X , (13)

with the constraint p1 + . . .+ pL = 1.

A joint Categorical probability distribution on X d is a probability distribution of the form:

P (x = (x1, . . . , xd)) =

d∏
j=1

pjxj (14)

The parameters p = (p1, . . . , pd) are the probabilities of the possibles outcomes. Assumptions
on the probabilities among the variables and the components lead to define two families of
mixture model.

It is possible to get a vector with all Gaussian model names using the clusterDiagGaussianNames
function.

It is possible to get a vector with all categorical mixture model names using the clusterCategoricalNames
function.

> clusterCategoricalNames()

[1] "categorical_pk_pjk" "categorical_pk_pk" "categorical_p_pjk"

[4] "categorical_p_pk"

> clusterCategoricalNames("all", "equal")

[1] "categorical_pk_pk" "categorical_p_pk"

> clusterValidCategoricalNames(c("categorical_pk_pjk","categorical_p_pk"))

[1] TRUE

3.3. Multivariate Poisson Mixture Models

A Poisson probability distribution is a probability over N of the form

p(k;λ) =
λk

k!
e−λ λ > 0. (15)

A joint Poisson probability on Nd is a probability distribution of the form

h(x;λ) =
d∏
j=1

p(xj ;λj) λj > 0. (16)

The parameters λ = (λ1, . . . , λd) are the mean parameters. Assumptions on the mean among
the variables and the components lead to define three families of mixture model.
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The poisson_pk_ljk is the most general Poisson model and has a probability distribution of
the form

f(x|θ) =
K∑
k=1

pk

d∏
j=1

h(xj ;λjk). (17)

The poisson_p_lk is the most parsimonious Poisson model and has a probability distribution
of the form

f(x|θ) =

K∑
k=1

1

K

d∏
j=1

h(xj ;λk). (18)

The poisson_pk_ljlk is an intermediary model for the number of parameters and has a
density of the form

f(x|θ) =
K∑
k=1

pk

d∏
j=1

h(xj ;λjλk). (19)

It is possible to get a vector with all Poisson mixture model names using the clusterPoissonNames
function.

> clusterPoissonNames()

[1] "poisson_pk_ljk" "poisson_pk_lk" "poisson_pk_ljlk" "poisson_p_ljk"

[5] "poisson_p_lk" "poisson_p_ljlk"

> clusterPoissonNames("all","proportional")

[1] "poisson_pk_ljlk" "poisson_p_ljlk"

> clusterValidPoissonNames(c("poisson_pk_ljk","poisson_p_ljlk"))

[1] TRUE

3.4. Multivariate Gamma Mixture Models

A gamma density on R+ is a density of the form:

g(x; a, b) =
(x)a−1 e−x/b

Γ(a) (b)a
a > 0, b > 0. (20)

A joint gamma density on Rd+ is a density of the form:

h(x;a,b) =

d∏
j=1

g(xj ; aj , bj) aj > 0, bj > 0. (21)

The parameters a = (a1, . . . , ad) are the shape parameters and the parameters b = (b1, . . . , bd)
are the scale parameters. Assumptions on the scale and shape parameters among the vari-
ables and the components lead to define twelve families of mixture model. Let us write a
multidimensional gamma mixture model in the form gamma_a*_b* with a* (resp. b*), the
different ways to parameterize the shape (resp. scale) parameters of a gamma mixture:
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ajk ak aj a
bjk gamma_ajk_bjk

(2dK)
gamma_ak_bjk

(dK + K)
gamma_aj_bjk

(dK+d)
gamma_a_bjk

(dK+1)
bk gamma_ajk_bk

(dK+K)
gamma_ak_bk

(2K)
gamma_aj_bk

(K+d)
gamma_a_bk

(K+1)
bj gamma_ajk_bj

(dK+d)
gamma_ak_bj

(K+d)
NA NA

b gamma_ajk_b

(dK+1)
gamma_ak_b

(K+1)
NA NA

Table 2: The twelve multidimensional gamma mixture models. In parenthesis the number of
parameters of each model.

• ajk (resp. bjk) means that we have one shape (resp. scale) parameter for each variable
and for each component,

• ak (resp. bk) means that the shape (resp. scale) parameters are the same for all the
variables inside a component,

• aj (resp. bj) means that the shape (resp. scale) parameters are different for each
variable but are equals between the components,

• and finally a (resp. b) means that the shape (resp. scale) parameters are the same for
all the variables and all the components.

The models we can build in this way are summarized in the table 2, in parenthesis we give
the number of parameters of each models.

The gamma_ajk_bjk model is the most general and have a density function of the form

f(xi|θ) =

K∑
k=1

pk

d∏
j=1

g(xji |a
j
k, b

j
k). (22)

All the other models can be derived from this model by dropping the indexes in j and/or k
from the expression (22). For example the mixture model gamma_aj_bk has a density function
of the form

f(xi|θ) =

K∑
k=1

pk

d∏
j=1

g(xji |a
j , bk). (23)

It is possible to get a vector with all gamma mixture model names using the clusterGammaNames
function.

> clusterGammaNames()

[1] "gamma_p_ajk_bjk" "gamma_p_ajk_bk" "gamma_p_ajk_bj" "gamma_p_ajk_b"

[5] "gamma_p_ak_bjk" "gamma_p_ak_bk" "gamma_p_ak_bj" "gamma_p_ak_b"

[9] "gamma_p_aj_bjk" "gamma_p_aj_bk" "gamma_p_a_bjk" "gamma_p_a_bk"

[13] "gamma_pk_ajk_bjk" "gamma_pk_ajk_bk" "gamma_pk_ajk_bj" "gamma_pk_ajk_b"

[17] "gamma_pk_ak_bjk" "gamma_pk_ak_bk" "gamma_pk_ak_bj" "gamma_pk_ak_b"

[21] "gamma_pk_aj_bjk" "gamma_pk_aj_bk" "gamma_pk_a_bjk" "gamma_pk_a_bk"
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> clusterGammaNames("all", "equal","free","free","all")

[1] "gamma_p_ak_bjk" "gamma_p_ak_bj" "gamma_pk_ak_bjk" "gamma_pk_ak_bj"

> clusterValidGammaNames(c("gamma_pk_aj_bk","gamma_p_ajk_bjk"))

[1] TRUE

3.5. Gaussian Kernel Mixture Models

Gaussian Kernel Mixture models are a generalization of the Kernel k-means method Shawe-
Taylor and Cristianini (2004).

Let us consider a pair of random variables (X,Z) with values in a measurable space (X ×
{1 . . .K},BX ⊗ P({1...K})). The random variate Z is a categorical random variate and
Conditionally to Z, the distribution of X is a probability measure νk on X .

P (X ∈ A|Z = k) = νk(A).

The marginal distribution of X is a mixing distribution such that

P (X ∈ A) =

K∑
k=1

pkνk(A), A ∈ BX .

Let H denote a reproducing Kernel Hilbert Space (RKHS) and let φ be a feature map from X
to H. The reproducing property of H ensure us assure there exists a kernel k positive definite
on X × X such that

〈φ(x), φ(y)〉 = k(x, y), ∀(x, y) ∈ X 2.

It is easily verified that the the image by φ of the probability distribution of X is also a
mixing distribution. Let us denote by µ this distribution and by µk the conditional probability
distribution of the random variate φ(X) conditionally to Z = k.

In a kernel mixture model, we assume the following hypothesis about µ:

G: (Gaussianity) µk is well approximated by an isotropic finite Gaussian measure on H with
mean mk and covariance matrix σk Id.

The log-likelihood to maximize in θ is thus

l(x1, . . . , xn; θ) =
n∏
i=1

K∑
k=1

pk

(
1√

2πσk

)d
exp

{
−‖φ(xi)−mk‖2

2σ2
k

}
. (24)

with θ =
(
(pk)

K
k=1, (mk)

K
k=1, (σk)

K
k=1

)
. This model is called a Kernel Mixture Model (KMM).

The dimension d is an hyper-parameter fixed by the user. Assumptions about the variance
lead to four models. The kernelGaussian_sk model is the most general and have a density
function given in (24), the kernelGaussian_s model assume that all variances are equals.

It is possible to get a vector with all (Gaussian) kernel mixture model names using clusterKernelNames
function.
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> clusterKernelNames()

[1] "kernelGaussian_pk_sk" "kernelGaussian_pk_s" "kernelGaussian_p_sk"

[4] "kernelGaussian_p_s"

> clusterValidKernelNames(c("kernelGaussian_pk_sk","kernelGaussian_pk_s"))

[1] TRUE

There is threee kernels availables: ”gaussian”, ”exponential” and ”polynomial”

• The Gaussian Kernel is a kernel of the form

k(x, y) = exp

(
−‖x− y‖

2

h

)
where h represents the bandwidth of the kernel (default value 1).

• The Exponential Kernel is a kernel of the form

k(x, y) = exp

(
−‖x− y‖

h

)
where h represents the bandwidth of the kernel (default value 1).

• The Polynomial Kernel is a kernel of the form

k(x, y) = (< x− y > +c)d

where c represents the shift of the kernel (default value 0) and d represents the degree
(defaut value 1).

3.6. Mixed Data Mixture Models

Mixed Data mixture models are special models allowing to cluster mixed data sets assuming
conditional independency. More precisely, assume that the observation space is of the form
X = X1 × X2 × . . .XL. Then it is assumed that each xi arises from a mixture probability
distribution with density

f(xi = (x1i,x2i, . . .xLi)|θ) =

K∑
k=1

pk

L∏
l=1

hl(xli|λlk,αl). (25)

The density functions (or probability distribution functions) hl(.|λlk,αl) can be any imple-
mented model (Gaussian, Poisson,...).

4. Clustering with MixAll

Cluster analysis can be performed with the functions
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1. clusterDiagGaussian for diagonal Gaussian mixture models,

2. clusterCategorical for Categorical mixture models,

3. clusterPoisson for Poisson mixture models,

4. clusterGamma for gamma mixture models,

5. clusterKernel for kernel mixture models,

6. clusterMixedData for MixedData mixture models.

These functions have a common set of parameters with default values given in the table 3.

Input Parameter Description

nbCluster Numeric. A vector with the number of clusters to try. De-
fault is 2.

strategy A Strategy object containing the strategy to run. Call
clusterStrategy() (see 2.4) method by default.

criterion A string defining the model selection criterion to use. The
best model is the one with the lowest criterion value. Possible
values: "AIC", "BIC", "ICL". Default is "ICL".

nbCore An integer defining the number of processor to use. Default
is 1, 0 for all cores.

Table 3: List of common parameters of the clustering functions.

4.1. Clustering Multivariate (diagonal) Gaussian Mixture Models

Multivariate Gaussian data (without correlations) can be clustered using the clusterDiagGaussian
function.

This function has one mandatory argument: a matrix or data.frame x. In Table 4 the reader
will find a summary of all the specific input parameters of this function with its default value.

Input Parameter Description

data Matrix or data frame

models A vector object defining the list of models to estimate. Call
clusterDiagGaussianNames() by default (see 3.1).

Table 4: List of all the specific parameters of the clusterDiagGaussian function.

We illustrate this function with the well known geyser data set (Azzalini and Bowman
(1990),Härdle (1991)).

> data(geyser);

> x = as.matrix(geyser); n <- nrow(x); p <- ncol(x);

> # add missing values at random
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> indexes <- matrix(c(round(runif(10,1,n)), round(runif(10,1,p))), ncol=2);

> x[indexes] <- NA;

> model <- clusterDiagGaussian(data=x, nbCluster=3, strategy = clusterFastStrategy())

> summary(model)

**************************************************************

* nbSample = 272

* nbCluster = 3

* lnLikelihood = -9392.286

* nbFreeParameter= 74

* criterion = 19204.47

* model name = gaussian_pk_sjk

**************************************************************

> missingValues(model)

row col value

1 32 1 4.165980

2 58 1 2.039532

3 196 1 4.165980

4 209 1 2.039532

5 243 1 4.383493

6 105 2 75.046754

7 124 2 54.319149

8 139 2 54.319149

9 196 2 75.046754

> plot(model)
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4.2. Clustering Multivariate categorical Mixture Models

Categorical (nominal) data can be clustered using the clusterCategorical function.

This function has one mandatory argument: a data.frame or matrix x. The matrix x can
contain characters (nominal values), these characters will be mapped as integer using the
factor function.

In Table 5 the reader will find a summary of all the specific input parameters of this function
with its default value.

Input Parameter Description

data Matrix or data frame

models A vector defining the models to estimate. Call
clusterCatgoricalNames() by default (see 3.2).

Table 5: List of all the specific parameters of the clusterCategorical function.

We illustrate this function with the birds data set.

> data(birds)

> x = as.matrix(birds); n <- nrow(x); p <- ncol(x);
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> indexes <- matrix(c(round(runif(10,1,n)), round(runif(10,1,p))), ncol=2);

> x[indexes] <- NA;

> model <- clusterCategorical(data=x, nbCluster=2)

> summary(model)

**************************************************************

* nbSample = 69

* nbCluster = 2

* lnLikelihood = -191.225

* nbFreeParameter= 21

* criterion = 473.085

**************************************************************

* levels of the variables =

[1] "female, male "

[2] "none , poor pronounced, pronounced , very pronounced"

[3] "dotted, none "

[4] "black , black & WHITE, black & white, white "

[5] "few , many, none"

* nbModalities = 4

**************************************************************

> missingValues(model)

row col value

1 27 2 3

2 35 2 3

3 50 2 3

4 54 3 2

5 8 4 1

6 27 4 4

7 32 4 4

8 35 4 4

9 39 4 4

10 48 5 3

> plot(model)
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Categorical mixture models are plotted using the logistic latent representation.

4.3. Clustering Multivariate gamma Mixture Models

Gamma data can be clustered using the clusterGamma function.

This function has one mandatory argument: a data.frame or matrix x.

In Table 6 the reader will find a summary of all the specific input parameters of this function
with its default value.

Input Parameter Description

data Matrix or data frame

models A vector defining the models to estimate. Call
clusterGammaNames() by default (see 3.4).

Table 6: List of all the specific parameters of the clusterGamma function.

> data(geyser);

> x = as.matrix(geyser); n <- nrow(x); p <- ncol(x);

> indexes <- matrix(c(round(runif(10,1,n)), round(runif(10,1,p))), ncol=2);

> x[indexes] <- NA;
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> model <- clusterGamma(data=x, nbCluster=3, strategy = clusterFastStrategy())

> summary(model)

**************************************************************

* nbSample = 272

* nbCluster = 3

* lnLikelihood = -1123.971

* nbFreeParameter= 14

* criterion = 2356.995

* model name = gamma_pk_ajk_bjk

**************************************************************

> missingValues(model)

row col value

1 11 1 1.980088

2 69 1 2.835533

3 100 1 4.322854

4 247 1 1.988690

5 19 2 53.389759

6 53 2 53.383887

7 73 2 80.586467

8 98 2 80.581268

9 169 2 53.387846

10 193 2 80.586535

> plot(model)
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4.4. Clustering Multivariate Poisson Models

Poisson data (count data) can be clustered using the clusterPoisson function.

This function has one mandatory argument: a data.frame or matrix x.

In Table 7 the reader will find a summary of all the specific input parameters of this function
with its default value.

Input Parameter Description

data Matrix or data frame

models A vector defining the models to estimate. Call
clusterPoissonNames() by default (see 3.3).

Table 7: List of all the specific parameters of the clusterPoisson function.

> data(DebTrivedi)

> dt <- DebTrivedi[1:500, c(1, 6,8, 15)]

> model <- clusterPoisson( data=dt, nbCluster=3, strategy = clusterFastStrategy())

> summary(model)

**************************************************************
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* nbSample = 500

* nbCluster = 3

* lnLikelihood = -32699.52

* nbFreeParameter= 46

* criterion = 65739.06

* model name = poisson_pk_ljk

**************************************************************

> missingValues(model)

row col value

> plot(model)
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4.5. Clustering Kernel Mixture Models

Data can be clustered using the clusterKernel function.

This function has one mandatory argument: a data.frame or matrix x.

In Table 8 the reader will find a summary of all the specific input parameters of this function
with its default value.
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Input Parameter Description

data Matrix or data frame

models A vector defining the models to estimate. Call
clusterKernelNames() by default (see 3.5).

kernelName A string defining the kernel to use. Use a ”gaussian” kernel
by default (Possible values are ”gaussian”, ”polynomial” or
”exponential”).

kernelParameters A vector with the kernel parameter value(s). Default value
is 1.

Table 8: List of all the specific parameters of the clusterKernel function.

> data(bullsEye)

> model <- clusterKernel( data=bullsEye[,1:2], nbCluster=2, models = "kernelGaussian_pk_s", strategy = clusterFastStrategy())

> summary(model)

**************************************************************

* nbSample = 320

* nbCluster = 2

* lnLikelihood = -1211.67

* nbFreeParameter= 22

* criterion = 2558.09

* model name = kernelGaussian_pk_s

**************************************************************

> plot(model)
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4.6. Clustering Mixed data sets

Mixed data sets can be clustered using the clusterMixedData function. The original mixed
data set has to be splited in multiple homogeneous data sets and each one associated to a
mixture model name.

In Table 9 the reader will find a summary of all the specific input parameters of this function
with its default value.

Input Parameter Description

data A list containing the homogeneous data sets (matrices
and/or data.frames). All the data sets must have the same
number of rows.

models A vector of character and of same length than data contain-
ing the model names to fit to each data set (see 3.6).

Table 9: List of all the specific parameters of the clusterMixedData function.

> data(HeartDisease.cat)

> data(HeartDisease.cont)

> ldata = list(HeartDisease.cat,HeartDisease.cont);
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> lnames = c("categorical_pk_pjk","gaussian_pk_sjk")

> model <- clusterMixedData(ldata, lnames, nbCluster=3, strategy = clusterFastStrategy())

> summary(model)

**************************************************************

* nbSample = 303

* nbCluster = 3

* lnLikelihood = -7441.383

* nbFreeParameter= 77

* criterion = 15552.14

**************************************************************

> missingValues(model)

[[1]]

row col value

[1,] 167 7 1

[2,] 193 7 1

[3,] 288 7 1

[4,] 303 7 1

[5,] 88 8 1

[6,] 267 8 3

[[2]]

row col value

> plot(model)
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MixedData mixture models are plotted using the logistic latent representation.
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A. M step computation for the Gaussian models

For all the M Step, the mean is updated using the following formula

µk =
1

t.k

n∑
i=1

tikxi,

with t.k =
∑n

i=1 tik, for k = 1, . . . ,K.

A.1. M Step of the gaussian sjk model

Using the equation (5) and dropping the constant, we obtain that we have to maximize in
σ = (σjk)

2, for j = 1, . . . , d and k = 1, . . . ,K the expression

l(σ|x1, . . . ,xn, t
m) =

n∑
i=1

K∑
k=1

tmik

d∑
j=1

[
− 1

(σjk)
2
(xji − µ̂

k
j )

2 − log((σjk)
2)

]
. (26)

For this model, the variance is updated using the formula:

(σ̂jk)
2 =

1

t.k

n∑
i=1

tik(x
j
i − µ̂

j
k)

2.

A.2. M Step of the gaussian sk model

For this model, the variance is updated using the formula:

(σ̂k)
2 =

1

dt.k

d∑
j=1

n∑
i=1

tik(x
j
i − µ̂

j
k)

2.

A.3. M Step of the gaussian sj model

For this model, the variance is updated using the formula:

(σ̂j)2 = tik(x
j
i − µ

j
k)

2.

http://www.worldcat.org/isbn/0471006262
http://www.worldcat.org/isbn/0471006262
http://www.R-project.org/
http://www.R-project.org/
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A.4. M Step of the gaussian s model

For this model, the variance is updated using the formula:

σ̂2 =
1

nd

n∑
i=1

K∑
k=1

tik‖xi − µk‖2.

B. M step computation for the Gamma models

In this section, given the array t of conditional probabilities, we will write t.k =
∑n

i=1 tik, for
k = 1, . . . ,K and will denote

x̄jk =
1

t.k

n∑
i=1

tikx
j
i ,

the k-th pondered mean of the j-th observation, and by

(log(x))jk =
1

t.k

n∑
i=1

tik log(xji ),

the k-th pondered log-mean of the j-th observation.

Replacing h by its expression in the equation (5) and summing in i, the M-step for the twelve
gamma mixture models defined in table (2) is equivalent to maximize the following expression

l(A,B) =
K∑
k=1

d∑
j=1

t.k

(
A(log(x))jk −

x̄jk
B
− log(Γ(A))−A log(B)

)
, (27)

with A ∈ {a, aj , ak, ajk} and B ∈ {b, bj , bk, bjk}.
We now describe the various derivatives and for each models explicit the maximum likelihood
equations to solve. Taking the derivative with respect to B:

• If B = bjk then

dl

dbjk
= t.k

(
x̄jk
b2
− A

b

)
and thus b̂jk =

x̄jk
A

• If B = bk then

dl

dbk
= t.k

d∑
j=1

(
x̄jk
b2k
− A

bk

)
and thus b̂k =

∑d
j=1 x̄

j
k∑d

j=1A

• If B = bj then

dl

dbj
=

K∑
k=1

t.k

(
x̄jk

(bj)2
− A

bj

)
and thus b̂j =

∑K
k=1 t.kx̄

j
k∑K

k=1 t.kA
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• If B = b then

dl

db
=

K∑
k=1

d∑
j=1

t.k

(
x̄jk
b2
− A

b

)
and thus b̂ =

∑K
k=1

∑d
j=1 t.kx̄

j
k∑K

k=1

∑d
j=1 t.kA

Taking now the derivative with respect to A:

1. If A = ajk, then
dl

dajk
= t.k

(
(log(x))jk − log(B)

)
− t.kΨ(ajk).

and thus

• if B = bjk (model gamma_ajk_bjk) Ψ(âjk) = (log(x))jk − log(b̂jk)

b̂jk =
x̄jk
âjk
,

(28)

• if B = bk (model gamma_ajk_bk) Ψ(âjk) = (log(x))jk − log(b̂k)

b̂k =
∑d

j=1 x̄
j
k∑d

j=1 a
j
k

(29)

• if B = bj (model gamma_ajk_bj) Ψ(âjk) = (log(x))jk − log(b̂j)

b̂j =
∑K

k=1 t.kx̄
j
k∑K

k=1 t.ka
j
k

(30)

• if B = b (model gamma_ajk_b) Ψ(âjk) = (log(x))jk − log(b̂)

b̂ =
∑d

j=1

∑K
k=1 t.kx̄

j
k∑d

j=1

∑K
k=1 t.ka

j
k

(31)

2. If A = ak, then

dl

dak
= t.k

d∑
j=1

(
(log(x))jk − log(B)

)
− t.kdΨ(ak).

and thus

• if B = bjk (model gamma_ak_bjk) Ψ(âk) = 1
d

∑d
j=1

(
(log(x))jk − log(b̂jk)

)
b̂jk =

x̄jk
âk
,

(32)
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• if B = bk (model gamma_ak_bk) Ψ(âk) = 1
d

∑d
j=1

(
(log(x))jk − log(b̂k)

)
b̂k =

∑d
j=1 x̄

j
k

dak

(33)

• if B = bj (model gamma_ak_bj) Ψ(âk) = 1
d

∑d
j=1

(
(log(x))jk − log(b̂j)

)
b̂j =

∑K
k=1 t.kx̄

j
k∑K

k=1 t.kak

(34)

• if B = b (model gamma_ak_b) Ψ(âk) = 1
d

∑d
j=1

(
(log(x))jk − log(b̂)

)
b̂ =

∑d
j=1

∑K
k=1 t.kx̄

j
k

d
∑K

k=1 t.kak

(35)

3. If A = aj , then

dl

daj
=

K∑
k=1

t.k

(
(log(x))jk − log(B)

)
− nΨ(aj).

and thus

• if B = bjk (model gamma_aj_bjk) Ψ(âj) = 1
n

∑K
k=1 t.k

(
(log(x))jk − log(b̂jk)

)
b̂jk =

x̄jk
âj
,

(36)

• if B = bk (model gamma_aj_bk)
Ψ(âj) = 1

n

∑K
k=1 t.k

(
(log(x))jk − log(b̂k)

)
b̂k =

∑d
j=1 x̄

j
k∑d

j=1 â
j

(37)

4. If A = a, then

dl

da
=

K∑
k=1

d∑
j=1

t.k

(
(log(x))jk − log(B)

)
− ndΨ(a).

and thus

• if B = bjk (model gamma_a_bjk) Ψ(â) = 1
nd

∑d
j=1

∑K
k=1 t.k

(
(log(x))jk − log(b̂jk)

)
b̂jk =

x̄jk
â ,

(38)
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• if B = bk (model gamma_a_bk) Ψ(â) = 1
nd

∑d
j=1

∑K
k=1 t.k

(
(log(x))jk − log(b̂k)

)
b̂k =

∑d
j=1 x̄

j
k

dâ

(39)

In the next sections, we will describe for some models the way to estimate A and B when
A = ajk.

B.1. First algorithm for the M Step of the gamma models

Among the twelve models, we can find six models from whom it is possible to estimate in
a single pass of the Brent’s method the value of A and then to estimate the value of B.
For example for the gamma_ajk_bjk model, using (28) gives âjk solution in a of the following
equation

(log(x))jk −Ψ(a)− log(x̄jk) + log(a) = 0 (40)

whom solution can be found using Brent’s method Brent (1973).

Having found the estimator of the ajk, the estimator of bjk can be computed.

B.2. Second algorithm for the M Step of the gamma models

For the other models we have to iterate in order to find the ML estimators. For example for
the gamma_ajk_bj model, the set of non-linear equations (30) can be solved using an iterative
algorithm:

• Initialization: Compute an initial estimator of the ak, k = 1, . . .K and b using mo-
ment estimators.

• Repeat until convergence :

– a step: For fixed bj solve for each ajk, the equation:

Ψ(a)− (log(x))jk + log(bj) = 0.

– b step: Update bj using equation (30).

This algorithm minimize alternatively the log-likelihood in ak, k = 1, . . . n and in b and
converge in few iterations.
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