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Abstract

The R package tscount provides likelihood-based estimation methods for analysis and
modelling of count time series following generalized linear models. This is a flexible class
of models which can describe serial correlation in a parsimonious way. The conditional
mean of the process is linked to its past values, to past observations and to potential
covariate effects. The package allows for models with the identity and with the logarithmic
link function. The conditional distribution can be Poisson or Negative Binomial. An
important special case of this class is the so-called INGARCH model and its log-linear
extension. The package includes methods for model fitting and assessment, prediction and
intervention analysis. This paper summarizes the theoretical background of these methods
with references to the literature for further details. It gives details on the implementation
of the package and provides simulation results for models which have not been studied
theoretically before. The usage of the package is demonstrated by two data examples.

Keywords: intervention analysis, mixed Poisson, model selection, prediction, R, regression
model, serial correlation.

1. Introduction

Recently, there has been an increasing interest in regression models for time series of counts
and a quite considerable number of publications on this subject has appeared in the literature.
However, most of the proposed methods are not yet available in statistical software packages
and hence they cannot be applied easily. We aim at filling this gap and publish a package named
tscount for the popular free and open source software environment R (R Core Team 2014).
In fact, our main goal is to develop software for models that include a latent process similar
to the case of ordinary generalized autoregressive conditional heteroscedasticity (GARCH)
models (Bollerslev 1986).

Count time series appear naturally in various areas whenever a number of events per time
period is observed over time. Examples showing the wide range of applications are the daily
number of hospital admissions from public health, the number of stock market transactions
per minute from finance or the hourly number of defect items from industrial quality control.

Models for count time series should take into account that the observations are nonnegative
integers and they should capture suitably the dependence among observations. A convenient
and flexible approach is to employ the generalized linear model (GLM) methodology (Nelder
and Wedderburn 1972) for modeling the observations conditionally on the past information,
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choosing a distribution suitable for count data and an appropriate link function. This approach
is pursued in detail by Fahrmeir and Tutz (2001, Chapter 6) and Kedem and Fokianos (2002,
Chapters 1–4), among others.

Another important class of models for time series of counts is based on the thinning operator,
like the integer autoregressive moving average (INARMA) models, which, in a way, imitate
the structure of the common autoregressive moving average (ARMA) models (for a recent
review see Weiß 2008). Another type of count time series models are the so-called state space
models. We refer to the reviews of Fokianos (2011), Jung and Tremayne (2011), Fokianos
(2012), Tjøstheim (2012) and Fokianos (2015) for an in-depth overview of models for count
time series.

In the first version of the tscount package we provide likelihood-based methods for the
framework of count time series following GLMs. For independent data or some simple
dependence structures of low order these models can be fitted with standard software for
GLMs (see Section A.2); for example the R function glm produces accurate results. The
implementations in our package tscount allows for a more general dependence structure which
can be specified conveniently by the user. Accordingly we fit time series models which include
a latent process, similarly to the GARCH class of models. The usage and output of our
functions is in parts inspired by the R functions glm and arima. We provide many standard
S3 methods which are known from other functions. The related R package acp (Siakoulis 2014)
has been published recently and provides maximum likelihood fitting of a simplified first order
version of models that we consider. Our package tscount covers a much wider class of models
and includes this model as a special case. The R package surveillance (Höhle, Meyer, and Paul
2015) contains, amongst others, methods for modelling and change point detection in count
time series. It includes a first order version of the models covered by our package but without
the dependence on the latent mean process.

The functionality of our package tscount partly goes beyond the theory available in the
literature since theoretical investigation of these models is still an ongoing research theme.
For instance consider the problem of accommodating covariates in such GLM-type count time
series models or fitting a mixed Poisson log-linear model. These topics have not been studied
theoretically. We have checked their appropriateness by simulations reported in Appendix B.
However, some care should be taken when applying the package’s programs to situations which
are not covered by existing theory.

This paper is organized as follows. At first the theoretical background of the methods included
in the package is briefly summarized with references to the literature for more details. Section 2
introduces the models we consider. Section 3 describes quasi maximum likelihood estimation of
the unknown model parameters and gives some details regarding its implementation. Section 4
treats prediction with such models. Section 5 sums up tools for model assessment. Section 6
discusses procedures for detection of interventions. Section 7 demonstrates the usage of
the package with two data examples. Finally, Section 8 gives an outlook on possible future
extensions of the package. In the Appendix we give some additional details and confirm by
simulation some of the new methods which have not yet been treated theoretically in the
literature.
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2. Models

Denote a count time series by tYt : t P Nu. We will denote by tXt : t P Nu a time-varying
r-dimensional covariate vector, say Xt � pXt,1, . . . ,Xt,rqJ. We model the conditional mean
E pYt|Ft�1q of the count time series by a latent mean process, say tλt : t P Nu, such that
E pYt|Ft�1q � λt. Denote by Ft the history of the joint process tYt, λt,Xt�1 : t P Nu up to
time t including the covariate information at time t� 1. The distributional assumption for Yt
given Ft�1 is discussed later. We are interested in models of the general form

gpλtq � β0 �
p̧

k�1

βk rgpYt�ikq � q̧

`�1

α`gpλt�j`q � ηJXt, (1)

where g : R� Ñ R is a link function and rg : R� Ñ R is a transformation function. The
parameter vector η � pη1, . . . , ηrqJ corresponds to the effects of covariates. In the terminology
of GLMs we call νt � gpλtq the linear predictor. To allow for regression on arbitrary past
observations of the response, define a set P � ti1, i2, . . . , ipu with p P N0 and integers 0   i1  
i2 . . .   ip   8. This enables us to regress on the lagged observations Yt�i1 , Yt�i2 , . . . , Yt�ip .
Analogously, define a set Q � tj1, j2, . . . , jqu with q P N0 and integers 0   j1   j2 . . .   jq   8
for regression on lagged latent means λt�j1 , λt�j2 , . . . , λt�jq . This more general case is covered
by the theory for models with P � t1, . . . , pu and Q � t1, . . . , qu, which are usually treated in
the literature, by choosing p and q sufficiently large and setting unnecessary model parameters
to zero.

We give several examples of model (1). Consider the situation where g and rg equal the identity,
i.e., gpxq � rgpxq � x. Furthermore, let P � t1, . . . , pu, Q � t1, . . . , qu and η � 0. Then we
obtain from (1) that

λt � β0 �
p̧

k�1

βk Yt�k �
q̧

`�1

α`λt�`. (2)

Assuming further that Yt given the past is Poisson distributed, then we obtain an integer-valued
GARCH model of order p and q, in short INGARCH(p,q). These models have been discussed
by Heinen (2003), Ferland, Latour, and Oraichi (2006) and Fokianos, Rahbek, and Tjøstheim
(2009), among others. When η � 0, then our package fits INGARCH models with nonnegative
covariates; this is so because we need to ensure that the resulting mean process is positive.
An example of an INGARCH model with covariates is given in Section 6, where we fit a count
time series model which includes intervention effects.

Consider again model (1) but now with the logarithmic link function gpxq � logpxq, rgpxq �
logpx� 1q and P , Q as before. Then, we obtain a log-linear model of order p and q for the
analysis of count time series. Indeed, set νt � logpλtq to obtain from (1) that

νt � β0 �
p̧

k�1

βk logpYt�k � 1q �
q̧

`�1

α`νt�`. (3)

This log-linear model is studied by Fokianos and Tjøstheim (2011), Woodard, Matteson,
and Henderson (2011) and Douc, Doukhan, and Moulines (2013). We follow Fokianos and
Tjøstheim (2011) in transforming past observations by employing the function rgpxq � logpx�1q,
such that they are on the same scale as the linear predictor νt (see Fokianos and Tjøstheim
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(2011) for a discussion and for showing that the addition of a constant to each observation
to avoid zeros does not affect inference). Note that model (3) allows modeling of negative
serial correlation, whereas (2) accommodates positive serial correlation only. Additionally, (3)
accommodates covariates easier than (2) since the log-linear model implies positivity of the
conditional mean process tλtu. The effects of covariates on the response is multiplicative for
model (3); it is additive for model (2). For a discussion on the inclusion of time-dependent
covariates see Fokianos and Tjøstheim (2011, Section 4.3).

Model (1) together with the Poisson assumption, i.e., Yt|Ft�1 � Poissonpλtq, implies that

P pYt � y|Ft�1q � λyt expp�λtq
y!

, y � 0, 1, . . . . (4)

Obviously, VAR pYt|Ft�1q � E pYt|Ft�1q � λt. Hence in the case of a conditional Poisson
response model the latent mean process is identical to the conditional variance of the observed
process.

The Negative Binomial distribution allows for a conditional variance larger than λt. Following
Christou and Fokianos (2014), it is assumed that Yt|Ft�1 � NegBinpλt, φq, where the Negative
Binomial distribution is parametrized in terms of its mean with an additional dispersion
parameter φ P p0,8q, i.e.,

P pYt � y|Ft�1q � Γpφ� yq
Γpy � 1qΓpφq

�
φ

φ� λt


φ� λt
φ� λt


y
, y � 0, 1, . . . . (5)

In this case, VAR pYt|Ft�1q � λt � λ2
t {φ, i.e., the conditional variance increases quadratically

with λt. The Poisson distribution is a limiting case of the Negative Binomial when φÑ8.

Note that the Negative Binomial distribution belongs to the class of mixed Poisson processes.
A mixed Poisson process is specified by setting Yt � Ntp0, Ztλts, where tNtu are i.i.d. Poisson
processes with unit intensity and tZtu are i.i.d. random variables with mean 1 and variance
σ2. When tZtu is an i.i.d. process of Gamma random variables, then we obtain the Negative
Binomial process with σ2 � 1{φ. We refer to σ2 as the overdispersion coefficient because it
is proportional to the extent of overdispersion of the conditional distribution. The limiting
case of σ2 � 0 corresponds to the Poisson distribution, i.e., no overdispersion. The estimation
procedure we study is not confined to the Negative Binomial case but to any mixed Poisson
distribution. However, the Negative Binomial assumption is required for prediction intervals
and model assessment; these topics are discussed in Sections 4 and 5.

In model (1) the effect of a covariate fully enters the dynamics of the process and propagates
to future observations both by the regression on past observations and by the regression on
past latent means. The effect of such covariates can be seen as an internal influence on the
data-generating process, which is why we refer to it as an ’internal’ covariate effect. We also
allow to include covariates in a way that their effect only propagates to future observations by
the regression on past observations but not directly by the regression on past latent means.
Following Liboschik, Kerschke, Fokianos, and Fried (2014), who make this distinction for the
case of intervention effects described by deterministic covariates, we refer to the effect of such
covariates as an ’external’ covariate effect. Let e � pe1, . . . , erqJ be a vector specified by the
user with ei � 1 if the i-th component of the covariate vector has an external effect and ei � 0
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otherwise, i � 1, . . . , r. Denote by diagpeq a diagonal matrix with diagonal elements given by
e. The generalization of (1) allowing for both internal and external covariate effects then reads

gpλtq � β0 �
p̧

k�1

βk rgpYt�ikq � q̧

`�1

α`
�
gpλt�j`q � ηJdiagpeqXt�j`

�� ηJXt. (6)

Basically, the effect of all covariates with an external effect is subtracted in the feedback terms
such that their effect does enter the dynamics of the process only via the observations. We
refer to Liboschik et al. (2014) for an extensive discussion of internal versus external effects. It
is our experience with these models that an empirical discrimination between internal and
external covariate effects is difficult and that it is not crucial which type of covariate effect to
fit in practical applications.

3. Estimation and inference

The tscount package fits models of the form (1) by quasi conditional maximum likelihood (ML)
estimation (function tsglm). If the Poisson assumption holds true, then we obtain an ordinary
ML estimator. However, under the mixed Poisson assumption we obtain a quasi-ML estimator.
Denote by θ � pβ0, β1, . . . , βp, α1, . . . , αq, η1, . . . , ηrqJ the vector of regression parameters.
Regardless of the distributional assumption the parameter space for the INGARCH model (2)
with covariates is given by

Θ �
#
θ P Rp�q�r�1 : β0 ¡ 0, β1, . . . , βp, α1, . . . , αq, η1, . . . , ηr ¥ 0,

p̧

i�1

βi �
q̧

j�1

αj   1

+
.

The intercept β0 must be positive and all other parameters must be nonnegative to ensure
positivity of the latent mean process. The other condition ensures that the fitted model has a
stationary solution (cf. Ferland et al. 2006, Proposition 1). For the log-linear model (3) with
covariates the parameter space is taken to be

Θ �
#
θ P Rp�q�r�1 : |β1|, . . . , |βp|, |α1|, . . . , |αq|   1,

�����
p̧

i�1

βi �
q̧

j�1

αj

�����   1

+
.

This is intended to be the generalization (for model order p,q) of the conditions |β1|   1,
|α1|   1 and |β1 � α1|   1, which Douc et al. (2013, Lemma 14) derive for the first order
model. Christou and Fokianos (2014) point out that with the parametrization (5) of the
Negative Binomial distribution the estimation of the regression parameters θ does not depend
on the additional dispersion parameter φ. This allows to employ a quasi maximum likelihood
approach based on the Poisson likelihood to estimate the regression parameters θ, which is
described below. The nuisance parameter φ is then estimated separately in a second step.

The log-likelihood, score vector and information matrix are derived conditionally on pre-
sample values of the time series and the latent mean process tλtu. An appropriate initialization
is needed for their evaluation, which is discussed in the next subsection. For a stretch of
observations y � py1, . . . , ynqJ, the conditional quasi log-likelihood function, up to a constant,
is given by

`pθq �
ņ

t�1

log ptpyt;θq9
ņ

t�1

�
yt lnpλtpθqq � λtpθq

	
, (7)
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where ptpy;θq � PpYt � y|Ft�1q is the p.d.f. of a Poisson distribution as defined in (4). The
latent mean process is regarded as a function λt : Θ Ñ R� and thus it is denoted by λtpθq for
all t. The conditional score function is the pp� q � r � 1q-dimensional vector given by

Snpθq � B`pθq
Bθ �

ņ

t�1

�
yt

λtpθq � 1


 Bλtpθq
Bθ . (8)

The vector of partial derivatives Bλtpθq{Bθ can be computed recursively by the recursions
given in Appendix A.1. Finally, the conditional information matrix is given by

Gnpθ;σ2q �
ņ

t�1

COV

� B`pθ;Ytq
Bθ

����Ft�1



�

ņ

t�1

�
1

λtpθq � σ2


�Bλtpθq
Bθ


�Bλtpθq
Bθ


J
.

In the case of the Poisson assumption it holds σ2 � 0 and in the case of the Negative Binomial
assumption σ2 � 1{φ. For the ease of notation let G�

npθq � Gnpθ; 0q, which is the conditional
information matrix in case of a Poisson distribution.

The quasi maximum likelihood (QML) estimator θ̂n of θ is, assuming that it exists, the
solution of the non-linear constrained optimization problem

pθn � arg maxθPΘ`pθq. (9)

As proposed by Christou and Fokianos (2014), the dispersion parameter φ of the Negative
Binomial distribution is estimated by solving the equation

ņ

t�1

pYt � pλtq2pλtp1� pλt{pφq � n�m, (10)

which is based on Pearson’s χ2 statistic. The variance parameter σ2 is estimated by pσ2 � 1{pφ.
For the Poisson distribution we set pσ2 � 0. Strictly speaking, the log-linear model (3) does
not fall into the class of models considered by Christou and Fokianos (2014). However, results
obtained by Douc et al. (2013) allow to use this estimator also for the log-linear model (for
p � q � 1). This issue is addressed by simulations in Appendix B.2, which support that the
estimator obtained by (10) provides good results also for models with the logarithmic link
function.

Inference for the regression parameters is based on the asymptotic normality of the QML
estimator, which has been shown by Fokianos et al. (2009) and Christou and Fokianos (2014)
for models without covariates. For a well behaved covariate process tXtu we conjecture that

?
n
�pθn � θ0

	
dÝÑ Np�q�r�1

�
0, G�1

n ppθ; pσ2qG�
nppθqG�1

n ppθ; pσ2q
	
, (11)

as n Ñ 8, where θ0 denotes the true parameter value and pσ2 is a consistent estimator of
σ2. We suppose that this applies under the same assumptions usually made for the ordinary
linear regression model (see for example Demidenko 2013, p. 140 ff.). For deterministic
covariates these assumptions are ||Xt||   c, i.e., the covariate process is bounded, and
limnÑ8 n

�1
°n
t�1XtX

J
t � A, where c is a constant and A is a nonsingular matrix. For

stochastic covariates it is assumed that the expectations E pXtq and E
�
XtX

J
t

�
exist and that

E
�
XtX

J
t

�
is nonsingular. The assumptions imply that the information on each covariate grows
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linearly with the sample size and that the covariates are not linearly dependent. Fuller (1996,
Theorem 9.1.1) shows asymptotic normality of the least squares estimator for a regression
model with time series errors under even more general conditions which allow the presence of
certain types of trends in the covariates. The asymptotic normality of the QML estimator
in our context is supported by the simulations presented in Appendix B.1. A formal proof
requires further research. To avoid numerical instabilities when inverting Gnppθ; pσ2q we apply
an algorithm which makes use of the fact that it is a real symmetric and positive definite
matrix; see Appendix A.3.

An alternative to the normal approximation (11) for obtaining standard errors is a parametric
bootstrap procedure, which is part of our package (function se). Accordingly, B time series
are simulated from the model fitted to the original data. The empirical standard errors of the
parameter estimates for these B time series are the bootstrap standard errors. This procedure
can compute standard errors not only for the estimated regression parameters but also for the
dispersion coefficient pσ2.

Implementation

The parameter restrictions which are imposed by the condition θ P Θ can be formulated as d
linear inequalities. This means that there exists a matrix U of dimension d� pp� q � r � 1q
and a vector c of length d, such that Θ � tθ|Uθ ¥ cu. For the linear model (2) one needs
d � p� q � r� 2 constraints to ensure nonnegativity of the latent mean λt and stationarity of
the resulting process. For the log-linear model (3) there are neither constraints on the intercept
nor on the covariate coefficients and the total number of constraints is d � 2pp� q � 1q. In
order to enforce strict inequalities the respective constraints are tightened by an arbitrarily
small constant ξ ¡ 0; this constant is set to ξ � 10�6 by default (argument slackvar).

For solving numerically the maximization problem (9) we employ the function constrOptim.
This function applies an algorithm described by Lange (1999, Chapter 14), which essentially
enforces the constraints by adding a barrier value to the objective function and then employs
an algorithm for unconstrained optimization of this new objective function, iterating these two
steps if necessary. By default the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm is employed for the latter task of unconstrained optimization, which additionally
makes use of the score vector (8).

Note that the log-likelihood (7) and the score (8) are conditional on unobserved pre-sample
values. They depend on the linear predictor and its partial derivatives, which can be computed
recursively using any initialization. We give the recursions and present several strategies for
their initialization in Appendix A.1 (arguments init.method and init.drop). Christou and
Fokianos (2014, Remark 3.1) show that the effect of the initialization vanishes asymptotically.
Nevertheless, from a practical point of view the initialization of the recursions is crucial.
Especially in the presence of strong serial dependence, the resulting estimates can differ
substantially even for long time series with 1000 observations; see the simulated example in
Table 2 in Appendix A.1.

Solving the non-linear optimization problem (9) requires a starting value for the parameter
vector θ. This starting value can be obtained from fitting a simpler model for which an
estimation procedure is readily available. We consider either to fit a GLM or to fit an ARMA
model. A third possibility is to fit a naive i.i.d. model without covariates. As a last choice, note
that we could use fixed values which need to be provided by the statistician. All possibilities
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are available in our package (argument start.control). It turns out that the optimization
algorithm converges very reliably even if the starting values are not close to the global optimum
of the likelihood. Of course, a starting value closer to the global optimum usually requires
fewer iterations until convergence. However, we have encountered some data examples where
starting values close to a local optimum, obtained by one of the first two estimation methods,
can even prevent finding the global optimum. Consequently, we recommend fitting the naive
i.i.d. model without covariates to obtain starting values. More details on these approaches are
given in Appendix A.2.

4. Prediction

In terms of the mean square error, the optimal 1-step-ahead predictor pYn�1 for Yn�1, given
potential covariates at time n � 1 and the past Fn of the process up to time n, is the
conditional expectation λn�1 given in (1) (S3 method of function predict). By construction
of the model the conditional distribution of pYn�1 is a Poisson (4) respectively Negative
Binomial (5) distribution with mean λn�1. An h-step-ahead prediction pYn�h for Yn�h is
obtained by recursive 1-step-ahead predictions, where unobserved values Yn�1, . . . , Yn�h�1

are replaced by their respective 1-step-ahead prediction, h P N. The distribution of this
h-step-ahead prediction pYn�h is not known analytically but can be approximated numerically
by a parametric bootstrap procedure, which is described below.

In applications λn�1 is substituted by its estimator pλn�1 � λn�1ppθq, which depends on the
estimated regression parameters pθ. The dispersion parameter φ of the Negative Binomial
distribution is replaced by its estimator pφ. Plugging in the estimated parameters does increase
the uncertainty of the predictive distribution. Note that this is not taken into account for the
construction of prediction intervals described in the following paragraphs.

Prediction intervals for Yn�h with a given coverage rate 1� α (argument level) are designed
to cover the true observation Yn�h with a probability of 1 � α. Simultaneous prediction
intervals achieving a global coverage rate for Yn�1, . . . , Yn�h can be obtained by a Bonferroni
adjustment of the individual coverage rates to 1� α{h each (argument global = TRUE).

There are two different principles for construction of predictions intervals available which in
practice often yield identical intervals. Firstly, the limits can be the pα{2q- and p1�α{2q-quantile
of the (approximated) predictive distribution (argument type = "quantiles"). Secondly, the
limits can be chosen such that the interval has minimal length given that, according to the
(approximated) predictive distribution, the probability that a value falls into this interval is at
least as large as the desired coverage rate (argument type = "shortest").

One-step-ahead prediction intervals can be straightforwardly obtained from the conditional
distribution (argument method = "conddistr"). Prediction intervals obtained by a para-
metric bootstrap procedure (argument method = "bootstrap") are based on B simulations

of realizations y
pbq
n�1, . . . , y

pbq
n�h from the fitted model, b � 1, . . . , B (argument B). To obtain

an approximative prediction interval for Yn�h one can either use the empirical pα{2q- and

p1 � α{2q-quantile of y
p1q
n�h, . . . , y

pBq
n�h (if type = "quantiles") or find the shortest interval

which contains at least rp1 � αq � Bs of these observations (if type = "shortest"). This
bootstrap procedure can be accelerated by distributing it to multiple cores simultaneously
(argument parallel = TRUE), which requires a computing cluster registered by the R package
parallel.
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5. Model assessment

Tools originally developed for generalized linear models as well as for time series can be
utilized to asses the model fit and its predictive performance. Within the class of count time
series following generalized linear models it is desirable to asses the specification of the linear
predictor as well as the choice of the link function and of the conditional distribution. Note
that all tools are introduced as in-sample versions, meaning that the observations y1 . . . , yn are
used for fitting the model as well as for assessing the obtained fit. However, it is straightforward
to apply such tools as out-of-sample criteria.

Denote the fitted values by pλt � λtppθq. Note that these do not depend on the chosen
distribution, because the mean is the same regardless of the response distribution. There are
various types of residuals available (S3 method of function residuals). Response (or raw)
residuals (argument type = "response") are given by

rt � yt � pλt,
whereas a standardized alternative are Pearson residuals (argument type = "pearson")

rPt � pyt � pλtq{bpλt � pλ2
t pσ2,

or the more symmetrically distributed Anscombe residuals (argument type = "anscombe")

rAt � 3pσ2
��

1� yt{pσ2
�2{3 � �1� pλt{pσ2

�2{3�� 3
�
y

2{3
t � pλ2{3

t

�
2
�pλ2

t {pσ2 � pλt�1{6
,

for t � 1, . . . , n (see for example Hilbe 2011, Section 5.1). The empirical autocorrelation
function of these residuals can demonstrate serial dependence which has not been explained by
the fitted model. A plot of the residuals against time can reveal changes of the data generating
process over time. Furthermore, a plot of squared residuals r2

t against the corresponding
fitted values pλt exhibits the relation of mean and variance and might point to the Poisson
distribution if the points scatter around the identity function or to the Negative Binomial
distribution if there exists a quadratic relation (see Ver Hoef and Boveng 2007).

Christou and Fokianos (2015b) extend tools for assessing the predictive performance to
count time series, which were originally proposed by Gneiting, Balabdaoui, and Raftery
(2007) and others for continuous data and transferred to independent but not identically
distributed count data by Czado, Gneiting, and Held (2009). These tools follow the prequential
principle formulated by Dawid (1984), depending only on the realized observations and
their respective forecast distributions. Denote by Ptpyq � P

�
Yt ¤ y|Ft�1

�
the c.d.f., by

ptpyq � P
�
Yt � y|Ft�1

�
the p.d.f., y P N0, and by σt the standard deviation of the predictive

distribution (recall Section 4 on one-step-ahead prediction).

A tool for assessing the probabilistic calibration of the predictive distribution (see Gneiting et al.
2007) is the probability integral transform (PIT), which will follow a uniform distribution if the
predictive distribution is correct. For count data Czado et al. (2009) define a non-randomized
PIT value for the observed value yt and the predictive distribution Ptpyq by

Ftpu|yq �

$'''&'''%
0, u ¤ Ptpy � 1q
u� Ptpy � 1q

Ptpyq � Ptpy � 1q , Ptpy � 1q   u   Ptpyq
1, u ¥ Ptpyq

.
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The mean PIT is then given by

F puq � 1

n

ņ

t�1

Ftpu|ytq, 0 ¤ u ¤ 1.

To check whether F puq is the c.d.f. of a uniform distribution Czado et al. (2009) propose plotting
a histogram with H bins, where bin h has the height fj � F ph{Hq�F pph�1q{Hq, h � 1, . . . , H
(function pit). By default H is chosen to be 10. A U-shape indicates underdispersion of the
predictive distribution, whereas an upside down U-shape indicates overdispersion. Gneiting
et al. (2007) point out that the empirical coverage of central, e.g., 90% prediction intervals
can be read off the PIT histogram as the area under the 90% central bins.

Marginal calibration is defined as the difference of the average predictive c.d.f. and the empirical
c.d.f. of the observations, i.e.,

1

n

ņ

t�1

Ptpyq � 1

n

ņ

t�1

1pyt ¤ yq

for all y P R. In practice we plot the marginal calibration for values y in the range of the
original observations (Christou and Fokianos 2015b) (function marcal). If the predictions from
a model are appropriate the marginal distribution of the predictions resembles the marginal
distribution of the observations and its plotted difference is close to zero. Major deviations
from zero point at model deficiencies.

Gneiting et al. (2007) show that the calibration assessed by a PIT histogram or a marginal
calibration plot is a necessary but not sufficient condition for a forecaster to be ideal. They
advocate to favor the model with the maximal sharpness among all sufficiently calibrated
models. Sharpness is the concentration of the predictive distribution and can be measured
by the width of prediction intervals. A simultaneous assessment of calibration and sharpness
summarized in a single numerical score can be accomplished by proper scoring rules (Gneiting
et al. 2007). Denote a score for the predictive distribution Pt and the observation yt by
spPt, ytq. A number of possible proper scoring rules is given in Table 1. The mean score for
each corresponding model is given by

°n
t�1 spPt, ytq{n. The model with the lowest score is

preferable. Each of the different proper scoring rules captures different characteristics of the
predictive distribution and its distance to the observed data (function scoring).

Scoring rule Abbreviation Definition

logarithmic score logarithmic � logpptpytqq
quadratic (or Brier) score quadratic �2ptpytq � }pt}2
spherical score spherical �ptpytq{ }pt}
ranked probability score rankprob

°8
y�0pPtpyq � 1pyt ¤ yqq2

Dawid-Sebastiani score dawseb pyt � λtq2{σ2
t � 2 logpσtq

normalized squared error score normsq pyt � λtq2{σ2
t

squared error score sqerror pyt � λtq2

Table 1: Definitions of proper scoring rules spPt, ytq (cf. Czado et al. 2009; Christou and
Fokianos 2015b) and their abbreviations in the package; }pt}2 �

°8
y�0 ptpyq2.
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6. Intervention analysis

In many applications sudden changes or extraordinary events occur. Box and Tiao (1975) refer
to such special events as interventions. This could be for example the outbreak of an epidemic
in a time series which counts the weekly number of patients infected with a particular disease.
It is of interest to examine the effect of known interventions, for example to judge whether a
policy change had the intended impact, or to search for unknown intervention effects and find
explanations for them a posteriori.

Fokianos and Fried (2010, 2012) model interventions affecting the location by including a
deterministic covariate of the form δt�τ1pt ¥ τq, where τ is the time of occurrence and δ is a
known constant (function interv_covariate). This covers various types of interventions for
different choices of the constant δ: a singular effect for δ � 0 (spiky outlier), an exponentially
decaying change in location for δ P p0, 1q (transient shift) and a permanent change of location
for δ � 1 (level shift). Similar to the case of covariates, the effect of an intervention is
essentially additive for the linear model and multiplicative for the log-linear model. However,
the intervention enters the dynamics of the process and hence its effect on the linear predictor
is not purely additive. Our package includes methods to test on such intervention effects
developed by Fokianos and Fried (2010, 2012), suitably adapted to the more general model
class described in Section 2. The linear predictor of a model with s types of interventions
according to parameters δ1, . . . , δs occurring at time points τ1, . . . , τs reads

gpλtq � β0 �
p̧

k�1

βk rgpYt�ikq � q̧

`�1

α`gpλt�j`q � ηJXt �
ş

m�1

ωmδ
t�τm
m 1pt ¥ τmq, (12)

where ω1, . . . , ωs are the respective intervention sizes. At the time of its occurrence an
intervention of size ω` increases the level of the time series by adding the magnitude ω` for a
linear model like (2) or by multiplying the factor exppω`q for a log-linear model like (3). In
the following paragraphs we briefly outline the proposed intervention detection procedures
and refer to the original articles for details.

Our package allows to test whether s interventions of certain types occurring at given time
points according to model (12) have an effect on the observed time series, i.e., to test the
hypothesis H0 : ω1 � . . . � ωs � 0 against the alternative H1 : ω` � 0 for some ` P t1, . . . , su,
by employing an approximate score test (function interv_test). Under the null hypothesis
the score test statistic Tnpτ1, . . . , τsq has asymptotically a χ2-distribution with s degrees of
freedom, assuming some regularity conditions and for a sufficiently large sample size.

For testing whether a single intervention of a certain type occurring at an unknown time
point τ has an effect, the package employs the maximum of the score test statistics Tnpτq and
determines a p value by a parametric bootstrap procedure (function interv_detect). If we
consider a set D of time points at which the intervention might occur, e.g., D � t2, . . . , nu, this
test statistic is given by rTn � maxτPD Tnpτq. The bootstrap procedure can be computed on
multiple cores simultaneously (argument parallel = TRUE). The time point of the intervention
is estimated to be the value τ which maximizes this test statistic. Our empirical observation
is that such an estimator usually has a large variability. It is possible to speed up the
computation of the bootstrap test statistics by using the model parameters used for generation
of the bootstrap samples instead of estimating them for each bootstrap sample (argument
final.control_bootstrap = NULL). This results in a conservative procedure, as noted by
Fokianos and Fried (2012).
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If more than one intervention is suspected in the data, but neither their types nor the
time points of its occurrences are known, an iterative detection procedure is used (function
interv_multiple). Consider the set of possible intervention times D as before and a set of
possible intervention types ∆, e.g., ∆ � t0, 0.8, 1u. In a first step the time series is tested for
an intervention of each type δ P ∆ as described in the previous paragraph and the p values are
Bonferroni-corrected to account for the multiple testing. If none of the p values is below a
previously specified significance level, the procedure stops and does not identify an intervention
effect. Otherwise the procedure detects an intervention of the type corresponding to the lowest
p value. In case of equal p values preference is given to interventions with δ � 1, that is level
shifts, and then to those with the largest test statistic. In a second step, the effect of the
detected intervention is eliminated from the time series and the procedures starts a new step
and continues until no further intervention effects are detected. Finally, model (12) with all
detected intervention effects can be fitted to the data to estimate the intervention sizes and
the other parameters jointly. Note that statistical inference for this final model fit has to be
done with care. Further details are given in Fokianos and Fried (2010, 2012).

Liboschik et al. (2014) study a model for external intervention effects (modeled by external
covariate effects, recall (6) and the related discussion) and compare it to internal intervention
effects studied in the two aforementioned publications (argument external).

7. Usage of the package

The most recent stable version of the tscount package is distributed via the Comprehensive
R Archive Network (CRAN). A current development version is available from the project’s
website http://tscount.r-forge.r-project.org on the development platform R-Forge.
After installation of the package it can be loaded in R by typing library("tscount").

The central function for fitting a GLM for count time series is tsglm, whose help page
(accessible by help(tsglm)) is a good starting point to become familiar with the usage of the
package. We demonstrate typical applications of the package by two data examples.

7.1. Campylobacter infections in Canada

We first analyze the number of campylobacterosis cases (reported every 28 days) in the north
of Québec in Canada shown in Figure 1, which was first reported by Ferland et al. (2006).
These data are made available in our package by the object campy. We fit a model to this time
series using the function tsglm. Following the analysis of Ferland et al. (2006) we fit model (2)
with the identity link function, defined by the argument link. For taking into account serial
dependence we include a regression on the previous observation. Seasonality is captured by
regressing on λt�13, the unobserved conditional mean 13 time units (which is one year) back in
time. The aforementioned specification of the model for the linear predictor is assigned by the
argument model, which has to be a list. We also include the two intervention effects detected
by Fokianos and Fried (2010) in the model by suitably chosen covariates provided by the
argument xreg. We compare a fit of a Poisson with that of a Negative Binomial conditional
distribution, specified by the argument distr. The call for both model fits is then given by:

R> interventions <- interv_covariate(n = length(campy), tau = c(84, 100),

+ delta = c(1, 0))

http://tscount.r-forge.r-project.org
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Figure 1: Number of campylobacterosis cases (reported every 28 days) in the north of Québec
in Canada.

R> campyfit_pois <- tsglm(campy, model = list(past_obs = 1, past_mean = 13),

+ xreg = interventions, dist = "poisson")

R> campyfit_nbin <- tsglm(campy, model = list(past_obs = 1, past_mean = 13),

+ xreg = interventions, dist = "nbinom")

The resulting fitted models campyfit_pois and campyfit_nbin have class "tsglm", for which
a number of methods is provided (see help page), including summary for a detailed model
summary and plot for diagnostic plots. The diagnostic plots in Figure 2 are produced by:

R> acf(residuals(campyfit_pois), main = "ACF of response residuals")

R> marcal(campyfit_pois, ylim = c(-0.03, 0.03), main = "Marginal calibration")

R> lines(marcal(campyfit_nbin, plot = FALSE), lty = "dashed")

R> legend("bottomright", legend = c("Pois", "NegBin"), lwd = 1,

+ lty = c("solid", "dashed"))

R> pit(campyfit_pois, ylim = c(0, 1.5), main = "PIT Poisson")

R> pit(campyfit_nbin, ylim = c(0, 1.5), main = "PIT Negative Binomial")

The response residuals are identical for the two conditional distributions. Their empirical
autocorrelation function, shown in Figure 2 top left, does not exhibit remaining serial correlation
or seasonality which is not described by the models. The U-shape of the non-randomized PIT
histogram in Figure 2 bottom left indicates that the Poisson distribution does not fully capture
this dispersion well, although the U-shape is not very pronounced. As opposed to this, the
PIT histogram which corresponds to the Negative Binomial distribution appears to approach
uniformity better. Hence the probabilistic calibration of the Negative Binomial model is
satisfactory. The marginal calibration plot, shown in Figure 2 top right, is inconclusive. As a
last tool we consider the scoring rules for the two distributions:
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Figure 2: Diagnostic plots for a fit to the campylobacterosis data.

R> rbind(Poisson = scoring(campyfit_pois), NegBin = scoring(campyfit_nbin))

logarithmic quadratic spherical rankprob dawseb normsq sqerror

Poisson 2.7499 -0.076698 -0.27511 2.1999 3.6619 1.30756 16.508

NegBin 2.7219 -0.078001 -0.27660 2.1999 3.6057 0.96429 16.508

All considered scoring rules are in favor of the Negative Binomial distribution. Based on the
the PIT histograms and the results obtained by the scoring rules, we decide for a Negative
Binomial model. The degree of overdispersion seems to be small, as the estimated overdispersion
coefficient ’sigmasq’ given in the output below is close to zero.

R> summary(campyfit_nbin)

Call:

tsglm(ts = campy, model = list(past_obs = 1, past_mean = 13),

xreg = interventions, distr = "nbinom")

Coefficients:
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Estimate Std. Error

(Intercept) 3.3169 0.7850

beta_1 0.3689 0.0696

alpha_13 0.2201 0.0942

interv_1 3.0864 0.8561

interv_2 41.8628 12.0693

sigmasq 0.0297 NA

Standard errors obtained by normal approximation.

Link function: identity

Distribution family: nbinom (with overdispersion coefficient 'sigmasq')
Number of coefficients: 6

Log-likelihood: -381.07

AIC: 774.14

BIC: 791.79

The coefficient beta_1 corresponds to regression on the previous observation, alpha_13

corresponds to regression on values of the latent mean thirteen units back in time. The
standard errors of the estimated regression parameters in the summary above are based
on the normal approximation given in (11). For the additional overdispersion coefficient
sigmasq of the Negative Binomial distribution there is no analytical approximation available
for its standard error. Alternatively, standard errors of the regression parameters and the
overdispersion coefficient can be obtained by a parametric bootstrap (which takes about 15
minutes computation time on a single 3.2 GHz processor for 500 replications):

R> se(campyfit_nbin, B = 500)$se

(Intercept) beta_1 alpha_13 interv_1 interv_2 sigmasq

0.897108 0.073624 0.102662 0.892536 11.719837 0.014177

Warning message:

In se.tsglm(campyfit_nbin, B = 500) :

The overdispersion coefficient 'sigmasq' could not be estimated

in 13 of the 500 replications. It is set to zero for these

replications. This might to some extent result in an overestimation

of its true variability.

Estimation problems for the dispersion parameter (see warning message) occur occasionally
for models where the true overdispersion coefficient σ2 is small, i.e., which are close to a
Poisson model; see Appendix B.2. The bootstrap standard errors of the regression parameters
are slightly larger than those based on the normal approximation. Note that neither of the
approaches reflects the additional uncertainty induced by the model selection.

7.2. Road casualties in Great Britain

Next we study the monthly number of killed drivers of light goods vehicles in Great Britain
between January 1969 and December 1984 shown in Figure 3. This time series is part of
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Figure 3: Monthly number of killed van drivers in Great Britain. The introduction of
compulsory wearing of seatbelts on 31 January 1983 is marked by a vertical line.

a dataset which was first considered by Harvey and Durbin (1986) for studying the effect
of compulsory wearing of seatbelts introduced on 31 January 1983. The dataset, including
additional covariates, is available in R in the object Seatbelts. In their paper Harvey and
Durbin (1986) analyze the numbers of casualties for drivers and passengers of cars, which are so
large that they can be treated with methods for continuous-valued data in good approximation.
The monthly number of killed drivers of vans analyzed here is much smaller (its minimum is 2
and its maximum 17) and therefore methods for count data are to be preferred.

For model selection we only use the data until December 1981. We choose the log-linear model
with the logarithmic link because it allows for negative covariate effects. We try to capture the
short range serial dependence by a first order autoregressive term and the yearly seasonality
by a 12th order autoregressive term, both declared by the list element named ’past_obs’ of
the argument model. Following Harvey and Durbin (1986) we use the real price of petrol as
an explanatory variable. We also include a deterministic covariate describing a linear trend.
Both covariates are provided by the argument xreg. Based on PIT histograms, a marginal
calibration plot and the scoring rules (not shown here) we find that the Poisson distribution is
sufficient for modeling. The model is fitted by the call:

R> timeseries <- Seatbelts[, "VanKilled"]

R> regressors <- cbind(PetrolPrice = Seatbelts[, c("PetrolPrice")],

+ linearTrend = seq(along=timeseries)/12)

R> timeseries_until1981 <- window(timeseries, end = 1981+11/12)

R> regressors_until1981 <- window(regressors, end = 1981+11/12)

R> seatbeltsfit <- tsglm(timeseries_until1981,

+ model = list(past_obs=c(1, 12)), link = "log", distr = "pois",

+ xreg = regressors_until1981)

R> summary(seatbeltsfit, B = 500)

Call:

tsglm(ts = timeseries_until1981, model = list(past_obs = c(1,
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12)), xreg = regressors_until1981, link = "log", distr = "pois")

Coefficients:

Estimate Std. Error

(Intercept) 1.8315 0.34738

beta_1 0.0862 0.09342

beta_12 0.1558 0.08284

PetrolPrice 0.7980 1.94571

linearTrend -0.0307 0.00828

Standard errors obtained by parametric bootstrap with 50 replications.

Link function: log

Distribution family: poisson

Number of coefficients: 5

Log-likelihood: -396.15

AIC: 802.3

BIC: 817.55

The estimated coefficient beta_1 corresponding to the first order autocorrelation is very small
and even slightly below the size of its approximative standard error, indicating that there is
no notable dependence on the number of killed van drivers of the preceding week. We find a
seasonal effect captured by the twelfth order autocorrelation coefficient beta_12. Unlike in
the model for the car drivers by Harvey and Durbin (1986), the petrol price does not seem to
influence the number of killed van drivers. An explanation might be that vans are much more
often used for commercial purposes than cars and that commercial traffic is less influenced
by the price of fuel. The linear trend can be interpreted as a yearly reduction of the number
of casualties by a factor of 0.97 (obtained by exponentiating the corresponding estimated
coefficient), i.e., on average we expect 3% fewer killed van drivers per year (which is below one
in absolute numbers).

Based on the model fitted to the training data until December 1981, we can predict the number
of road casualties in 1982 given the respective petrol price. A graphical representation of the
following predictions is given in Figure 4.

R> timeseries_1982 <- window(timeseries, start = 1982, end = 1982+11/12)

R> regressors_1982 <- window(regressors, start = 1982, end = 1982+11/12)

R> predict(seatbeltsfit, n.ahead = 12, level = 0.9, global = TRUE,

+ B = 2000, newxreg=regressors_1982)$pred

Jan Feb Mar Apr May Jun Jul Aug Sep Oct

1982 7.7023 7.4137 7.5329 7.3823 7.1778 6.9672 7.1296 7.8445 7.5113 7.8402

Nov Dec

1982 8.0493 7.4562

Finally, we test whether there was an abrupt shift in the number of casualties occurring when
the compulsory wearing of seatbelts is introduced on 31 January 1983. The approximative
score test described in Section 6 is applied:
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Figure 4: Fitted values (blue dashed line) and predicted values (red solid line) according to the
model with the Poisson distribution. Prediction intervals (grey bars) are designed to ensure
a global coverage rate of 90%. They are chosen to have minimal length and are based on a
simulation with 2000 replications.

R> seatbeltsfit_alldata <- tsglm(timeseries, link = "log",

+ model = list(past_obs = c(1, 12)),

+ xreg = regressors, distr = "pois")

R> interv_test(seatbeltsfit_alldata, tau = 170, delta = 1, est_interv = TRUE)

Score test on intervention(s) of given type at given time

Chisq-Statistic: 46.806 on 1 degree(s) of freedom, p-value: 7.8374e-12

Fitted model with the specified intervention:

Call:

tsglm(ts = fit$ts, model = model_extended, xreg = xreg_extended,

link = fit$link, distr = fit$distr)

Coefficients:

(Intercept) beta_1 beta_12 PetrolPrice linearTrend

1.93358 0.08185 0.13918 0.41617 -0.03463

interv_1

-0.21696

The null hypothesis of no intervention is rejected at a 5% significance level. The multiplicative
effect size of the intervention is found to be 0.805. This indicates that according to this model
fit 19.5% less van drivers are killed after the law enforcement. For comparison, Harvey and
Durbin (1986) estimate a reduction of 18% for the number of killed car drivers.
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8. Outlook

In its current version the R package tscount allows the analysis of count time series with a
quite broad class of models. It will hopefully proof to be useful for a wide range of applications.
Nevertheless, there is a number of desirable extensions of the package which could be included
in future releases. We invite other researchers and developers to contribute to this package.

As an alternative to the Negative Binomial distribution, one could consider the so-called
Quasi-Poisson distribution. It allows for a conditional variance of φλt (instead of λt � φλ2

t , as
for the Negative Binomial distribution), which is linearly and not quadratically increasing in
the conditional mean λt (for the case of independent data see Ver Hoef and Boveng 2007).
A scatterplot of the squared residuals against the fitted values could reveal whether a linear
relation between conditional mean and variance is more adequate for a given time series.

The common regression models for count data are often not capable to describe an exceptionally
large number of observations with the value zero. In the literature so-called zero-inflated and
hurdle regression models have become popular for zero excess count data (for an introduction
and comparison see Loeys, Moerkerke, De Smet, and Buysse 2012). A first attempt to utilize
zero-inflation for INGARCH time series models is made by Zhu (2012).

Alternative nonlinear models are for example the threshold model suggested by Douc et al.
(2013) or the examples given by Fokianos and Tjøstheim (2012). Fokianos and Neumann
(2013) propose a class of goodness-of-fit tests for the specification of the linear predictor, which
are based on the smoothed empirical process of Pearson residuals. Christou and Fokianos
(2015a) develop suitably adjusted score tests for parameters which are identifiable as well as
non-identifiable under the null hypothesis. These tests can be employed to test for linearity of
an assumed model.

In practical applications one is often faced with outliers. Elsaied and Fried (2014) and
Kitromilidou and Fokianos (2013) develop M-estimators for the linear and the log-linear model
respectively. Fried, Liboschik, Elsaied, Kitromilidou, and Fokianos (2014) compare robust
estimators of the (partial) autocorrelation for time series of counts, which can be useful for
identifying the correct model order.

In the long term, related models for binary or categorical time series (Moysiadis and Fokianos
2014) or potential multivariate extensions of count time series following GLMs could be
included as well.

The models which are so far included in the package or mentioned above fall into the class of
time series following GLMs. There is also quite a lot of literature on thinning-based time series
models but we are not aware of any publicly available software implementations. To name
just a few of many publications, Weiß (2008) reviews univariate time series models based on
the thinning operation, Pedeli and Karlis (2013) study a multivariate extension and Scotto,
Weiß, Silva, and Pereira (2014) consider models for time series with a finite range of counts.
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A. Implementation details

A.1. Recursions for inference and their initialization

Let h : R� Ñ R be the inverse of the link function g and let h1pxq � Bhpxq{Bx be its derivative.
In the case of the identity link gpxq � x it holds hpxq � x and h1pxq � 1 and in the case of the
logarithmic link gpxq � logpxq it holds hpxq � h1pxq � exppxq. The partial derivative of the
latent mean λtpθq is given by

Bλtpθq
Bθ � h1 pνtpθqq BνtpθqBθ ,

where the vector of partial derivatives of the linear predictor νtpθq,

Bνtpθq
Bθ �

�Bνtpθq
Bβ0

,
Bνtpθq
Bβ1

, . . . ,
Bνtpθq
Bβp ,

Bνtpθq
Bα1

, . . . ,
Bνtpθq
Bαq ,

Bνtpθq
Bη1

, . . . ,
Bνtpθq
Bηr


J
,

can be computed recursively. The recursions are given by

Bνtpθq
Bβ0

� 1�
q̧

`�1

α`
Bνt�j`pθq
Bβ0

,

Bνtpθq
Bβs � rgpYt�isq � q̧

`�1

α`
Bνt�j`pθq
Bβs , s � 1, . . . , p,

Bνtpθq
Bαs �

q̧

`�1

α`
Bνt�j`pθq
Bαs � νt�jspθq, s � 1, . . . , q,

Bνtpθq
Bηs �

q̧

`�1

α`
Bνt�j`pθq

Bηs �Xt,s, s � 1, . . . , r.

The recursions for the linear predictor νt � gpλtq and its partial derivatives depend on past
values of the linear predictor and of its derivatives, which are generally not observable. We
implemented three possibilities for initialization of these values. The default and preferable
choice is to initialize by the respective marginal expectations, assuming a model without
covariate effects, such that the process is stationary (argument init.method = "marginal").
For the linear model (2) it holds (Ferland et al. 2006)

EpYtq � Epνtq � β0

1�°p
k�1 βk �

°q
`�1 α`

�: µpθq. (13)

For the log-linear model (3) we instead consider the transformed time series Zt :� logpYt � 1q,
which has approximately the same second order properties as a time series from the linear
model (2). It approximately holds EpZtq � Epνtq � µpθq. Specifically, we initialize past values
of νt by µpθq and past values of Bνtpθq{Bθ by

Bµpθq
Bθ �

�Bµpθq
Bβ0

,
Bµpθq
Bβ1

, . . . ,
Bµpθq
Bβp ,

Bµpθq
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, . . . ,
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Bηr


J
,
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pβ0
pβ1 pα1 `ppθq

init.method = "marginal", init.drop = FALSE 0.507 0.738 0.244 -3024.5
init.method = "marginal", init.drop = TRUE 0.567 0.746 0.237 -2568.5
init.method = "iid", init.drop = FALSE 0.750 0.750 0.229 -3036.2
init.method = "iid", init.drop = TRUE 0.562 0.738 0.246 -2587.5
init.method = "firstobs", init.drop = FALSE 0.559 0.739 0.246 -3018.7
init.method = "firstobs", init.drop = TRUE 0.559 0.739 0.246 -2578.1

Table 2: Estimated parameters and log-likelihood of a time series of length 1000 simulated from
model (2) for different initialization strategies. The true parameters are β0 � 0.5, β1 � 0.77
and α1 � 0.22.

which is explicitly given by

Bµpθq
Bβ0

� 1

1�°p
k�1 βk �

°q
`�1 α`

,

Bµpθq
Bβk � Bµpθq

Bα` � β0�
1�°p

k�1 βk �
°q
`�1 α`

�2 , k � 1, . . . , p, ` � 1, . . . , q, and

Bµpθq
Bηm � 0, m � 1, . . . , r.

Another possibility is to initialize νt by β0 and Bνtpθq{Bθ by zero, which corresponds to
the marginal expectations assuming a model without covariate effects and without serial
dependence (argument init.method = "iid"). A third possibility would be a data-dependent
initialization of νt, for example by rgpy1q. In this case the partial derivatives of νt are initialized
by zero (argument init.method = "firstobs").

The recursions also depend on unavailable past observations of the time series, prior to the
sample which is used for the likelihood computation. The package allows to choose between
two strategies to cope with that. The default choice is to replace these pre-sample observations
by the same initializations as used for the linear predictor νt (see above), transformed by the
inverse link function h (argument init.drop = FALSE). An alternative is to use the first ip
observations for initialization and to compute the log-likelihood on the remaining observations
yip�1, . . . , yn (argument init.drop = TRUE). Recall that ip is the highest order for regression
on past observations.

The different methods for initialization can affect the estimation substantially even for quite
long time series with 1000 observations, particularly in the presence of strong serial dependence.
We illustrate this by the simulated example presented in Table 2.

A.2. Starting value for optimization

The numerical optimization of the log-likelihood function requires a starting value for the
parameter vector θ. This starting value can be obtained by initial estimation based on a
simpler model than the one of interest. Different strategies for this (controlled by the argument
start.control) are discussed in this section. We call this start estimation (and not initial
estimation) to avoid confusion with the initialization of the recursions described in the previous
section.
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The start estimation by the R function glm utilizes the fact that a time series following a
GLM without feedback (as in Kedem and Fokianos 2002) can be fitted by employing standard
software. Neglecting the feedback mechanism, the parameters of the GLM

Yt|F�
t�1 � Poipλ�t q, with ν�t � gpλ�t q and

ν�t � β�0 � β�1 rgpYt�i1q � . . .� β�p rgpYt�ipq � η�1Xt,1 � . . .� η�rXt,r, t � ip � 1, . . . , n,

with F�
t the history of the joint process tYt,Xtu, are estimated using the R function glm.

Denote the estimated parameters by pβ�0 , pβ�1 , . . . , pβ�p , pη�1 , . . . , pη�r and set pα�1 , . . . , pα�q to zero
(argument start.control$method = "GLM").

Fokianos et al. (2009) suggest start estimation of θ, for the first order linear model (2) without
covariates, by employing its representation as an ARMA(1,1) process with identical second-
order properties, see Ferland et al. (2006). For arbitrary orders P and Q with k :� maxpP,Qq
and the general model from Section 2 this representation, after straightforward calculations, is
given by

prgpYtq � µpθqloomoon
�:ζ

q �
ķ

i�1

pβi � αiqlooomooon
�:ϕi

prgpYt�iq � µpθqq � εt �
q̧

i�1

p�αiqloomoon
�:ψi

εt�i, (14)

where βi :� 0 for i R P , αi :� 0 for i R Q and tεtu is a white noise process. Recall that rg
is defined by rgpxq � x for the linear model and rgpxq � logpx � 1q for the log-linear model.
Given the autoregressive parameters ϕi and the moving average parameters ψi of the ARMA
representation of tYtu, the parameters of our original process are obtained by αi � �ψi
and βi � ϕi � ψi. We get β0 from β0 � ζ

�
1 �°p

i�1 βi �
°q
j�1 αj

�
using the formula for the

marginal mean of tYtu. With these formulas estimates pβ�0 , pβ�i and pα�i are obtained from ARMA

estimates pζ, pϕi and pψi. Estimation of the ARMA parameters can be done by conditional
least squares (argument start.control$method = "CSS"), maximum likelihood assuming
normally distributed errors (argument start.control$method = "ML"), or, for models up to
first order, the method of moments (argument start.control$method = "MM"). If covariates
are included, a linear regression is fitted to rgpYtq, whose errors follow an ARMA model like (14).
Consequently, the covariate effects do not enter the dynamics of the process, as it is the case
in the actual model (1). It would be preferable to fit an ARMAX model, in which covariate
effects are included on the right hand side of (14), but this is currently not readily available in
R.

We compare both approaches to obtain start estimates. The GLM approach apparently
disregards the feedback mechanism, i.e., the dependence on past values of the conditional mean.
As opposed to this, the ARMA approach does not treat covariate effects in an appropriate
way. From extensive simulations we note that the final estimation results are almost equally
good for both approaches.

However, we also discovered that in some situations (in the presence of certain types of
covariates) both approaches occasionally provoke the algorithm for likelihood optimization to
run into a local but not the global optimum. This happens even more often for increasing
sample size. To overcome this problem we recommend a naive start estimation assuming an
i.i.d. model without covariates, which only estimates the intercept and sets all other parameters
to zero (argument start.control$method = "iid"). This starting value is usually not close
to any local optimum of the likelihood function. Hence we expect possibly a larger number
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of steps needed for the optimization algorithm to be terminated. Nevertheless, we prefer the
longer overall computation time to the risk of an improper final estimation and make this the
default method in our package.

Particularly for the linear model, neither of the aforementioned approaches supplies a starting

value pθ� � ppβ�0 , pβ�1 , . . . , pβ�p , pα�1 , . . . , pα�q , pη�1 , . . . , pη�r qJ for θ, which is ensured to lay in the interior
of the parameter space Θ, as it is required for the applied optimization algorithm. To overcome

this problem pθ� is suitably transformed to be used as a starting value. For the linear model
(2) this transformation is done according to the procedure described by Liboschik et al. (2014)
and for the log-linear model (3) this procedure is modified appropriately.

A.3. Stable inversion of the information matrix

In order to obtain standard errors from the normal approximation (11) one needs to invert
the information matrix Gnppθ; pσ2q. To avoid numerical instabilities we make use of the fact
that an information matrix is a real symmetric and positive definite matrix. We first compute
a Choleski factorization of the information matrix. Then we apply an efficient algorithm to
invert the matrix employing the upper triangular factor of the Choleski decomposition (see R
functions chol and chol2inv). This procedure is implemented in the function invertinfo in
our package.

B. Simulations

In this section we present simulations supporting that the methods that have not yet been
treated thoroughly in the literature work reliably.

B.1. Covariates

We present some limited simulation results for the problem of including covariates. For
simplicity we employ first order models with one covariate and a conditional Poisson distribution,
that is, we consider the linear model with the identity link function

Yt|Ft�1 � Poissonpλtq, λt � β0 � β1 Yt�1 � α1λt�1 � η1Xt, t � 1, . . . , n,

and the log-linear model with the logarithmic link function

Yt|Ft�1 � Poissonpexppνtqq, νt � β0 � β1 logpYt�1 � 1q � α1νt�1 � η1Xt, t � 1, . . . , n.

The dependence parameters are chosen to be β1 � 0.3 and α1 � 0.2. The intercept parameter
is β0 � 4 � 0.5 for the linear and β0 � logp4q � 0.5 for the log-linear model in order to obtain
a marginal mean (without the covariate effect) of about 4 in both cases. We consider the
covariates listed in Table 3, covering a simple linear trend, seasonality, intervention effects, i.i.d.
observations from different distributions and a stochastic process. The covariates are chosen
to be nonnegative, which is necessary for the linear model but not for the log-linear model.
All covariates have values of about 0.5, such that their effect sizes are somewhat comparable.
The regression coefficient is chosen to be η1 � 2 � β0 for the linear and η1 � 1.5 � β0 for the
log-linear model.
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Abbreviation Definition

Linear t{n
Sine psinp2π � 5 � t{nq � 1q{2
Spiky outlier 1pt � τq
Transient shift 0.8t�τ1pt ¥ τq
Level shift 1pt ¥ τq
GARCH(1,1)

?
htεt with εt � Np0.5, 1q and ht � 0.002� 0.1X2

t�1 � 0.8ht�1

Exponential i.i.d. Exponential with mean 0.5
Normal i.i.d. Normal with mean 0.5 and variance 0.04

Table 3: Covariates tXt : t � 1, . . . , nu considered in the simulation study. The interventions
occur at time τ � n{2. The GARCH model is defined recursively (see Bollerslev 1986).

Apparently, certain types of covariates can to some extent be confused with serial dependence.
This is the case for the linear trend and the level shift, but also for the sinusoidal term, since
these lead to data patterns which resemble positive serial correlation; see Figure 5.

A second finding is that the effect of covariates like a transient shift or a spiky outlier is hard
to estimate precisely. Note that both covariates have values considerably different from zero
only at very few time points (especially the spiky outlier) which explains this behavior of
the estimation procedure. The estimators for the coefficients of such covariates have a large
variance which decreases only very slowly with growing sample size; see the bottom right plot
in Figures 6 and 7 for the linear and the log-linear model, respectively. This does not affect
the estimation of the other parameters, see the other three plots in the same figures. For all
other types of covariates the variance of the estimator for the regression parameter decreases
with growing sample size, which indicates consistency of the estimator.

The conjectured approximative normality of the model parameters stated in (11) seems to
hold for most of the covariates considered here even in case of a rather moderate sample size
of 100, as indicated by the QQ plots shown in Figure 8. The only serious deviation from
normality happens for the spiky outlier in the linear model, where many estimates of the
covariate coefficient η1 lie close to zero, which is the lower boundary of the parameter space
for this model. Due to the consistency problem for this covariate (discussed in the previous
paragraph) the observed deviation from normality is still present even for a much larger sample
size of 2000 (not shown here). Note that for the spiky outlier the conditions for asymptotic
normality in linear regression models stated in Section 3 are not fulfilled. QQ plots for the
other model parameters β0. β1 and α1 look satisfactory for all types of covariates and are not
shown here.

B.2. Negative Binomial distribution

As mentioned before, the model with the logarithmic link function is not covered by the
theory derived by Christou and Fokianos (2014). Consequently, we confirm by simulations
that estimating the additional dispersion parameter φ of the Negative Binomial distribution
by equation (10) yields good results. We consider both, the linear model with the identity link

Yt|Ft�1 � NegBinpλt, φq, λt � β0 � β1 Yt�1 � α1λt�1, t � 1, . . . , n,
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Figure 5: Scatterplots of the estimated covariate parameter against the sum of the estimated
dependence parameters in a linear (left) respectively log-linear (right) model of order p � q � 1
with an additional covariate of the given type. The time series of length 100 are simulated
from the respective model with the true values marked by grey lines. Each dot represents one
of 200 replications.

and the log-linear model with the logarithmic link

Yt|Ft�1 � NegBinpexppνtq, φq, νt � β0 � β1 logpYt�1 � 1q � α1νt�1, t � 1, . . . , n.

The parameters β0, β1 and α1 are chosen like in the previous section. For the dispersion
parameter φ we employ the values 1, 5, 10, 20 and 8, which are corresponding to overdispersion
coefficients σ2 of 1, 0.2, 0.1, 0.05 and 0, respectively.

The estimator of the dispersion parameter φ has a positively skewed distribution. It is thus
preferable to consider the distribution of its inverse pσ2 � 1{pφ, which is only slightly negatively
skewed; see Table 4. In certain cases it is numerically not possible to solve (10) and the
estimation fails. This happens when the true value of φ is large and we are close to the limiting
case of a Poisson distribution (see the proportion of failures in the last column of the table). In
such a case our fitting function gives an error and recommends fitting a model with a Poisson
distribution instead. These results are very similar for the linear model and thus not shown
here.

We check the consistency of the estimator by a simulation for a true value of σ2 � 1{φ � 1.
Our results shown in Figure 9 indicate that on average the deviation of the estimation from the
true value decreases with increasing sample size for both, the linear and the log-linear model.
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Mean Median Std.dev. MAD Failures (in %)

σ2 � 1.00 0.98 0.97 0.18 0.17 0.00
0.20 0.20 0.20 0.05 0.05 0.00
0.10 0.10 0.10 0.03 0.03 0.10
0.05 0.05 0.05 0.03 0.03 3.30
0.00 0.02 0.02 0.01 0.01 52.10

Table 4: Summary statistics for the estimated overdispersion coefficient pσ2 of the Negative
Binomial distribution. The time series are simulated from a log-linear model with the true
overdispersion coefficient given in the rows. Each statistic is based on 200 replications.

The boxplots also confirm our above finding that the estimator has a clearly asymmetric
distribution for sample sizes up to several hundred.
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Figure 6: Estimated coefficients for a linear model of order p � q � 1 with an additional
covariate of the given type. The time series of length 100, 500, 1000, 2000 (from top top to
bottom in each panel) are simulated from the respective model with the true coefficients
marked by a grey vertical line. Each boxplot is based on 200 replications.
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Figure 7: Simulation results equivalent to those shown in Figure 6 but for a log-linear model.
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Figure 8: Normal QQ-plots for the estimated covariate coefficient pη1 in a linear (left) respectively
log-linear (right) model of order p � q � 1 with an additional covariate of the given type. The
time series of length 100 are simulated from the respective model with the true coefficient
marked by a grey horizontal line. Each plot is based on 200 replications.
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Figure 9: Estimated overdispersion coefficient pσ2 of the Negative Binomial distribution for
a linear (left) respectively log-linear (right) model of order p � q � 1. The time series are
simulated from the respective model with the true overdispersion coefficient marked by a grey
vertical line. Each boxplot is based on 200 replications.
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