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This vignette will demonstrate how to use structured coalescent models[1] to
estimate epidemiological parameters given a pathogen genealogy and discrete-
trait information about sampled individuals. We will focus on the problem of
estimating HIV transmission rates by stage of infection and assuming we know
the stage of infection when patients are sampled and virus is sequenced.

We will fit a very simple model of an HIV epidemic using ordinary differential
equations. In this model, the infectious period will be broken into three stages
of different average duration and with different transmission rates. The first
stage, early HIV infection (EHI) is short (average duration 1/y9=1 year), but
has high transmission rate §y. The second stage, chronic HIV infection, is
long (average duration 1/4;=T7 years), and has small transmission rate. The
last stage, AIDS, lasts 1/9o = 2 years on average and has an intermediate
transmission rate. There are births into the susceptible state at rate bIN where
N = S+1y+1;+1>. And there is mortality due to natural causes from all states
at rate p. The parameter values are listed in table 1. The model equations are
as follows:

S =0bN — uS — (Bolo + B1l1 + Pal2)S/N (1)
Io = (Bolo + B111 + B212)S/N — (1 + 7o) o (2)
I =yl — (p+7)h (3)
Iy=yl = (g +72) I (4)

The model is also illustrated in figure 1.
The package is loaded by

> library(rcolgem)
Create a list of the true parameter values:

> parms_truth <- list(gamma0 = 1
+ , gammal = 1/7

+ , gamma2 = 1/2

+ , mu = 1/30

+ , b=.036

+ , betaO = 12./10



Table 1: Parameter symbols and values.

Parameter Symbol  Value
Duration EHI /70 1 year
Duration chronic 1/m 7 years
Duration AIDS 1/79 2 years
Birth rate b 0.036
Natural death rate I 1/30
EHI transmission rate Bo 1.2
Chronic transmission rate [y 0.03
AIDS transmission rate B 0.09
Initial no. susceptibles S(0) 3000

, betal=3./100

, beta2=9./100

, S_0=3000

, I0_0=1, I1_0=0.01, I2_0=0.01
, m=3, mm=1)

+ o+ + + +

In order to fit this model, we need to express the equations in a canonical
format. According to this format, we will tally birth and migration events
between demes. In our example, the deme corresponds to the stage of infection
that an infected host can be in, so we will refer the demes with the following
names:

> INFECTEDNAMES <- c('IO', 'I1', 'I2')

There are m = 3 demes in this model, so the birth events between demes
needs to be expressed with a 3 x 3 matrix F'. The element F}; represents the
rate of transmissions by a host in deme k to a host in deme [. In our example,
this is the following:

births <- rbind(
c('parms$betad0 * S » 10 / (S + IO + I1 + I2)', '0', '0'),
c('parms$betal * S » I1 / (S + IO + I1 + I2)', '0', '0'),
c('parms$beta2 * S * 12 / (S + I0 + I1 + I2)', '0', '0')

)

rownames (births)=colnames (births)<- INFECTEDNAMES
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Each element of the matrix is a string that will be parsed as R code and eval-
uated, so it is important to write it exactly as you would if you were solving
the equations outside of colgem. Also note that the object parms is accessible
to these equations, which is a list of parameters- this may include parameters
to be estimated. Note that there are zero rates in the 2nd and third columns,
since all new infected hosts start out in the first stage of infection (EHI). Also
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Figure 1: An illustration of the HIV compartmental model.



note that we must give row and column names to the matrix, and these names
must correspond to the names of the demes.
Similarly, we must create a matrix of migrations:

> migrations <- rbind(

+ c¢('0', 'parms$gamma0 * IO', '0'),

+ c¢('0', '0', 'parms$gammal * I1'),

+ c('o', 'o', '0')

+)

> rownames (migrations)=colnames (migrations) <- INFECTEDNAMES

Note that this matrix tallys the stage progression from EHI to chronic and from
chronic to AIDS.

We must also write a vector of expressions for events that terminate a
lineage— In this model, this occurs due to natural or AIDS related mortality:

deaths <- c(

'parms$mu*I0'

, 'parms$mu*I1’

, 'parms$mu*I2 + parms$gamma2 * I2'
)
names (deaths) <- INFECTEDNAMES
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Finally, we must write a vector of ODEs for state variables that do not
correspond to demes in the coalescent model. In our example, there is only one
such variable- the number of susceptibles:

> nonDemeDynamics <- paste(sep='",

+ '-parms$mu*S + parms$mux*(S + I0 + I1 + I2)'

+ ,'- S * (parms$betaO*I0+parms$betal*I1+parms$beta2+«I2) / (S + I0 + I1 + I2)'
+)

>

names (nonDemeDynamics) <- 'S'

Note well that in all cases, the expression or equation must have the correspond-
ing name of the state variable.

The model can be fitted to a binary tree with dated tips. We will use a
simulated tree such that we know the true parameter values and population size
through time. We load this by:

# read the tree
tree <- read.tree(
system.file('extdata/hivSimulation.nwk', package='rcolgem'))
#~ the sample times are the same, because it is a homochronous sample at 50 years
sampleTimes <- rep(50, length(tree$tip.label))
names (sampleTimes) <- tree$tip.label
# create a tree with dated tips and internal nodes,
# will infer the sample states from tip labels
bdt <- binaryDatedTree(tree
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+ , sampleTimes
+ , sampleStatesAnnotations=INFECTEDNAMES)
> bdt

Phylogenetic tree with 318 tips and 317 internal nodes.

Tip labels:
89_I1, 349_I2, 339_I1, 64_I1, 203_I1, 30_IO,

Rooted; includes branch lengths.

Note well that the vector of sample times must have the names of each taxon. If
the state of each taxon (the stage of infection of each sample unit) is encoded at
the end of taxon name, it can be loaded automatically by passing the argument
sampleStatesAnnotations. Alternatively, that information can be passed as a
matrix with row names corresponding to the tip labels of the tree.

Now we can calculate the likelihood of the tree and see how long it takes:

> print (system.time( print(

+ coalescent.log.likelihood( bdt

+ , births, deaths, nonDemeDynamics

+ , t0 =0

+ , x0=c(I0=1, I1=.01, I2=.01, S = parms_truth$S_0)
+ , migrations = migrations

+ , parms=parms_truth

+ , fgyResolution=1000

+ , integrationMethod='euler'

+
+

)))

[1] -2209.535
user system elapsed
1.504 0.028 1.533

It’s a bit slow, so note that there is an alternative low-level interface that can
be a bit faster (coalescent.log.likelihood.fgy). Also note that changing
the integrationMethod (choose ‘euler’), censorAtHeight (only fit to part of
the tree) and fgyResolution (set to a smaller value) options can dramatically
speed up the calculation at the cost of some accuracy.

We can fit the model by using the bbmle or stats4 package.

> library(bbmle)

We will focus on estimating the three transmission rates of the system along with
a nuisance parameter that controls initial conditions, ty, which is the time of
origin of the epidemic. We will assume prior knowledge of the stage progression
rates ; mortality rates p, and susceptible population size S(0).

First, create the objective function to be minimized:



> obj_fun <- function(lnbetaO, lnbetal, lnbeta2, t0)

+ 1

+ parms <- parms_truth

+ parms$betal <- exp(lnbetal)

+ parms$betal <- exp(lnbetal)

+ parms$beta2 <- exp(lnbeta2)

+ mll <- -coalescent.log.likelihood( bdt

+ , births, deaths, nonDemeDynamics

+ , t0 = to

+ , x0=c(I0=1, I1=.01, I2=.01, S = parms$S_0)
+ , migrations = migrations

+ , parms=parms

+ , fgyResolution = 1000

+ , integrationMethod = 'rk4'

+ )

+ # track progress:

+ print(c(mll, exp(c(lnbetaO, lnbetal, lnbeta2) ), t0) )
+ mll

+ }

Note that this uses log-transformation for variables that must be positive (like
rates).
We can then fit the model by running

> fit <- mle2(obj_fun

+ , start=list(lnbetalO=1og(.6), lnbetal=log(.2), lnbeta2=log(.05), t0=0)
+ , method='Nelder-Mead', optimizer='optim'

+ , control=list(trace=6, reltol=1e-8))

Note that we are starting the optimizer far from the true parameter values. If
fitting a model to real data, it is recommended to try many different starting
conditions over a large range of values. The optimizer would take about 10
minutes to run, so instead we will load the results:

> load( system.file('extdata/hivModelO-fit.RData', package='rcolgem') )
> AIC(fit)

[1] 4447.468

> logLik(fit)

'log Lik.' -2219.734 (df=4)
> coef (fit)

1nbetal 1nbetal 1nbeta?2 t0
0.1772788 -3.3862403 -2.9639203 -1.8339507

> exp(coef (fit))
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Figure 2: The actual (points) and estimated (lines) number of infections through
time. Black: EHI, Red:chronic, Green:AIDS.

1nbetal lnbetal 1nbeta?2 t0
1.19396395 0.03383565 0.05161617 0.15978107

We can compare the fitted model to the true number of infected through
time, which is shown in figure 2

We can calculate a confidence interval for the transmission rates using like-
lihood profiles:

> profbeta <- profile(fit, which=1, alpha=.05
+ , std.err=.5, trace=TRUE, tol.newmin=1 )

This takes a long time, so we will load the results:

> load( system.file('extdata/hivModelO-profbeta.RData', package='rcolgem') )
We see that the confidence interval covers the true value:

> c( exp( confint( profbeta ) ), TrueVal=parms_truth$betal )

2.5 % 97.5 % TrueVal
1.093873 1.243095 1.200000
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Figure 3: Likelihood profile for the transmission rate 5y with confidence levels.
The true parameter value is indicated by the vertical red line.

And, we can visualize the profile (Figure 3).

> plot(profbeta)
> abline( v = log( parms_truth$betal) , col='red')
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