
Estimating HIV transmission rates with rcolgem

Erik M Volz

February 10, 2016

This vignette will demonstrate how to use a coalescent models as described
in [2] to estimate transmission rate parameters given a pathogen genealogy.

Suppose an epidemic occurs according to a density-dependent susceptible-
infected-recovered process, and a given infected individual generates a new infec-
tion at the rate βSI, where S is the number susceptible and β is the transmission
rate. Furthermore, infected individuals will be removed from the population at
per capita rate γ. At a single point in time, a random sample of n = 75 in-
fected individuals is taken and the genealogy is reconstructed from the history
of transmissions. We have simulated such a dataset using MASTER 1.10[1],
which can be loaded by

> library(rcolgem)

> tree <- read.tree(system.file('extdata/sirModel0.nwk', package='rcolgem'))

And, the epidemic trajectory information can be loaded by

> library(rjson)

> epidata <- fromJSON(file=system.file('extdata/sirModel0.json', package='rcolgem'))

The true parameter values are given in table 1. The file used to simulate the data
can be viewed by file.show(system.file(’extdata/sirModel0.xml’, pack-

age=rcolgem)) .
We will fit a simple ODE model to the genealogy:

Ṡ = −βSI (1)

İ = βSI − γI (2)

Relevant parameters of the system are the transmission rate β, recovery rate γ,
initial population size S(0) and initial number infected I(0). Not all parameters
are identifiable from these data, so we will assume prior knowledge of S(0) and
γ and focus on estimating β and the nuisance parameter I(0). Note that an
imprecise estimate of S(0) is also possible.

Create a list to store the true parameter values:

> parms_truth <- list(beta = .00020002, gamma = 1, S0 = 9999, t0 = 0)

Note that the true value of R0 is βS(0)/γ = 2.
And, create a tree with dated tips and internal nodes:

1

Table 1: Parameter symbols and values.

Parameter Symbol Value
Duration infection 1/γ 1
Transmission rate β 2.0002e-4
Population size S(0) 9999
Initial num infected I(0) 1
Time of sampling T 12

> sampleTimes <- rep(12, 75)

> names(sampleTimes) <- tree$tip.label

> bdt <- binaryDatedTree(tree, sampleTimes=sampleTimes)

> bdt

Phylogenetic tree with 75 tips and 74 internal nodes.

Tip labels:

24, 7, 36, 75, 52, 38, ...

Rooted; includes branch lengths.

Note that the vector of sample times must have names corresponding to the
taxon labels in tree.

In order to fit this model, we need to express the equations in a canonical
format:

> births <- c(I = 'parms$beta * S * I')

> deaths <- c(I = 'parms$gamma * I')

> nonDemeDynamics <- c(S = '-parms$beta * S * I')

The births vector gives the total rate that all infected generate new infections
and deaths gives the rate that lineages are terminated. The nonDemeDynamics

vector gives the equations for state variables that aren’t directly involved in
the genealogy (e.g. because a pathogen never occupies a susceptible host by
definition).

Each element of the vectors is a string that will be parsed as R code and eval-
uated, so it is important to write it exactly as you would if you were solving the
equations in R. Also note that the object parms is accessible to these equations,
which is a list of parameters- this may include parameters to be estimated. Also
note that we must give names to the vectors, and these names must correspond
to the names of the demes.

We will use these initial conditions

> x0 <- c(I=1, S= unname(parms_truth$S0))

> t0 <- bdt$maxSampleTime - max(bdt$heights) -1

2

The time of origin t0 is chosen somewhat arbitrarily, but should occur before
the root of the tree.

Now we can calculate the likelihood of the tree and assess how long it takes:

> print(

+ system.time(

+ print(

+ coalescent.log.likelihood(

+ bdt

+ , births, deaths, nonDemeDynamics

+ , t0, x0

+ , parms=parms_truth

+ , fgyResolution = 1000

+ , integrationMethod = 'rk4')
+)))

[1] 67.75564

user system elapsed

0.704 0.000 0.706

Note that changing the integrationMethod (choose ‘euler’), censorAtHeight
(only fit to part of the tree) and fgyResolution (set to a smaller value) options
can dramatically speed up the calculation at the cost of some accuracy.

We can fit the model using maximum likelihood with the bbmle or stats4

packages.

> library(bbmle)

First, create the objective function to be minimized:

> obj_fun <- function(lnbeta, lnI0)

+ {

+ beta <- exp(lnbeta)

+ I0 <- exp(lnI0)

+ parms <- parms_truth

+ parms$beta <- beta

+ x0 <- c(I=unname(I0), S = unname(parms$S0))

+ mll <- -coalescent.log.likelihood(

+ bdt

+ , births, deaths, nonDemeDynamics

+ , t0, x0

+ , parms=parms

+ , fgyResolution = 1000

+ , integrationMethod = 'rk4')
+ print(paste(mll, beta, I0))

+ mll

+ }

3

Note that this uses log-transformation for variables that must be positive (like
rates and population sizes).

We can then fit the model by running

> fit <- mle2(

+ obj_fun

+ , start=list(lnbeta=log(parms_truth$beta*.75), lnI0=log(1))

+ , method='Nelder-Mead'
+ , optimizer='optim'
+ , control=list(trace=6, reltol=1e-8)

+)

Note that we are starting the optimizer far from the true parameter values. If
fitting a model to real data, it is recommended to try many different starting
conditions over a large range of values. The optimizer would take a few minutes
to run, so instead we will load the results:

> load(system.file('extdata/sirModel0-fit.RData', package='rcolgem'))

> AIC(fit)

[1] -145.7974

> logLik(fit)

'log Lik.' 74.89871 (df=2)

> coef(fit)

lnbeta lnI0

-8.4748155 0.1351695

> exp(coef(fit))

lnbeta lnI0

0.0002086577 1.1447308446

> # how biased is the estimate?

> exp(coef(fit)['lnbeta']) - parms_truth$beta

lnbeta

8.637689e-06

We can compare the fitted model to the true number of infected through
time, which is shown in figure 1.

> beta <- exp(coef(fit)['lnbeta'])
> I0 <- exp(coef(fit)['lnI0'])
> parms <- parms_truth

> parms$beta <- beta

4

0 5 10 15

0
50

0
10

00
15

00

epidata$t

ep
id

at
a$

I

Figure 1: The actual (black) and estimated (red) number of infections through
time. The blue line shows the SIR model prediction under the true parameter
values.

> x0 <- c(I=unname(I0), S = unname(parms$S0))

> o <- solve.model.unstructured(t0,bdt$maxSampleTime, x0

+ , births

+ , deaths

+ , nonDemeDynamics, parms)

> otruth <- solve.model.unstructured(t0, bdt$maxSampleTime, x0

+ , births

+ , deaths

+ , nonDemeDynamics, parms_truth)

> plot(epidata$t, epidata$I, type='line'
+ , ylim=c(0, 100+max(max(o[,2]),max(epidata$I))))

> lines(o[,1], o[,2], col='red')

> lines(otruth[,1], otruth[,2], col='blue')

We can calculate a confidence interval for the transmission rate using likeli-
hood profiles:

5

−8.60 −8.55 −8.50 −8.45 −8.40

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Likelihood profile: lnbeta

lnbeta

z
99%

95%

90%

80%

50%

Figure 2: Likelihood profile for the transmission rate β with confidence levels.
The true parameter value is indicated by the vertical red line.

> profbeta <- profile(fit, which=1, alpha=.05

+ , std.err=1, trace=TRUE, tol.newmin=1)

This takes a few minutes, so we will load the results:

> load(system.file('extdata/sirModel0-profbeta.RData', package='rcolgem'))

We see that the confidence interval covers the true value:

> c(exp(confint(profbeta)), TrueVal=parms_truth$beta)

2.5 % 97.5 % TrueVal

0.0001901721 0.0002282366 0.0002000200

And, we can visualize the profile (Figure 2).

> plot(profbeta)

> abline(v = log(parms_truth$beta) , col='red')

6

References

[1] Timothy G Vaughan and Alexei J Drummond. A stochastic simulator of
birth–death master equations with application to phylodynamics. Molecular
biology and evolution, 30(6):1480–1493, 2013.

[2] Erik M Volz. Complex population dynamics and the coalescent under neu-
trality. Genetics, 190(1):187–201, 2012.

7

