
rEMM: Extensible Markov Model for Data Stream

Clustering in R

Michael Hahsler
Southern Methodist University

Margaret H. Dunham
Southern Methodist University

Abstract

Clustering streams of continuously arriving data has become an important application
of data mining in recent years and efficient algorithms have been proposed by several
researchers. However, clustering alone neglects the fact that data in a data stream is
not only characterized by the proximity of data points which is used by clustering, but
also by a temporal component. The Extensible Markov Model (EMM) adds the temporal
component to data stream clustering by superimposing a dynamically adapting Markov
Chain. In this paper we introduce the implementation of the R extension package rEMM
which implements EMM and we discuss some examples and applications.

Keywords: data mining, data streams, clustering, Markov chain.

1. Introduction

Clustering data streams (Guha, Mishra, Motwani, and O’Callaghan 2000) has become an
important field in recent years. A data stream is an ordered and potentially infinite sequence
of data points 〈y1,y2,y3, . . .〉. Such streams of constantly arriving data are generated by
many types of applications and include web click-stream data, computer network monitoring
data, telecommunication connection data, readings from sensor nets, stock quotes, etc. An
important property of data streams for clustering is that data streams often produce massive
amounts of data which have to be processed in (or close to) real time since it is impractical
to permanently store the data (transient data). This leads to the following requirements:

• The data stream can only be processed in a single pass or scan and typically only in
the order of arrival.

• Only a minimal amount of data can be retained and the clusters have to be represented
in an extremely concise way.

• Data stream characteristics may change over time (e.g., clusters move, merge, disappear
or new clusters may appear).

Many algorithms for data stream clustering have been proposed recently. For example,
O’Callaghan, Mishra, Meyerson, Guha, and Motwani (2002) (see also Guha, Meyerson,
Mishra, Motwani, and O’Callaghan 2003) study the k-medians problem. Their algorithm
called STREAM divides the data stream into pieces, clusters each piece individually and then

2 Extensible Markov Model for Data Stream Clustering

iteratively reclusters the resulting centers to obtain a final clustering. Aggarwal, Han, Wang,
and Yu (2003) present CluStream which uses micro-clusters (an extension of cluster feature
vectors used by BIRCH (Zhang, Ramakrishnan, and Livny 1996)). Micro-clusters can be
deleted and merged and permanently stored at different points in time to allow to create final
clusterings (recluster micro-clusters with k-means) for different time frames. Even though
CluStream allows clusters to evolve over time, the ordering of the arriving data points in
the stream is lost. Kriegel, Kröger, and Gotlibovich (2003) and Tasoulis, Ross, and Adams
(2007) present variants of the density based method OPTICS (Ankerst, Breunig, Kriegel, and
Sander 1999) suitable for streaming data. Aggarwal, Han, Wang, and Yu (2004) introduce
HPStream which finds clusters that are well defined in different subsets of the dimensions of
the data. The set of dimensions for each cluster can evolve over time and a fading function
is used to discount the influence of older data points by fading the entire cluster structure.
Cao, Ester, Qian, and Zhou (2006) introduce DenStream which maintains micro-clusters in
real time and uses a variant of GDBSCAN (Sander, Ester, Kriegel, and Xu 1998) to produce
a final clustering for users. Tasoulis, Adams, and Hand (2006) present WSTREAM, which
uses kernel density estimation to find rectangular windows to represent clusters. The win-
dows can move, contract, expand and be merged over time. More recent density-based data
stream clustering algorithms are D-Stream (Tu and Chen 2009) and MR-Stream (Wan, Ng,
Dang, Yu, and Zhang 2009). D-Stream uses an online component to map each data point
into a predefined grid and then uses an offline component to cluster the grid based on density.
MR-Stream facilitates the discovery of clusters at multiple resolutions by using a grid of cells
that can dynamically be sub-divided into more cells using a tree data structure.

All approaches center on finding clusters of data points based on some notion of proximity,
but neglect the temporal structure of the data stream which might be crucial to understand-
ing the underlying processes. For example, for intrusion detection a user might change from
behavior A to behavior B, both represented by clusters labeled non-suspicious behavior, but
the transition form A to B might be extremely unusual and give away an intrusion event. The
Extensible Markov Model (EMM) originally developed by Dunham, Meng, and Huang (2004)
provides a technique to add temporal information in form of an evolving Markov Chain (MC)
to data stream clustering algorithms. Clusters correspond to states in the Markov Chain
and transitions represent the temporal information in the data. EMM was successfully ap-
plied to rare event and intrusion detection (Meng, Dunham, Marchetti, and Huang 2006;
Isaksson, Meng, and Dunham 2006; Meng and Dunham 2006c), web usage mining (Lu, Dun-
ham, and Meng 2006), and identifying emerging events and developing trends (Meng and
Dunham 2006a,b). In this paper we describe an implementation of EMM in the extension
package rEMM for the R environment for statistical computing (R Development Core Team
2005).

Although the traditional Markov Chain is an excellent modeling technique for a static set of
temporal data, it can not be applied directly to stream data. As the content of stream data is
not known apriori, the requirement of a fixed transition matrix is too restrictive. The dynamic
nature of EMM resolves this problem. Although there have been a few other approaches to
the use of dynamic Markov chains (Cormack and Horspool 1987; Ostendorf and Singer 1997;
Goldberg and Mataric 1999), none of the others provide the complete flexibility needed by
stream clustering to create, merge, and delete clusters.

This paper is organized as follows. In the next section we introduce the concept of EMM and
show that all operations needed for adding EMM to data stream clustering algorithms can

Michael Hahsler, Margaret H. Dunham 3

be performed efficiently. Section 3 introduces the simple data stream clustering algorithm
implemented in rEMM. In Section 4 we discuss implementation details of the package. Sec-
tions 5 and 6 provide examples for the package’s functionality and apply EMM to analyzing
river flow data and to genetic sequences. We conclude with Section 7.

A previous version of this paper was published in the Journal of Statistical Software (Hahsler
and Dunham 2010).

2. Extensible Markov model

The Extensible Markov Model (EMM) can be understood as an evolving Markov Chain (MC)
which at each point in time represents a regular time-homogeneous MC which is updated when
new data is available. In the following we will restrict the discussion to first order EMM but,
as for a regular MC, it is straight forward to extend EMM to higher order models (Kijima
1997).

Markov Chain. A (first order) discrete parameter Markov Chain (Parzen 1999) is a special
case of a Markov Process in discrete time and with a discrete state space. It is characterized
by a sequence 〈X1, X2, . . . 〉 of random variables Xt with t being the time index. All random
variables have the same domain dom(Xt) = S = {s1, s2, . . . , sK}, a set called the state space.
The Markov property states that the next state is only dependent on the current state.
Formally,

P (Xt+1 = s | Xt = st, . . . , X1 = s1) = P (Xt+1 = s | Xt = st) (1)

where s, st ∈ S. For simplicity we use for transition probabilities the notation

aij = P (Xt+1 = sj | Xt = si)

where it is appropriate. Time-homogeneous MC can be represented by a graph with the states
as vertices and the edges labeled with transition probabilities. Another representation is as a
K×K transition matrix A containing the transition probabilities from each state to all other
states.

A =

a11 a12 . . . a1K
a21 a22 . . . a2K
...

...
. . .

...
aK1 aK2 . . . aKK

 (2)

MCs are very useful to keep track of temporal information using the Markov Property as a
relaxation. With a MC it is easy to forecast the probability of future states. For example the
probability to get from a given state to any other state in n time steps is given by the matrix
An. With an MC it is also easy to calculate the probability of a new sequence of length t as
the product of transition probabilities:

P (Xt = st, Xt−1 = st−1 . . . , X1 = s1) = P (X1 = s1)

t−1∏
i=1

P (Xi+1 = si+1 | Xi = si) (3)

4 Extensible Markov Model for Data Stream Clustering

The probabilities of a Markov Chain can be directly estimated from data using the maximum
likelihood method by

aij = cij/ni, (4)

where cij is the observed count of transitions from si to sj in the data and ni =
∑K

k=1 cik,
the sum of all outgoing transitions from si.

Stream Data and Markov Chains. Data streams typically contain dimensions with con-
tinuous data and/or have discrete dimensions with a large number of domain values (Aggarwal
2009). In addition, the data may continue to arrive resulting in a possibly infinite number of
observations. Therefore data points have to be mapped onto a manageable number of states.
This mapping is done online as data arrives using data stream clustering where each cluster
(or micro-cluster) is represented by a state in the MC. Because of this one-to-one relationship
we use cluster and state for EMM often as synonyms.

The transition count information is obtained during the clustering process by using an addi-
tional data structure efficiently representing the MC transitions. Since it only uses information
(assignment of a data point to a cluster) which is created by the clustering algorithm any-
way, the computational overhead is minimal. When the clustering algorithm creates, merges
or deletes clusters, the corresponding states in the MC are also created, merged or deleted
resulting in the evolving MC. Note that K, the size of the set of clusters and of states S is
not fixed for EMMs and will change over time.

In the following we look at the additional data structures and the operations on these structure
which are necessary to extend an existing data stream clustering algorithm for EMM.

Data Structures for the EMM. Typically algorithms for data stream clustering use a
very compact representation for each cluster consisting of a description of the center and how
many data points were assigned to the cluster so far. Some algorithms also keep summary
information of the dispersion of the data points assigned to each cluster. Since the cluster
also represents a state in the EMM we need to add a data structure to store the outgoing
edges and their counts. For each cluster i representing state si we need to store a transition
count vector ci. All transition counts in an EMM can be seen as a transition K ×K count
matrix C composed of all transition count vectors. It is easy to calculate the estimated tran-
sition probability matrix from the transition count matrix (see Equation (4)). Note that ni
in Equation (4) normally is the same as the number of data points assigned to cluster i main-
tained by the clustering algorithm. If we manipulate the clustering using certain operations,
e.g., by deleting clusters or fading the cluster structure (see below), the values of ni calculated
from C will diverge from the number of assigned data points maintained by the clustering
algorithm. However, this is desirable since it ensures that the probabilities calculated for the
transition probability matrix A stay consistent and keep adding up to unity.

For EMM we also need to keep track of the current state γ ∈ {ε, 1, 2, . . . ,K} which is either no
state (ε; before the first data point has arrived) or the index of one of the K states. We store
the transitions from ε to the first state in form of an initial transition count vector cε of length
K. Note that the superscript is used to indicate that this is the special count vector from ε to
all existing states. The initial transition probability vector is calculated by pε = cε/

∑K
k=1 c

ε
k.

For a single continuous data stream, only one of the elements of pε is one and all others are
zero. However, if we have a data stream that naturally should be split into several sequences

Michael Hahsler, Margaret H. Dunham 5

(e.g., a sequence for each day for stock exchange data), pε is the probability of each state to be
the first state in a sequence (see also the genetic sequence analysis application in Section 6.2).

Thus in addition to the current state γ there are only two data structures needed by EMM:
the transition count matrix, C, and and the initial transition count vector, cε. These are
only related to maintaining the transition information. No additional data is needed for the
clusters themselves.

EMM Clustering Operations. We now define how the operations typically performed
by data stream clustering algorithms on (micro-)clusters can be mirrored for the EMM.

Adding a data point to an existing cluster. When a data point is added to an existing
cluster i, the EMM has to update the transition count from the current state γ to the
new state si by setting cγi = cγi + 1. Finally the current state is set to the new state
by γ = i.

Creating a new cluster. This operation increases the number of clusters/states from K to
K + 1 by adding a new (micro-)cluster. To store the transition counts from/to this new
cluster, we enlarge the transition count matrix C by a row and a column which are
initialized to zero.

Deleting clusters. When a cluster i (typically an outlier cluster) is deleted by the clustering
algorithm, all we need to do is to remove the row i and column i in the transition count
matrix C. This deletes the corresponding state si and reduces K to K − 1.

Merging clusters. When two clusters i and j are merged into a new cluster m, we need to:

1. Create new state sm in C (see creating a new cluster above).

2. Compute the outgoing edges for sm by cmk = cik + cjk, k = 1, 2, . . .K.

3. Compute the incoming edges for sm by ckm = cki + ckj , k = 1, 2, . . .K.

4. Delete columns and rows for the old states si and sj from C (see deleting clusters
above).

It is straight forward to extend the merge operation to an arbitrary number of clusters
at a time. Merging states also covers reclustering which is done by many data stream
clustering algorithm to create a final clustering for the user/application.

Splitting clusters. Splitting micro-clusters is typically not implemented in data stream clus-
tering algorithms since the individual data points are not stored and therefore it is not
clear how to create two new meaningful clusters. When clusters are“split”by algorithms
like BIRCH, it typically only means that one or several micro-clusters are assigned to a
different cluster of micro-clusters. This case does not affect the EMM, since the states
are attached to the micro-clusters and thus will move with them to the new cluster.

However, if splitting cluster i into two new clusters n and m is necessary, we replace si
by the two states, sn and sm, with equal incoming and outgoing transition probabilities

6 Extensible Markov Model for Data Stream Clustering

by splitting the counts between sn and sm proportional to nn and nm:

cnk = nn(cik/ni), k = 1, 2, . . .K

ckn = nn(cki/ni), k = 1, 2, . . .K

cmk = nm(cik/ni), k = 1, 2, . . .K

ckm = nm(cki/ni), k = 1, 2, . . .K

After the split we delete si.

Fading the cluster structure. Clusterings and EMMs adapt to changes in data over time.
New data points influence the clusters and transition probabilities. However, to enable
the EMM to learn the temporal structure, it also has to forget old data. Fading the
cluster structure is for example used by HPStream (Aggarwal et al. 2004). Fading is
achieved by reducing the weight of old observations in the data stream over time. We
use a decay rate λ ≥ 0 to specify the weight over time. We define the weight for data
that is t timesteps in the past by the following strictly decreasing function:

wt = 2−λt. (5)

Since data points are not stored, the weighting has to be performed on the transition
counts. This is easy since the weight defined above is multiplicative:

wt =

t∏
i=1

2−λ (6)

and thus can be applied iteratively. This property allows us to fade all transition counts
in the EMM by

Ct+1 = 2−λ Ct and

cεt+1 = 2−λ cεt

each time step resulting in a compounded fading effect. The exact time of fading is
decided by the clustering algorithm. Fading can be used before each new data point is
added, or at other regular intervals appropriate for the application.

The discussed operations cover all cases typically needed to incorporate EMM into existing
data stream clustering algorithms. For example, BIRCH (Zhang et al. 1996), CluStream (Ag-
garwal et al. 2003), DenStream (Cao et al. 2006) or WSTREAM (Tasoulis et al. 2006) can
be extended to maintain temporal information in form of an EMM.

Next we introduce the simple data stream clustering algorithm called threshold nearest neigh-
bor clustering algorithm implemented in rEMM.

3. Threshold Nearest Neighbor clustering algorithm

Although the EMM concept can be built on top of any stream clustering algorithm that uses
exclusively the operations described above, we discuss here only a simple algorithm used in

Michael Hahsler, Margaret H. Dunham 7

our initial R implementation. The clustering algorithm applies a variation of the Nearest
Neighbor (NN) algorithm which instead of always placing a new observation in the closest
existing cluster creates a new cluster if no existing cluster is near enough. To specify what
near enough means, a threshold value must be provided. We call this algorithm threshold NN
(tNN). The clusters produced by tNN can be considered micro-clusters which can be merged
later on in an optional reclustering phase. To represent (micro-)clusters, we use the following
information:

• Cluster centers

• Number of data points assigned to the cluster

In Euclidean space we use centroids as cluster centers since they can be easily incrementally
updated as new data points are added to the cluster by

zt+1 = n/(n+ 1)zt + 1/(n+ 1)y

where zt is the old centroid for a cluster containing n points, y is the new data point and
zt+1 is the updated centroid for n+ 1 data points (see, e.g., BIRCH by Zhang et al. (1996)).
Finding canonical centroids in non-Euclidean space typically has no closed form and is a com-
putationally expensive optimization problem which needs access to all data points belonging
to the cluster (Leisch 2006). Since we do not store the data points for our clusters, even exact
medoids cannot be found and we have to resort to fixed pseudo medoids or moving pseudo
centroids. We define fixed pseudo medoids as the first data point which creates a new cluster.
The idea is that since we use a fixed threshold around the center, points will be added around
the initial data point which makes it a reasonable center possibly close to the real medoid. As
an alternative approach, if we have at least a linear space, we define moving pseudo centroids
as the first data point and then, to approximate the adjustment, we apply a simple updating
scheme that moves a pseudo centroid towards each new data point that is assigned to its
cluster:

zt+1 = (1− α)zt + αy

where α controls how much the pseudo centroid moves in the direction of the new data point.
Typically we use α = 1

n+1 which results in an approximation of the centroid that is equal to
adjustments made for centroids in Euclidean space.

Note, that we do not store the sums and sum of squares of observations like BIRCH (Zhang
et al. 1996) and similar micro-cluster based algorithms since this only helps with calculating
measures meaningful in Euclidean space and the clustering algorithm here is intended to be
independent from the chosen proximity measure.

Algorithm to add a new data point to a clustering:

1. Compute dissimilarities between the new data point and the k centers.

2. Find the closest cluster with a dissimilarity smaller than the threshold.

3. If such a cluster exists then assign the new point to the cluster and adjust the cluster
center.

4. Otherwise create a new cluster for the point.

8 Extensible Markov Model for Data Stream Clustering

tNN TRACDS

EMM

Figure 1: UML class diagram for EMM

To observe memory limitations, clusters with very low counts (outliers) can be removed or
close clusters can be merged during clustering.

The clustering produces a set of micro-clusters. These micro-clusters can be directly used for
an application or they can be reclustered to create a final clustering to present to a user or
to be used by an application. For reclustering, the micro-cluster centers are treated as data
points and clustered by an arbitrary algorithm (hierarchical clustering, k-means, k-medoids,
etc.). This choice of clustering algorithm gives the user the flexibility to accommodate apriori
knowledge about the data and the shape of expected clusters. For example for spherical
clusters k-means or k-medoids can be used and if clusters of arbitrary shape are expected,
hierarchical clustering with single linkage make sense. Reclustering micro-clusters results in
merging the corresponding states in the MC.

4. Implementation details

Package rEMM implements the simple data stream clustering algorithm threshold NN (tNN)
described above with an added temporal EMM layer. The package uses the S4 class system
and builds on the infrastructure provided by the packages proxy (Meyer and Buchta 2010)
for dissimilarity computation, cluster (Maechler, Rousseeuw, Struyf, and Hubert 2010) for
clustering, and Rgraphviz (Gentry, Long, Gentleman, Falcon, Hahne, and Sarkar 2010) for
one of the visualization options.

The central class in the package is EMM which contains two classes, class tNN which contains
all information pertaining to the clustering and class TRACDS (short for temporal relationship
among clusters for data streams) for the temporal aspects. Figure 1 shows the UML class
diagram (Fowler 2004). The advantage of separating the classes is that for future development
it is easier to replace the clustering algorithm or perform changes on the temporal layer without
breaking the whole system.

Class tNN contains the clustering information used by threshold NN:

• Used dissimilarity measure

• Dissimilarity threshold for micro-clusters

• An indicator if (pseudo) centroids or pseudo medoids are used

• The cluster centers as a K×d matrix containing the centers (d-dimensional vectors) for
the K clusters currently used. Note that K changes over time when clusters are added
or deleted.

Michael Hahsler, Margaret H. Dunham 9

• The cluster count vector n = (n1, n2, . . . , nK) with the number of data points currently
assigned to each cluster.

Class TRACDS contains exclusively temporal information:

• The Markov Chain is represented by an object of the internal class SimpleMC which
allows for fast manipulation of the transition count matrix C. It also stores the initial
transition count vector cε.

• Current state γ as a state index. NA represents no state (ε).

To improve performance we emulate pass-by-reference semantics for objects of the
classes EMM, TRACDS and tNN. This is achieved by storing all variable information in
the objects inside of an environment which lets to the objects without copying the whole
object. For example, for an object of class EMM called emm and some new data

build(emm, newdata)

will change the information inside the emm object even though the function’s result is not
assigned back to emm. Note that this means that EMM, TRACDS and tNN objects have to be
explicitely copied with the provided copy() method if a true (deep) copy is needed.

An EMM object is created by function EMM() which initializes an empty clustering with
a temporal layer. Several methods are defined for either classe tNN or TRACDS. Only
methods which need clustering and temporal information together (e.g., building a new EMM
or plotting an EMM) are directly defined for EMM. Since EMM contains tNN and TRACDS,
all methods can directly be used for EMM objects. The reason of separation is flexibility for
future development.

The temporal layer information from class TRACDS can be accessed using

• nstates() (number of states),

• states() (names of states),

• current_state() (get current state),

• transition() (access count or probability of a certain transition),

• transition_matrix() (compute a transition count or probability matrix),

• initial_transition() (get initial transition count vector).

To access information about the clustering from class tNN, we provide the functions

• nclusters() (number of clusters),

• clusters() (names of clusters),

• cluster_counts() (number of observations assigned to each cluster),

• cluster_centers() (centroids/medoids of clusters).

10 Extensible Markov Model for Data Stream Clustering

For convenience, a method size() is provides for EMM which uses nclusters() in tNN to
return the number of clusters/states in the model.

Clustering and building the EMM is integrated in the function build(). It adds new data
points by first clustering and then updating the MC structure. For convenience, build() can
be called with several data points as a matrix, however, internally the data points (rows) are
processed sequentially.

To process multiple sequences, reset() is provided. It sets the current state to no state (γ =
ε). The next observation will start a new sequence and the initial transition count vector
will be updated. For convenience, a row of all NAs in a sequence of data points supplied to
build() as a matrix also works as a reset.

rEMM implements cluster structure fading by two mechanisms. First, build() has a decay
rate parameter lambda. If this parameter is set, build() automatically fades all counts before
a new data point is added. The second mechanism is to explicitly call the function fade()

whenever fading is needed. This has the advantage that the overhead of manipulating all
counts in the EMM can be reduced and that fading can be used in a more flexible manner.
For example, if the data points are arriving at an irregular rate, fade() could be called at
regular time intervals (e.g., every second).

To manipulate states/clusters and transitions, rEMM offers a wide array of functions.
remove_clusters() and remove_transitions() remove user specified states/clusters or
transitions from the model. To find rare clusters or transitions with a count below a speci-
fied threshold rare_clusters() and rare_transitions() can be used. prune() combines
finding rare clusters or transitions and removing them into a convenience function. For some
applications transitions from a state to itself might not be interesting. These transitions
can be removed by using remove_selftransitions(). The last manipulation function is
merge_clusters() which combines several clusters/states into a single cluster/state.

As described above, the threshold NN data stream clustering algorithm can use an optional
reclustering phase to combine micro-clusters into a final clustering. For reclustering we provide
several wrapper functions for popular clustering methods in rEMM: recluster_hclust()
for hierarchical clustering, recluster_kmeans() for k-means and recluster_pam() for k-
medoids. However, it is easy to use any other clustering method. All that is needed is
a vector with the cluster assignments for each state/cluster. This vector can be supplied
to merge_clusters() with clustering=TRUE to create a reclustered EMM. Optionally new
centers calculated by the clustering algorithm can also be supplied to merge_clusters() as
the parameter new_center.

Predicting a future state and calculating the probability of a new sequence are implemented
as predict() and score(), respectively.

The helper function find_clusters() returns the cluster/state sequence for given data
points. The matching can be nearest neighbor or exact. Nearest neighbor always returns
a matching cluster, while exact will return no cluster (NA) if a data point does not fall within
the threshold of any cluster.

Finally, plot() implements several visualization methods for class EMM.

In the next section we give some examples of how to use rEMM in practice.

Michael Hahsler, Margaret H. Dunham 11

5. Examples

5.1. Basic usage

First, we load the package and a simple data set called EMMTraffic, which comes with
the package and was used by Dunham et al. (2004) to illustrate EMMs. Each of the 12
observations in this hypothetical data set is a vector of seven values obtained from sensors
located at specific points on roads. Each sensor collects a count of the number of vehicles
which have crossed this sensor in the preceding time interval.

R> library("rEMM")

R> data(EMMTraffic)

R> EMMTraffic

Loc_1 Loc_2 Loc_3 Loc_4 Loc_5 Loc_6 Loc_7

1 20 50 100 30 25 4 10

2 20 80 50 20 10 10 10

3 40 30 75 20 30 20 25

4 15 60 30 30 10 10 15

5 40 15 25 10 35 40 9

6 5 5 40 35 10 5 4

7 0 35 55 2 1 3 5

8 20 60 30 11 20 15 10

9 45 40 15 18 20 20 15

10 15 20 40 40 10 10 14

11 5 45 55 10 10 15 0

12 10 30 10 4 15 15 10

We use EMM() to create a new EMM object using extended Jaccard as proximity measure
and a dissimilarity threshold of 0.2. For the extended Jaccard measure pseudo medoids are
automatically chosen (use centroids = TRUE in EMM() to use pseudo centroids). Then we
build a model using the EMMTraffic data set. Note that build() takes the whole data set
at once, but this is only for convenience. Internally the data points are processed as a data
stream, strictly one after the other in a single pass.

R> emm <- EMM(threshold=0.2, measure="eJaccard")

R> build(emm, EMMTraffic)

R> size(emm)

[1] 7

R> ntransitions(emm)

[1] 9

Note that we do not need to assign the result of build() back to emm. The information
in emm is changed by build() inside the object since class EMM emulates pass-by-reference
semantics.

12 Extensible Markov Model for Data Stream Clustering

The resulting EMM has 7 states. The number of data points represented by each cluster can
be accessed via cluster_counts().

R> cluster_counts(emm)

1 2 3 4 5 6 7

2 3 1 2 2 1 1

Cluster 2 has with a count of three the most assigned data points. The cluster centers can
be inspected using cluster_centers().

R> cluster_centers(emm)

Loc_1 Loc_2 Loc_3 Loc_4 Loc_5 Loc_6 Loc_7

1 20 50 100 30 25 4 10

2 20 80 50 20 10 10 10

3 40 15 25 10 35 40 9

4 5 5 40 35 10 5 4

5 0 35 55 2 1 3 5

6 45 40 15 18 20 20 15

7 10 30 10 4 15 15 10

plot() for EMM objects provides several visualization methods. For example, the default
method is as a graph using igraph. We use here the method ”graph” which uses Rgraphviz,
a package which has to be installed separately from the Bioconduictor project1.

R> plot(emm, method="graph")

The resulting graph is presented in Figure 2. In this representation the vertex size and the
arrow width code for the number of observations represented by each state and the transition
counts, i.e., more popular clusters and transitions are more prominently displayed.

The current transition probability matrix of the EMM can be calculated using
transition_matrix().

R> transition_matrix(emm)

1 2 3 4 5 6 7

1 0.1111 0.3333 0.1111 0.1111 0.1111 0.1111 0.1111

2 0.2000 0.1000 0.2000 0.1000 0.1000 0.2000 0.1000

3 0.1250 0.1250 0.1250 0.2500 0.1250 0.1250 0.1250

4 0.1111 0.1111 0.1111 0.1111 0.3333 0.1111 0.1111

5 0.1111 0.2222 0.1111 0.1111 0.1111 0.1111 0.2222

6 0.1250 0.1250 0.1250 0.2500 0.1250 0.1250 0.1250

7 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

1http://www.bioconductor.org/

http://www.bioconductor.org/

Michael Hahsler, Margaret H. Dunham 13

1

2

3

4

5

6

7

Figure 2: Graph representation of an EMM for the EMMTraffic data set.

Alternatively we can get also get the raw transition count matrix.

R> transition_matrix(emm, type="counts")

1 2 3 4 5 6 7

1 1 3 1 1 1 1 1

2 2 1 2 1 1 2 1

3 1 1 1 2 1 1 1

4 1 1 1 1 3 1 1

5 1 2 1 1 1 1 2

6 1 1 1 2 1 1 1

7 1 1 1 1 1 1 1

R> #transition_matrix(emm, type="log_odds")

Individual transition probabilities or counts can be obtained more efficiently via
transition().

R> transition(emm, "2", "1", type="probability")

[1] 0.2

Using the EMM model, we can predict a future cluster given a current cluster For example,
we can predict the most likely cluster two time steps away from cluster 2.

R> predict(emm, n=2, current="2")

14 Extensible Markov Model for Data Stream Clustering

[1] "4"

predict() with probabilities=TRUE produced the probability distribution over all clusters.

R> predict(emm, n=2, current="2", probabilities=TRUE)

1 2 3 4 5 6 7

0.0000 0.3333 0.0000 0.6667 0.0000 0.0000 0.0000

In this example cluster 4 was predicted since it has the highest probability. If several clusters
have the same probability the tie is randomly broken.

5.2. Manipulating EMMs

EMMs can be manipulated by removing clusters or transitions and by merging clusters.
Figure 3(a) shows again the EMM for the EMMTraffic data set created above. We can
remove a cluster with remove_clusters(). For example, we remove cluster 3 and display the
resulting EMM in Fig 3(b).

R> emm_3removed <- remove_clusters(emm, "3")

R> plot(emm_3removed, method="graph")

Note that a copy of emm is explicitely created in order have two independent copies in memory.

Removing transitions is done with remove_transitions(). In the following example we
remove the transition from cluster 5 to cluster 2 from the original EMM for EMMTraffic in
Figure 3(a). The resulting graph is shown in Fig 3(c).

R> emm_52removed <- remove_transitions(emm, "5", "2")

R> plot(emm_52removed, method="graph")

Here a reference of a copy of emm is passed on to remove_transitions() and then assigned
to emm_52removed.

Clusters can be merged using merge_clusters(). Here we merge clusters 2 and 5 into a
combined cluster. The combined cluster automatically gets the name of the first cluster in
the merge vector. The resulting EMM is shown in Fig 3(d).

R> emm_25merged <- merge_clusters(emm, c("2","5"))

R> plot(emm_25merged, method="graph")

Note that a transition from the combined cluster 2 to itself is created which represents the
transition from cluster 5 to cluster 2 in the original EMM.

5.3. Using cluster structure fading and pruning

EMMs can adapt to changes in data over time. This is achieved by fading the cluster structure
using a decay rate. To show the effect, we train an EMM on the EMMTraffic data with a
rather high decay rate of λ = 1. Since the weight is calculated by wt = 2−λt, the observations
are weighted 1, 12 ,

1
4 ,

Michael Hahsler, Margaret H. Dunham 15

1

2

3

4

5

6

7

(a)

1

2

4

5

6

7

(b)

1

2

3

4

5

6

7

(c)

1

2

3

4

6 7

(d)

Figure 3: Graph representation for an EMM for the EMMTraffic data set. (a) shows the
original EMM, in (b) cluster 3 is removed, in (c) the transition from cluster 5 to cluster 2 is
removed, and in (d) clusters 2 and 5 are merged.

R> emm_fading <- EMM(threshold=0.2, measure="eJaccard", lambda = 1)

R> build(emm_fading, EMMTraffic)

R> plot(emm_fading, method="graph")

The resulting graph is shown in Figure 4(b). The clusters which were created earlier on (clus-
ters with lower index number) are smaller (represent a lower weighted number of observations)
compared to the original EMM without fading displayed in Figure 4(a).

Over time clusters in an EMM can become obsolete and no new observations are assigned
to them. Similarly transitions might become obsolete over time. To simplify the model and
improve efficiency, such obsolete clusters and transitions can be pruned. For the example here,
we prune all clusters which have a weighted count of less than 0.1 and show the resulting model
in Figure 4(c).

R> emm_fading_pruned <- prune(emm_fading, count_threshold=0.1,

+ clusters=TRUE, transitions=TRUE)

R> plot(emm_fading_pruned, method="graph")

16 Extensible Markov Model for Data Stream Clustering

1

2

3

4

5

6

7

(a)

1

2

3

4

5

6

7

(b)

4

5

6

7

(c)

Figure 4: Graph representation of an EMM for the EMMTraffic data set. (a) shows the
original EMM. (b) shows an EMM with a learning rate of λ = 1. (c) EMM with learning rate
after pruning with a count threshold of 0.1.

5.4. Visualization options

We use a simulated data set called EMMsim which is included in rEMM. The data contains
four well separated clusters in R2. Each cluster is represented by a bivariate normally dis-
tributed random variable Xi ∼ N2(µ,Σ). µ are the coordinates of the mean of the distribution
and Σ is the covariance matrix.

The temporal structure of the data is modeled by the fixed sequence 〈1, 2, 1, 3, 4〉 through
the four clusters which is repeated 40 times (200 data points) for the training data set and 5
times (25 data points) for the test data.

R> data("EMMsim")

Since the data set is in 2-dimensional space, we can directly visualize the data set as a scatter
plot (see Figure 5). We overlayed the test sequence to show the temporal structure, the points
in the test data are numbered and lines connect the points in sequential order.

R> plot(EMMsim_train, col="gray", pch=EMMsim_sequence_train)

R> lines(EMMsim_test, col ="gray")

Michael Hahsler, Margaret H. Dunham 17

●
●

●

●
●

●

●

● ●●
●

●

●

●

●
●●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

● ●

●

● ●
●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

−0.5 0.0 0.5 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x

y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 5: Simulated data set with four clusters. The points of the test data set are plotted in
red and the temporal structure is depicted by sequential numbers and lines between the data
points.

R> points(EMMsim_test, col="red", pch=5)

R> text(EMMsim_test, labels=1:nrow(EMMsim_test), pos=3)

We create an EMM by clustering using Euclidean distance and a threshold of 0.1.

R> emm <- EMM(threshold=0.1, measure="euclidean")

R> build(emm, EMMsim_train)

R> plot(emm)

The default EMM visualized as a graph using package igraph is shown in Figure 6(a).

R> plot(emm, method="graph")

Using method graph the same graph is rendered using the Graphviz library (if pack-
age Rgraphviz is installed). This visualization is shown in Figure 6(b). In both graph-based
visualizations the positions of the vertices of the graph (states/clusters) are solely chosen to
optimize the layout which results in a not very informative visualization. The next visualiza-
tion method uses the relative position of the clusters to represent the proximity between the
cluster centers.

R> plot(emm, method="MDS")

This results in the visualization in Figure 6(c) which shows the same EMM graph but the
relative position of the clusters/states is determined by the proximity of the cluster centers.
If the data space has more than two dimensions or a non-Euclidean distance measure is used,

18 Extensible Markov Model for Data Stream Clustering

the position of the states will be determined using multidimensional scaling (MDS, Cox and
Cox 2001) to preserve the proximity information between clusters in the two dimensional
representation as much as possible. Since the data set in this example is already in two-
dimensional Euclidean space, the original coordinates of the centers are directly used. The
size of the clusters and the width of the arrows represent again cluster and transition counts.

We can also project the points in the data set into 2-dimensional space and then add the
centers of the clusters (see Figure 6(d)).

R> plot(emm, method = "MDS", data=EMMsim_train)

The simple graph representations in Figures 6(a) and (b) show a rather complicated graph for
the EMM. However, Figure 6(c) with the vertices positioned to represent similarities between
cluster centers shows more structure. The clusters clearly fall into four groups. The projection
of the cluster centers onto the data set in Figure 6(d) shows that the four groups represent
the four clusters in the data where the larger clusters are split into several micro-clusters. We
will introduce reclustering to simplify the structure in a later section.

5.5. Scoring new sequences

To score a new sequence with a model we have to perform several steps:

1. Assign all data point in the sequence to state in the model

2. Evaluate the how well the sequence of states matches the model

For the first step we need to define an assignment function s(i) which retuns the state for the
ith data point in the new sequence. There are several assignment methods possible. We can
use exactly the same assignemnt procedure as during clustering. This is the default method
called "exact" where a data point is assigned to its nearest state only if it falls within the
threshold around the state’s center. Otherwise, no assignment (a missing value) is made.
Alternatively, we can assign a data point to its nearest neighbor ("nn"), i.e., the closest state
no matter how far it is away. A third option is to use nerest neighbor assignment with a
weighting scheme ("weighted").

The assignment function transforms the new sequence of data points into a sequence of states.
To evaluate how well the sequence fits the model stored in the transition matrix A can be
done several ways. The likelihood of the model given the new sequence is given by:

Slikelihood =
l−1∏
i=1

as(i),s(i+1) (7)

Note that for a sequence of length l we have l − 1 transitions. The so-called average log-loss
is another option.

Slog loss = − 1

l − 1

l−1∑
i=1

log2(as(i),s(i+1)) (8)

The average log-loss is the number of bits needed to encode the new sequence given the model.

Michael Hahsler, Margaret H. Dunham 19

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

(a)

●1

●2

●3

●4

●5

●6

●7

●8

●9

●10

●11

●12

●13

●14

●15

●16

●17

●18

●19

●20

●21

●22

●23

●24

●25

●26

●27

●28

●29 ●30

(b)

−0.5 0.0 0.5 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x

y

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●● ●

●
●

1

2

3

4

5
6

7

8910

11

12

13

14
15

16

17

18

19

20
21

22

23

24

25

2627 28

29

30

(c)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

−0.5 0.0 0.5 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x

y

●

●

●

●
●

●
●

●1

2

3

4

5

6

7

8
910

11

12

13

14
15

16

17

18

19

20
21

22

23

24

25

2627 28

29
30

(d)

Figure 6: Visualization of the EMM for the simulated data. (a) and (b) As a simple graph.
(c) A graph using vertex placement to represent dissimilarities. (d) Projection of state centers
onto the simulated data.

20 Extensible Markov Model for Data Stream Clustering

Scores similar to the likelihood and the average log-loss can be defined as:

Sproduct = l−1

√√√√l−1∏
i=1

as(i),s(i+1) (9)

Slog sum =
1

l − 1

l−1∑
i=1

log(as(i),s(i+1)) (10)

Ssum =
1

l − 1

l−1∑
i=1

as(i),s(i+1) (11)

For weighted nearest neighbor assignment the weights are used in the following way:

Sweighted
product = l−1

√√√√l−1∏
i=1

wi as(i),s(i+1) (12)

Sweighted
log sum =

1

l − 1

l−1∑
i=1

log(wi as(i),s(i+1)) (13)

Sweighted
sum =

1

l − 1

l−1∑
i=1

wi as(i),s(i+1) (14)

where s(i) represents the state the i-th data point in the new sequence is assigned to, and

wi = simil(xi, s(i)) simil(xi+1, s(i+ 1))

with

simil(x, s) = 1− 1

1 + e−
d(x,s)/t−µ

σ

where d() is the distance function and t is the threshold used for building the model. µ = 1.5
and σ = .2 are parameters of the logistic distribution used for transformation. Figure 7
visualizes the relationship between the distance of data point and cluster and the resulting
similarity weight.

Another very rough score can be obtained by just counting the number of transitions in the
new sequence which are also present (supported) in the model.

Ssupported transitions =
1

l − 1

l−1∑
i=1

I(as(i),s(i+1)) (15)

where I(v) is indicator function which is 0 for v = 0 and 1 otherwise. Supported transactions
can also be used with weighted nearest neighbors.

Sweighted
supported transitions =

1

l − 1

l−1∑
i=1

wiI(as(i),s(i+1)) (16)

Michael Hahsler, Margaret H. Dunham 21

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d(x,s)/t

si
m

il(
x,

s)

Figure 7: Similarity weight calculation given the distance and the used threshold t.

To take the initial transition probability also into account is straight forward to add the initial
probability aε,s(1) to the equations above.

As an example, we calculate how well the test data fits the EMM created for the EMMsim
data in the section above. The test data is supplied together with the training set in rEMM.

R> score(emm, EMMsim_test, method="log_loss")

[1] Inf

R> score(emm, EMMsim_test, method="likelihood")

[1] 0

R> score(emm, EMMsim_test, method="product")

[1] 0

R> score(emm, EMMsim_test, method="sum")

[1] 0.09659

R> score(emm, EMMsim_test, method="supported_transitions")

[1] 0.75

22 Extensible Markov Model for Data Stream Clustering

Even though the test data was generated using exactly the same model as the training data,
the likelihood and the normalized product, produce a score of 0 while the average log-loss is
infinity. The normalized sum is also very low. Only the supported transition count is high. To
analyze the problem we can look at the transition table for the test sequence. The transition
table is computed by transition_table().

R> transition_table(emm, EMMsim_test)

from to probability

1 1 16 0.05405

2 16 3 0.07143

3 3 20 0.14286

4 20 5 0.24390

5 5 10 0.03226

6 10 7 0.06061

7 7 9 0.06522

8 9 20 0.06818

9 20 5 0.24390

10 5 1 0.04839

11 1 16 0.05405

12 16 3 0.07143

13 3 20 0.14286

14 20 5 0.24390

15 5 <NA> 0.00000

16 <NA> 7 0.00000

17 7 17 0.02174

18 17 20 0.02703

19 20 5 0.24390

20 5 3 0.06452

21 3 16 0.04762

22 16 <NA> 0.00000

23 <NA> 4 0.00000

24 4 5 0.37037

The low score is caused by data points that do not fall within the threshold for any cluster
(<NA> above) and by missing transitions in the matching sequence of clusters (counts and
probabilities of zero above). These missing transitions are the result of the fragmentation
of the real clusters into many micro-clusters (see Figures 6(b) and (c)). Suppose we have
two clusters called cluster A and cluster B and after an observation in cluster A always an
observation in cluster B follows. If now cluster A and cluster B are represented by many
micro-clusters each, it is likely that we find a pair of micro-clusters (one in A and one in B)
for which we did not see a transition yet and thus will have a transition count/probability of
zero.

We can use different matching strategies to deal with this problem. Implemented
options are nearest neighbor (match_cluster="nn") and weighted nearest neighbor
(match_cluster="weighted").

Michael Hahsler, Margaret H. Dunham 23

R> score(emm, EMMsim_test, method="product", match_cluster="nn")

[1] 0.07451

R> score(emm, EMMsim_test, method="product", match_cluster="weighted")

[1] 0.07033

Note that the weighted score is slightly smaller since the weight penalizes the data points
which are farther away from the cluster centers. Another option is to use a number which
is a multiplicator for the threshold in which the data point has to fall to be assigned to the
cluster. For example with match_cluster=2, the data point has to fall within two times the
threshold around the cluster’s center. Here a new data point is assigned to the closest cluster
even if it falls outside the threshold (or up to 10% outside for the second example).

R> score(emm, EMMsim_test, method="supported_transitions", match_cluster=1.1)

[1] 0.75

The problem with missing transitions can be reduced by starting with a prior distribution of
transition probabilities (prior=TRUE is the default setting). We implement the simple case
where we start with a uniform transition probability distribution, i.e., if no data is available
we assume that the transitions to all other states are equally likely. This can be done by using
a uniform prior, giving each transition an initial count of one (Jaynes and Bretthorst 2003).

Using nearest neighbor and uniform initial counts of one produces the following scores.

R> methods <- c("product", "sum", "log_loss", "likelihood")

R> sapply(methods, FUN = function(m)

+ score(emm, EMMsim_test, method=m, match="weighted"))

product sum log_loss likelihood

7.033e-02 1.008e-01 3.830e+00 2.145e-28

Since we only have micro-clusters, the scores are still extremely small. To get a better model,
we will recluster the states in the following section.

5.6. Reclustering states

For this example, we use the EMM created in the previous section for the EMMsim data set.
For reclustering, we use here hierarchical clustering with average linkage. To find the best
number of clusters k, we create clustered EMMs for different values of k and then score the
resulting models using the test data.

We use recluster_hclust() to create a list of clustered EMMs for k = 2, 3, . . . , 10. Any
recluster function in rEMM returns with the resulting EMM information about the clustering
as the attribute cluster_info. Here we plot the dendrogram which is shown in Fig 8.

24 Extensible Markov Model for Data Stream Clustering

5 14
20

11 4 21
2 19
24

7 16 22 27
23 29

9
13 17 10 28

1 6
30

18 12 8 26
25 3 150.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Cluster Dendrogram

hclust (*, "average")
d

H
ei

gh
t

Figure 8: Dendrogram for clustering state centers of the EMM build from simulated data.

R> ## find best predicting model (clustering)

R> k <- 2:10

R> emmc <- recluster_hclust(emm, k=k, method ="average")

R> plot(attr(emmc, "cluster_info")$dendrogram)

R> sc <- sapply(emmc, score, EMMsim_test, "log_likelihood")

R> names(sc) <- k

R> sc

2 3 4 5 6 7 8 9

-15.775 -13.628 -8.168 -14.333 -13.498 -14.326 -16.802 -20.384

10

-26.235

To find the best performing of these nested models we use the log-likelihood. The best
performing model has a score of -8.168 for a k of 4. This model is depicted in Figure 9(a).
Since the four groups in the data set are well separated, reclustering finds the original structure
(see Figure 9(b)) with all points assigned to the correct state.

6. Applications

6.1. Analyzing river flow data

The rEMM package also contains a data set called Derwent which was originally used by Dun-
ham et al. (2004). It consists of river flow readings (measured in m3 per second) from four

Michael Hahsler, Margaret H. Dunham 25

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

1

2

4

5

(a)

●
●

●

●
●

●

●

● ●●
●

●

●

●

●
●●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

● ●

●

● ●
●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

−0.5 0.0 0.5 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
x

y

●
1

2

4

5

(b)

Figure 9: Best performing final clustering for EMM with a k of 4.

catchments of the river Derwent and two of its main tributaries in northern England. The
data was collected daily for roughly 5 years (1918 observations) from November 1, 1971 to
January 31, 1977. The catchments are Long Bridge, Matlock Bath, Chat Sworth, What Stand
Well, Ashford (river Wye) and Wind Field Park (river Amber).

The data set is interesting since it contains annual changes of river levels and also some special
flooding events.

R> data(Derwent)

R> summary(Derwent)

Long Bridge Matlock Bath Chat Sworth What Stand Well

Min. : 2.78 Min. : 2.61 Min. : 0.30 Min. : 0.74

1st Qu.: 7.10 1st Qu.: 5.08 1st Qu.: 1.32 1st Qu.: 2.27

Median : 10.95 Median : 7.89 Median : 2.16 Median : 3.13

Mean : 14.33 Mean : 10.64 Mean : 2.67 Mean : 4.51

3rd Qu.: 17.09 3rd Qu.: 12.78 3rd Qu.: 3.45 3rd Qu.: 4.87

Max. :109.30 Max. :104.60 Max. :16.06 Max. :72.79

Wye@Ashford Amber@Wind Field Park

Min. :0.030 Min. :0.01

1st Qu.:0.180 1st Qu.:0.04

Median :0.330 Median :0.09

Mean :0.544 Mean :0.14

3rd Qu.:0.640 3rd Qu.:0.16

Max. :6.280 Max. :4.16

NA's :31 NA's :252

26 Extensible Markov Model for Data Stream Clustering

0 500 1000 1500

0
20

40
60

80
10

0

Long Bridge

Index

G
au

ge
d

flo
w

Figure 10: Gauged flow (in m3/s) of the river Derwent at the Long Bridge catchment.

From the summary we see that the gauged flows vary among catchments significantly (from
0.143 to 14.238). The influence of differences in averages flows can be removed by scaling the
data before building the EMM. From the summary we also see that for the Ashford and Wind
Field Park catchments a significant amount of observations is not available. EMM deals with
these missing values by using only the non-missing dimensions of the observations for the
proximity calculations (see package proxy for details).

R> plot(Derwent[,1], type="l", ylab="Gauged flow",

+ main=colnames(Derwent)[1])

In Figure 10 we can see the annual flow pattern for the Long Bridge catchment with higher
flows in September to March and lower flows in the summer months. The first year seems
to have more variability in the summer months and the second year has an unusual event
(around the index of 600 in Figure 10) with a flow above 100m3/s which can be classified as
flooding.

We build an EMM from the (centered and) scaled river data using Euclidean distance between
the vectors containing the flows from the six catchments and experimentally found a distance
threshold of 3 (just above the 3rd quartile of the distance distribution between all scaled
observations) to give useful results.

R> Derwent_scaled <- scale(Derwent)

R> emm <- EMM(measure="euclidean", threshold=3)

R> build(emm, Derwent_scaled)

R> cluster_counts(emm)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1428 350 6 24 1 70 4 12 1 1 1 1 1 9

Michael Hahsler, Margaret H. Dunham 27

15 16 17 18 19 20

2 2 1 2 1 1

R> cluster_centers(emm)

Long Bridge Matlock Bath Chat Sworth What Stand Well Wye@Ashford

1 -0.4952 -0.5056 -0.551695 -0.4169 -0.4096

2 0.9181 0.8230 0.951693 0.5512 0.8625

3 5.0354 4.4522 3.673684 4.1994 6.0338

4 2.0498 1.4756 1.098893 1.1541 3.5635

5 4.0462 2.3667 1.584169 2.1860 8.9368

6 2.2761 2.4334 2.415472 2.2421 1.3345

7 5.2905 5.5555 4.005180 6.2489 2.0506

8 3.4530 3.7520 3.087612 3.6711 3.3056

9 1.9153 2.3242 1.486351 4.5033 5.1354

10 2.6217 3.4090 4.491556 2.9447 3.1723

11 0.3817 1.9684 -0.008101 5.6207 1.9104

12 8.0338 10.7853 7.273952 14.8420 3.5462

13 5.0892 4.3583 2.399324 4.9250 1.7857

14 0.9446 1.0958 0.837246 1.5938 1.7494

15 0.2946 1.2050 0.220143 3.2838 3.6397

16 6.3851 6.1989 2.277051 8.0108 7.3009

17 6.5213 7.6033 5.687117 8.1271 6.9114

18 4.1582 3.1478 1.793392 3.4371 5.7897

19 5.4055 6.9651 5.556692 8.6727 2.3933

20 4.5672 4.7348 5.600167 4.2664 4.3720

Amber@Wind Field Park

1 -0.3327

2 0.3804

3 1.7605

4 1.6752

5 1.9524

6 1.0571

7 1.0650

8 1.3623

9 8.8597

10 6.5093

11 19.2687

12 14.9516

13 2.7678

14 4.8020

15 2.3841

16 3.7751

17 3.9670

18 5.2381

19 4.5906

20 5.0703

28 Extensible Markov Model for Data Stream Clustering

1 2 6 4 8 14 3 7 15 16 18 5 9 10 11 12 13 17 19 20

State

C
ou

nt

1
5

10
50

10
0

50
0

Figure 11: Distribution of state counts of the EMM for the Derwent data.

R> plot(emm, method = "cluster_counts", log="y")

The resulting EMM has 20 clusters/states. In Figure 11 shows that the cluster counts have a
very skewed distribution with clusters 1 and 2 representing most observations and clusters 5,
9, 10, 11, 12, 17, 19 and 20 being extremely rare.

R> plot(emm, method="MDS")

The projection of the cluster centers into 2-dimensional space in Figure 12(a) reveals that all
but clusters 11 and 12 are placed closely together.

Next we look at frequent clusters and transitions. We define rare here as all clus-
ters/transitions that represent less than 0.5% of the observations. On average this translates
into less than two daily observation per year. We calculate a count threshold, use prune()

to remove rare clusters.

R> rare_threshold <- sum(cluster_counts(emm))*0.005

R> rare_threshold

[1] 9.59

R> plot(prune(emm, rare_threshold), method="MDS")

The pruned model depicted in Figure 12(b) shows that 5 clusters represent approximately
99.5% of the river’s behavior. All five clusters come from the lower half of the large group
of clusters in Figure 12(a). Clusters 1 and 2 are the most frequently occurring clusters and
the wide bidirectional arrow connecting them means that observing transitions between these
two clusters are common. To analyze the meaning of the two outlier clusters (11 and 12)
identified in Figure 12(a) above, we plot the flows at a catchment and mark the observations
for these states.

Michael Hahsler, Margaret H. Dunham 29

−10 −5 0 5 10 15

−
5

0
5

10

These two dimensions explain 88.75 % of the point variability.
Dimension 1

D
im

en
si

on
 2

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

(a)

−4 −2 0 2 4

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

These two dimensions explain 99.2 % of the point variability.
Dimension 1

D
im

en
si

on
 2

●

●

●

●1 2

4

6

8

(b)

Figure 12: Cluster centers of the EMM for the Derwent data set projected on 2-dimensional
space. (a) shows the full EMM and (b) shows a pruned EMM (only the most frequently used
states)

R> catchment <- 1

R> plot(Derwent[,catchment], type="l", ylab="Gauged flows",

+ main=colnames(Derwent)[catchment])

R> state_sequence <- find_clusters(emm, Derwent_scaled)

R> mark_states <- function(states, state_sequence, ys, col=0, label=NULL, ...) {

+ x <- which(state_sequence %in% states)

+ points(x, ys[x], col=col, ...)

+ if(!is.null(label)) text(x, ys[x], label, pos=4, col=col)

+ }

R> mark_states("11", state_sequence, Derwent[,catchment], col="blue", label="11")

R> mark_states("12", state_sequence, Derwent[,catchment], col="red", label="12")

In Figure 13(a) we see that cluster 12 has a river flow in excess of 100m3/s which only
happened once in the observation period. Cluster 11 seems to be a regular observation with
medium flow around 20m3/s and it needs more analysis to find out why this cluster is also
an outlier directly leading to cluster 12.

R> catchment <- 6

R> plot(Derwent[,catchment], type="l", ylab="Gauged flow",

+ main=colnames(Derwent)[catchment])

R> mark_states("11", state_sequence, Derwent[,catchment], col="blue", label="11")

R> mark_states("12", state_sequence, Derwent[,catchment], col="red", label="12")

The catchment at Wind Field Park is at the Amber river which is a tributary of the Derwent
and we see in Figure 13(b) that the day before the flood occurs, the flow shoots up to

30 Extensible Markov Model for Data Stream Clustering

0 500 1000 1500

0
20

40
60

80
10

0

Long Bridge

Index

G
au

ge
d

flo
w

s

● 11

● 12

(a)

0 500 1000 1500

0
1

2
3

4

Amber@Wind Field Park

Index
G

au
ge

d
flo

w

● 11

● 12

(b)

Figure 13: Gauged flow (in m3/s) at (a) the Long Bridge catchment and (b) the Amber at
the Wind Field Park catchment. Outliers (states 11 and 12) are marked.

4m3/s which is caught by cluster 11. The temporal structure clearly indicated that a flood
is imminent the next day.

6.2. Genetic sequence analysis

The rEMM package also contains examples for 16S ribosomal RNA (rRNA) sequences for
the two phylogenetic classes, Alphaproteobacteria and Mollicutes. 16S rRNA is a component
of the ribosomal subunit 30S and is regularly used for phylogenetic studies (e.g., see Wang,
Garrity, Tiedje, and Cole 2007). Typically alignment heuristics like BLAST (Altschul, Gish,
Miller, Myers, and Lipman 1990) or a Hidden Markov Model (HMM) (e.g., Hughey and Krogh
1996) are used for evaluating the similarity between two or more sequences. However, these
procedures are computationally very expensive.

An alternative approach is to describe the structure in terms of the occurrence frequency
of so called n-words, subsequences of length n. Counting the occurrences of the 4n (there
are four different nucleotide types) n-words is straight forward and computing similarities
between frequency profiles if very efficient. Because no alignment is computed, such methods
are called alignment-free (Vinga and Almeida 2003).

rEMM contains preprocessed sequence data for 30 16S sequences of the phylogenetic class
Mollicutes. The sequences were preprocessed by cutting them into windows of length 100
nucleotides without overlap and then for each window the occurrence of triplets of nucleotides
was counted resulting in 43 = 64 counts per window. Each window will be used as an
observation to build the EMM. The counts for the 30 sequences are organized as a matrix
and sequences are separated by rows of NA resulting in resetting the EMM during the build
process.

Michael Hahsler, Margaret H. Dunham 31

Vinga and Almeida (2003) review dissimilarity measures used for alignment-free methods.
The most commonly used measures are Euclidean distance, d2 distance (a weighted Euclidean
distance), Mahalanobis distance and Kullback-Leibler discrepancy (KLD). Since Wu, Hsieh,
and Li (2001) find in their experiments that KLD provides good results while it still can be
computed as fast as Euclidean distance, it is also used here. Since KLD becomes −∞ for
counts of zero, we add one to all counts which conceptually means that we start building the
EMM with a prior that all triplets have the equal occurrence probability (see Wu et al. 2001).
We use an experimentally found threshold of 0.1.

R> data("16S")

R> emm <- EMM(threshold=0.1, "Kullback")

R> build(emm, Mollicutes16S+1)

R> plot(emm, method = "graph")

R> ## start state for sequences have an initial state probability >0

R> it <- initial_transition(emm)

R> it[it>0]

1 2 3 4 5 6 7

0.207547 0.009434 0.009434 0.009434 0.009434 0.009434 0.009434

8 9 10 11 12 13 14

0.009434 0.009434 0.009434 0.009434 0.009434 0.009434 0.009434

15 16 17 18 19 20 21

0.009434 0.009434 0.009434 0.009434 0.009434 0.009434 0.009434

22 23 24 25 26 27 28

0.009434 0.028302 0.009434 0.009434 0.009434 0.009434 0.009434

29 30 31 32 33 34 35

0.009434 0.009434 0.009434 0.009434 0.009434 0.009434 0.009434

36 37 38 39 40 41 42

0.047170 0.009434 0.009434 0.009434 0.009434 0.009434 0.009434

43 44 45 46 47 48 49

0.018868 0.009434 0.009434 0.009434 0.028302 0.009434 0.009434

50 51 52 53 54 55 56

0.009434 0.009434 0.009434 0.009434 0.009434 0.009434 0.009434

57 58 59 60 61 62 63

0.009434 0.009434 0.009434 0.009434 0.009434 0.009434 0.009434

64 65 66 67 68 69 70

0.009434 0.009434 0.009434 0.009434 0.009434 0.009434 0.009434

71 72 73 74 75 76

0.009434 0.009434 0.009434 0.009434 0.009434 0.009434

The graph representation of the EMM is shown in Figure 14. Note that each cluster/state
in the EMM corresponds to one or more windows of the rRNA sequence (the size of the
cluster indicates the number of windows). The initial transition probabilities show that most
sequences start the first count window in cluster 1. Several interesting observations can be
made from this representation.

32 Extensible Markov Model for Data Stream Clustering

●1

●2

●3

4

●5

6

●7

8

●9

●10

●11

●12

●13

14

●15

●16

●17

●18

●19

●20

●21

●22

●23

●24

●25

●26

●27

●28

●29

●30

●31

●32

●33

●34

●35

●36

●37

●38

●39

●40

●41

●42

●43

●44

●45

●46

●47

●48

●49

●50

●51

●52

●53

●54

●55

●56

●57

●58

●59

●60

●61

●62

●63

●64

●65

●66

●67

●68

●69

●70

●71

●72

●73

●74

●75

●76

Figure 14: An EMM representing 16S sequences from the class Mollicutes represented as a
graph.

Michael Hahsler, Margaret H. Dunham 33

• There exists a path through the graph using only the largest clusters and widest arrows
which represents the most common sequence of windows.

• There are several places in the EMM where almost all sequences converge (e.g., 4 and
14)

• There are places with high variability where many possible parallel paths exist (e.g., 7,
27, 20, 35, 33, 28, 65, 71)

• The window composition changes over the whole sequences since there are no edges
going back or skipping states on the way down.

In general it is interesting that the graph has no loops since Deschavanne, Giron, Vilain, Fagot,
and Fertil (1999) found in their study using Chaos Game Representation that the variability
along genomes and among genomes is low. However, they looked at longer sequences and we
look here at the micro structure of a very short sequence. These observations merit closer
analysis by biologists.

7. Conclusion

Temporal structure in data streams is ignored by current data stream clustering algorithms.
A temporal EMM layer can be used to retain such structure. In this paper we showed that
a temporal EMM layer can be added to any data stream clustering algorithm which works
with dynamically creating, deleting and merging clusters. As an example, we implemented in
rEMM a simple data stream clustering algorithm and the temporal EMM layer and demon-
strated its usefulness with two applications.

Future work will include extending popular data stream clustering algorithms with EMM,
incorporate higher order models and add support for reading data directly from data stream
sources.

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments.

Part of the research presented in this paper was supported in part by the National Science
Foundation under Grant No. IIS-0948893 and the National Human Genome Research Insti-
tute under Grant No. R21HG005912.

References

Aggarwal C (2009). “A Framework for Clustering Massive-Domain Data Streams.” In IEEE
25th International Conference on Data Engineering (ICDE ’09), pp. 102–113.

Aggarwal CC, Han J, Wang J, Yu PS (2003). “A Framework for Clustering Evolving Data
Streams.” In Proceedings of the International Conference on Very Large Data Bases (VLDB
’03), pp. 81–92.

34 Extensible Markov Model for Data Stream Clustering

Aggarwal CC, Han J, Wang J, Yu PS (2004). “A Framework for Projected Clustering of High
Dimensional Data Streams.” In Proceedings of the Thirtieth International Conference on
Very Large Data Bases (VLDB ’04), pp. 852–863. ISBN 0-12-088469-0.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). “Basic Local Alignment
Search Tool.” Journal of Molecular Biology, 215(3), 403–410.

Ankerst M, Breunig MM, Kriegel HP, Sander J (1999). “OPTICS: Ordering Points To Iden-
tify the Clustering Structure.” In Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, pp. 49–60.

Cao F, Ester M, Qian W, Zhou A (2006). “Density-Based Clustering over an Evolving Data
Stream with Noise.” In Proceedings of the 2006 SIAM International Conference on Data
Mining, pp. 328–339. SIAM.

Cormack GV, Horspool RNS (1987). “Data Compression Using Dynamic Markov Modeling.”
The Computer Journal, 30(6).

Cox T, Cox M (2001). Multidimensional Scaling. Chapman and Hall.

Deschavanne PJ, Giron A, Vilain J, Fagot G, Fertil B (1999). “Genomic Signature: Character-
ization and Classification of Species Assessed by Chaos Game Representation of Sequences.”
Molecular Biology and Evolution, 16(10), 1391–1399.

Dunham MH, Meng Y, Huang J (2004). “Extensible Markov Model.” In Proceedings IEEE
ICDM Conference, pp. 371–374. IEEE.

Fowler M (2004). UML Distilled: A Brief Guide to the Standard Object Modeling Language.
third edition. Addison-Wesley Professional.

Gentry J, Long L, Gentleman R, Falcon S, Hahne F, Sarkar D (2010). Rgraphviz: Provides
Plotting Capabilities for R Graph Objects. R package version 1.24.0.

Goldberg D, Mataric MJ (1999). “Coordinating Mobile Robot Group Behavior using a Model
of Interaction Dynamics.” In Proceedings of the Third International Conference on Au-
tonomous Agents.

Guha S, Meyerson A, Mishra N, Motwani R, O’Callaghan L (2003). “Clustering data Streams:
Theory and Practice.” IEEE Transactions on Knowledge and Data Engineering, 15(3),
515–528.

Guha S, Mishra N, Motwani R, O’Callaghan L (2000). “Clustering Data Streams.” In Pro-
ceedings of the ACM Symposium on Foundations of Computer Science, pp. 359–366.

Hahsler M, Dunham MH (2010). “rEMM: Extensible Markov Model for Data Stream Clus-
tering in R.” Journal of Statistical Software, 35(5), 1–31. URL http://www.jstatsoft.

org/v35/i05/.

Hughey R, Krogh A (1996). “Hidden Markov Models for Sequence Analysis: Extension and
Analysis of the Basic Method.” Computational Applications in Bioscience, 12(2), 95–107.

Isaksson C, Meng Y, Dunham MH (2006). “Risk Leveling of Network Traffic Anomalies.”
International Journal of Computer Science and Network Security, 6(6), 258–265.

http://www.jstatsoft.org/v35/i05/
http://www.jstatsoft.org/v35/i05/

Michael Hahsler, Margaret H. Dunham 35

Jaynes E, Bretthorst G (2003). Probability Theory: The Logic of Science. Cambridge Uni-
versity Press.

Kijima M (1997). Markov Processes for Stochastic Modeling. Stochastic Modeling Series.
Chapman & Hall/CRC.

Kriegel HP, Kröger P, Gotlibovich I (2003). “Incremental OPTICS: Efficient Computation
of Updates in a Hierarchical Cluster Ordering.” In Data Warehousing and Knowledge
Discovery, volume 2737 of Lecture Notes in Computer Science, pp. 224–233. Springer.

Leisch F (2006). “A Toolbox for K-Centroids Cluster Analysis.” Computational Statistics and
Data Analysis, 51(2), 526–544.

Lu L, Dunham MH, Meng Y (2006). “Mining Significant Usage Patterns from Clickstream
Data.” In Advances in Web Mining and Web Usage Analysis, volume 4198 of Lecture Notes
in Computer Science. Springer.

Maechler M, Rousseeuw P, Struyf A, Hubert M (2010). cluster: Cluster Analysis Basics and
Extensions. R package version 1.13.1.

Meng Y, Dunham MH (2006a). “Efficient Mining of Emerging Events in a Dynamic Spa-
tiotemporal Environment.” In Advances in Knowledge Discovery and Data Mining, volume
3918 of Lecture Notes in Computer Science, pp. 750–754. Springer.

Meng Y, Dunham MH (2006b). “Mining Developing Trends of Dynamic Spatiotemporal Data
Streams.” Journal of Computers, 1(3), 43–50.

Meng Y, Dunham MH (2006c). “Online Mining of Risk Level of Traffic Anomalies with User’s
Feedbacks.” In Proceedings of the IEEE International Conference on Granular Computing,
pp. 176–181.

Meng Y, Dunham MH, Marchetti F, Huang J (2006). “Rare Event Detection in a Spatiotem-
poral Environment.” In Proceedings of the IEEE International Conference on Granular
Computing, pp. 629–634.

Meyer D, Buchta C (2010). proxy: Distance and Similarity Measures. R package version 0.4-6,
URL http://CRAN.R-project.org/package=proxy.

O’Callaghan L, Mishra N, Meyerson A, Guha S, Motwani R (2002). “Streaming-data Algo-
rithms for High-quality Clustering.” In Proceedings of the 18th International Conference
on Data Engineering (ICDE’02), pp. 685–. IEEE Computer Society.

Ostendorf M, Singer H (1997). “HMM Topology Desing Using Maximum Likelihood Successive
State Splitting.” Computer Speech and Language, 11(1), 17–41.

Parzen E (1999). Stochastic Processes. Society for Industrial Mathematics.

R Development Core Team (2005). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org.

http://CRAN.R-project.org/package=proxy
http://www.R-project.org
http://www.R-project.org

36 Extensible Markov Model for Data Stream Clustering

Sander J, Ester M, Kriegel HP, Xu X (1998). “Density-based Clustering in Spatial Databases:
The Algorithm GDBSCAN and its Applications.” Data Minining and Knowledge Discovery,
2(2), 169–194.

Tasoulis D, Adams N, Hand D (2006). “Unsupervised Clustering in Streaming Data.” In IEEE
International Workshop on Mining Evolving and Streaming Data. Sixth IEEE International
Conference on Data Mining (ICDM 2006), pp. 638–642.

Tasoulis DK, Ross G, Adams NM (2007). “Visualising the Cluster Structure of Data Streams.”
In Advances in Intelligent Data Analysis VII, Lecture Notes in Computer Science, pp. 81–
92. Springer.

Tu L, Chen Y (2009). “Stream Data Clustering Based on Grid Density and Attraction.” ACM
Transactions on Knowledge Discovery from Data, 3(3), 1–27. ISSN 1556-4681.

Vinga S, Almeida J (2003). “Alignment-free Sequence Comparison—A Review.” Bioinfor-
matics, 19(4), 513–523.

Wan L, Ng WK, Dang XH, Yu PS, Zhang K (2009). “Density-based clustering of data streams
at multiple resolutions.” ACM Transactions on Knowledge Discovery from Data, 3(3), 1–28.
ISSN 1556-4681.

Wang Q, Garrity GM, Tiedje JM, Cole JR (2007). “Naive Bayesian Classifier for Rapid Assign-
ment of rRNA Sequences into the new Bacterial Taxonomy.” Applied and Environmental
Microbiology, 73(16), 5261–5267.

Wu TJ, Hsieh YC, Li LA (2001). “Statistical Measures of DNA Sequence Dissimilarity under
Markov Chain Models of Base Composition.” Biometrics, 57(2), 441–448.

Zhang T, Ramakrishnan R, Livny M (1996). “BIRCH: An Efficient Data Clustering Method
for Very Large Databases.” In Proceedings of the 1996 ACM SIGMOD International Con-
ference on Management of Data, pp. 103–114. ACM.

Affiliation:

Michael Hahsler
Engineering Management, Information, and Systems
Lyle School of Engineering
Southern Methodist University
P.O. Box 750123
Dallas, TX 75275-0123
E-mail: mhahsler@lyle.smu.edu
URL: http://lyle.smu.edu/~mhahsler

Margaret H. Dunham
Computer Science and Engineering
Lyle School of Engineering
Southern Methodist University
P.O. Box 750122

mailto:mhahsler@lyle.smu.edu
http://lyle.smu.edu/~mhahsler

Michael Hahsler, Margaret H. Dunham 37

Dallas, TX 75275-0122
E-mail: mhd@lyle.smu.edu
URL: http://lyle.smu.edu/~mhd

mailto:mhd@lyle.smu.edu
http://lyle.smu.edu/~mhd

	Introduction
	Extensible Markov model
	Threshold Nearest Neighbor clustering algorithm
	Implementation details
	Examples
	Basic usage
	Manipulating EMMs
	Using cluster structure fading and pruning
	Visualization options
	Scoring new sequences
	Reclustering states

	Applications
	Analyzing river flow data
	Genetic sequence analysis

	Conclusion

