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1 Introduction

Ordered categorical data, or simply ordinal data, are commonplace in scientific disciplines
where humans are used as measurement instruments. Examples include school gradings,
ratings of preference in consumer studies, degree of tumor involvement in MR images and
animal fitness in field ecology. Cumulative link models are a powerful model class for such
data since observations are treated rightfully as categorical, the ordered nature is exploited
and the flexible regression framework allows in-depth analyses.

The name cumulative link models is adopted from Agresti (2002), but the models are also
known as ordinal regression models although that term is sometimes also used for other
regression models for ordinal responses such as continuation ratio models (see e.g., Agresti,
2002). Other aliases are ordered logit models and ordered probit models (Greene and Hensher,
2010) for the logit and probit link functions. Further, the cumulative link model with a logit
link is widely known as the proportional odds model due to McCullagh (1980), also with a
complementary log-log link, the model is known as proportional hazards model for grouped
survival times.

Ordinal response variables can be analyzed with omnibus Pearson χ2 tests, base-line logit
models or log-linear models. This corresponds to assuming that the response variable is
nominal and information about the ordering of the categories will be ignored. Alternatively
numbers can be attached to the response categories, e.g., 1, 2, . . . , J and the resulting scores
can be analyzed by conventional linear regression and ANOVA models. This approach is
in a sense over-confident since the data are assumed to contain more information than they
actually do. Observations on an ordinal scale are classified in ordered categories, but the
distance between the categories is generally unknown. By using linear models the choice of
scoring impose assumptions about the distance between the response categories. Further,
standard errors and tests from linear models rest on the assumption that the response,
conditional on the explanatory variables, is normally distributed (equivalently the residuals
are assumed to be normally distributed). This cannot be the case since the scores are discrete
and responses beyond the end categories are not possible. If there are many responses in the
end categories, there will most likely be variance heterogeneity to which F and t tests can
be rather sensitive. If there are many response categories and the response does not pile up
in the end categories, we may expect tests from linear models to be accurate enough, but
any bias and optimism is hard to quantify.

Cumulative link models provide the regression framework familiar from linear models while
treating the response rightfully as categorical. While cumulative link models are not the
only type of ordinal regression model, they are by far the most popular class of ordinal
regression models.

Common to the application of methods for nominal responses and linear models to ordinal
responses is that interpretation of effects on the ordinal response scale is awkward. For
example, linear models will eventually give predictions outside the possible range and state-
ments such as “the response increase 1.2 units with each degree increase in temperature” will
only be approximately valid in a restricted range of the response variable.

In this document cumulative link models are described for modeling ordinal response vari-
ables. We also describe these models are fitted and data are analyzed with the functionality
provided in the ordinal package for R (R Development Core Team, 2011).

Example 1 (The wine data): As an example of the data set with an ordinal response variable
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Table 1: Wine data from Randall (1989).
Least—Most bitter

Temperature Contact 1 2 3 4 5
cold no 4 9 5 0 0
cold yes 1 7 8 2 0
warm no 0 5 8 3 2
warm yes 0 1 5 7 5

consider the wine data from Randall (1989) available in the object wine in package ordinal, cf.
Table 1. The data represent a factorial experiment on factors determining the bitterness of wine
with 1 = “least bitter” and 5 = “most bitter”. Two treatment factors (temperature and contact)
each have two levels. Temperature and contact between juice and skins can be controlled when
crushing grapes during wine production. Nine judges each assessed wine from two bottles from
each of the four treatment conditions, hence there are 72 observations in all. In Table 1 we have
aggregated data over bottles and judges for simplicity, but these variables will be considered
later. Initially we only assume that, say, category 4 is larger than 3, but not that the distance
between 2 and 3 is half the distance between 2 and 4, for example. The main objective is to
examine the effect of contact and temperature on the perceived bitterness of wine. �

2 Cumulative link models

A cumulative link model is a model for an ordinal response variable, Yi that can fall in
j = 1, . . . , J categories.1 Then Yi follows a multinomial distribution with parameter π
where πij denote the probability that the ith observation falls in response category j. We
define the cumulative probabilities as2

γij = P (Yi ≤ j) = πi1 + . . .+ πij . (1)

Initially we will consider the logit link. The logit function is defined as logit(π) = log[π/(1−
π)] and cumulative logits are defined as:

logit(γij) = logit(P (Yi ≤ j)) = log
P (Yi ≤ j)

1− P (Yi ≤ j)
j = 1, . . . , J − 1 (2)

so that the cumulative logits are defined for all but the last category.3

A cumulative link model with a logit link, or simply cumulative logit model is a regression
model for cumulative logits:

logit(γij) = θj − xTi β (3)

where xi is a vector of explanatory variables for the ith observation and β is the correspond-
ing set of regression parameters. The {θj} parameters provide each cumulative logit (for
each j) with its own intercept. A key point is that the regression part xTi β is independent
of j, so β has the same effect for each of the J − 1 cumulative logits. Note that xTi β does

1where J ≥ 2. If J = 2 binomial models also apply, and in fact the cumulative link model is in this
situation identical to a generalized linear model for a binomial response.

2we have suppressed the conditioning on the covariate vector, xi, so we have that γij = γj(xi) and
P (Yi ≤ j) = P (Y ≤ j|xi).

3since for j = J the denominator would be 1−P (Yi ≤ J) = 1−1 = 0 and thus the fraction is not defined.

4



0

1

x i
Tβ

γ ij
=

P
(Y

i≤
j)

j = 1

j = 2

j = 3

Figure 1: Illustration of a cumulative link model with four response categories.

Table 2: Estimates from ordinary logistic regression models (OLR) and a cumulative logit
model (CLM) fitted to the wine data (cf. Table 1).

OLR CLM
j Intercept contact θj contact
1 -2.08 -1.48(1.14) -2.14 1.21(0.45)
2 0.00 -1.10(0.51) 0.04
3 1.82 -1.37(0.59) 1.71
4 2.83 -1.01(0.87) 2.98

not contain an intercept, since the {θj} act as intercepts. The cumulative logit model is
illustrated in Fig. 1 for data with four response categories. For small values of xTi β the
response is likely to fall in the first category and for large values of xTi β the response is
likely to fall in the last category. The horizontal displacements of the curves are given by
the values of {θj}.

Some sources write the cumulative logit model, (3) with a plus on the right-hand-side, but
there are two good reasons for the minus. First, it means that the larger the value of xTi β,
the higher the probability of the response falling in a category at the upper end of the
response scale. Thus β has the same direction of effect as the regression parameter in an
ordinary linear regression or ANOVA model. The second reason is related to the latent
variable interpretation of cumulative link models that we will consider in section 2.6.

Example 2: We will consider a cumulative logit model for the wine data including an effect
of contact. The response variable is the bitterness ratings, thus each yi takes a value from 1 to
5 representing the degree of bitterness for the ith sample. We may write the cumulative logit
model as:

logit(γij) = θj − β2(contacti), j = 1, . . . , 4, i = 1, . . . , 72.

The parameter estimates are given in the last two columns of Table 2. If we consider the
cumulative logit model (3) for a fixed j, e.g., for j = 1, then the model is just a ordinary
logistic regression model where the binomial response is divided into those observations falling
in category j or less (Yi ≤ j), and those falling in a higher category than j (Yi > j). An
initial analysis might indeed start by fitting such an ordinary logistic regression models for a
dichotomized response. If we proceed in this vein, we could fit the J − 1 = 4 ordinary logistic
regression model by fixing j at 1, 2, 3, and 4 in turn. The estimates of those four ordinary
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logistic regression models are given in Table 2 under the OLR heading. The cumulative logit
model can be seen as the model that combines these four ordinary logistic regression models
into a single model and therefore makes better use of the information in the data. A part from
a sign difference the estimate of the effect of contact from the cumulative logit model is about
the average of the contact effect estimates from the ordinary logistic regression models. Also
observe that the standard error of the contact effect is smaller in the cumulative logit model
than in any of the ordinary logistic regression models reflecting that the effect of contact is more
accurately determined in the cumulative logit model. The intercepts from the ordinary logistic
regression models are also seen to correspond to the threshold parameters in the cumulative
logit model.

The four ordinary logistic regression models can be combined in a single ordinary logistic re-
gression model providing an even better approximation to the cumulative link model. This is
considered further in Appendix A. �

2.1 Fitting cumulative link models with clm from package ordinal

Cumulative link models can be fitted with clm from package ordinal. The function takes the
following arguments:

function (formula, scale, nominal, data, weights, start, subset, doFit = TRUE,

na.action, contrasts, model = TRUE, control = list(), link = c("logit",

"probit", "cloglog", "loglog", "cauchit"), threshold = c("flexible",

"symmetric", "symmetric2", "equidistant"), ...)

Most arguments are standard and well-known from lm and glm, so they will not be intro-
duced. The formula argument is of the form response ~ covariates and specifies the
linear predictor. The response should be an ordered factor (see help(factor)) with levels
corresponding to the response categories. A number of link functions are available and the
logit link is the default. The doFit and threshold arguments will be introduced in later
sections. For further information about the arguments see the help page for clm4.

Example 3: In this example we fit a cumulative logit model to the wine data presented in
example 1 with clm from package ordinal. A cumulative logit model that includes additive
effects of temperature and contact is fitted and summarized with

> fm1 <- clm(rating ~ contact + temp, data = wine)

> summary(fm1)

formula: rating ~ contact + temp

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 72 -86.49 184.98 6(0) 4.01e-12 2.7e+01

Coefficients:

Estimate Std. Error z value Pr(>|z|)

contactyes 1.5278 0.4766 3.205 0.00135 **

tempwarm 2.5031 0.5287 4.735 2.19e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Threshold coefficients:

4Typing ?clm or help(clm) in the command prompt should display the help page for clm.
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Estimate Std. Error z value

1|2 -1.3444 0.5171 -2.600

2|3 1.2508 0.4379 2.857

3|4 3.4669 0.5978 5.800

4|5 5.0064 0.7309 6.850

The summary provides basic information about the model fit. There are two coefficient tables:
one for the regression variables and one for the thresholds or cut-points. Often the thresholds
are not of primary interest, but they are an integral part of the model. It is not relevant to test
whether the thresholds are equal to zero, so no p-values are provided for this test. The condition
number of the Hessian is a measure of how identifiable the model is; large values, say larger
than 1e4 indicate that the model may be ill defined. From this model it appears that contact
and high temperature both lead to higher probabilities of observations in the high categories as
we would also expect from examining Table 1.

The Wald tests provided by summary indicate that both contact and temperature effects are
strong. More accurate likelihood ratio tests can be obtained using the drop1 and add1 methods
(equivalently dropterm or addterm). The Wald tests are marginal tests so the test of e.g., temp
is measuring the effect of temperature while controlling for the effect of contact. The equivalent
likelihood ratio tests are provided by the drop-methods:

> drop1(fm1, test = "Chi")

Single term deletions

Model:

rating ~ contact + temp

Df AIC LRT Pr(>Chi)

<none> 184.98

contact 1 194.03 11.043 0.0008902 ***

temp 1 209.91 26.928 2.112e-07 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In this case the likelihood ratio tests are slightly more significant than the Wald tests. We could
also have tested the effect of the variables while ignoring the effect of the other variable. For
this test we use the add-methods:

> fm0 <- clm(rating ~ 1, data = wine)

> add1(fm0, scope = ~ contact + temp, test = "Chi")

Single term additions

Model:

rating ~ 1

Df AIC LRT Pr(>Chi)

<none> 215.44

contact 1 209.91 7.5263 0.00608 **

temp 1 194.03 23.4113 1.308e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

where we used the scope argument to indicate which terms to include in the model formula.
These tests are a little less significant than the tests controlling for the effect of the other variable.

Conventional symmetric so-called Wald confidence intervals for the parameters are available as

> confint(fm1, type = "Wald")

2.5 % 97.5 %
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1|2 -2.3578848 -0.330882

2|3 0.3925794 2.109038

3|4 2.2952980 4.638476

4|5 3.5738541 6.438954

contactyes 0.5936345 2.461961

tempwarm 1.4669081 3.539296

More accurate profile likelihood confidence intervals are also available and these are discussed
in section 4. �

2.2 Odds ratios and proportional odds

The odds ratio of the event Y ≤ j at x1 relative to the same event at x2 is

OR =
γj(x1)/[1− γj(x1)]

γj(x2)/[1− γj(x2)]
=

exp(θj − xT1 β)

exp(θj − xT2 β)
= exp[(xT2 − xT1 )β]

which is independent of j. Thus the cumulative odds ratio is proportional to the distance
between x1 and x2 which made McCullagh (1980) call the cumulative logit model a pro-
portional odds model. If x represent a treatment variable with two levels (e.g., placebo and
treatment), then x2−x1 = 1 and the odds ratio is exp(−βtreatment). Similarly the odds ratio
of the event Y ≥ j is exp(βtreatment).

Confidence intervals for the odds ratios are obtained by transforming the limits of confi-
dence intervals for β, which will lead to asymmetric confidence intervals for the odds ratios.
Symmetric confidence intervals constructed from the standard error of the odds ratios will
not be appropriate and should be avoided.

Example 4: The (cumulative) odds ratio of rating ≥ j (for all j = 1, . . . , J − 1) for contact
and temperature are

> round(exp(fm1$beta), 1)

contactyes tempwarm

4.6 12.2

attesting to the strong effects of contact and temperature. Asymmetric confidence intervals for
the odds ratios based on the Wald statistic are:

> round(exp(confint(fm1, type = "Wald")), 1)

2.5 % 97.5 %

1|2 0.1 0.7

2|3 1.5 8.2

3|4 9.9 103.4

4|5 35.7 625.8

contactyes 1.8 11.7

tempwarm 4.3 34.4

�
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Table 3: Summary of various link functions

Name logit probit log-log clog-loga cauchit

Distribution logistic Normal Gumbel (max)b Gumbel (min)b Cauchyc

Shape symmetric symmetric right skew left skew kurtotic
Link function (F−1) log[γ/(1− γ)] Φ−1(γ) − log[− log(γ)] log[− log(1− γ)] tan[π(γ − 0.5)]
Inverse link (F ) 1/[1 + exp(η)] Φ(η) exp(− exp(−η)) 1− exp[− exp(η)] arctan(η)/π + 0.5
Density (f = F ′) exp(−η)/[1 + exp(−η)]2 φ(η) exp(− exp(−η)− η) exp[− exp(η) + η] 1/[π(1 + η2)]

a: the complementary log-log link
b: the Gumbel distribution is also known as the extreme value (type I) distribution for extreme
minima or maxima. It is also sometimes referred to as the Weibull (or log-Weibull) distribution
(http://en.wikipedia.org/wiki/Gumbel_distribution).
c: the Cauchy distribution is a t-distribution with one df

2.3 Link functions

Cumulative link models are not formally a member of the class of (univariate) generalized
linear models5 (McCullagh and Nelder, 1989), but they share many similarities with gener-
alized linear models. Notably a link function and a linear predictor (ηij = θj − xTi β) needs
to be specified as in generalized linear models while the response distribution is just the
multinomial. Fahrmeir and Tutz (2001) argues that cumulative link models are members of
a class of multivariate generalized linear models. In addition to the logit link other choices
are the probit, cauchit, log-log and clog-log links. These are summarized in Table 3. The
cumulative link model may be written as

γij = F (ηij), ηij = θj − xTi β (4)

where F−1 is the link function—the motivation for this particular notation will be given in
section 2.6.

The probit link is often used when the model is interpreted with reference to a latent variable,
cf. section 2.6. When the response variable represent grouped duration or survival times
the complementary log-log link is often used. This leads to the proportional hazard model
for grouped responses:

− log{1− γj(xi)} = exp(θj − xTi β)

or equivalently
log[− log{1− γj(xi)}] = θj − xTi β . (5)

Here 1− γj(xi) is the probability or survival beyond category j given xi. The proportional
hazards model has the property that

log{γj(x1)} = exp[(xT2 − xT1 )β] log{γj(x2)} .

If the log-log link is used on the response categories in the reverse order, this is equivalent
to using the c-log-log link on the response in the original order. This reverses the sign of
β as well as the sign and order of {θj} while the likelihood and standard errors remain
unchanged.

In addition to the standard links in Table 3, flexible link functions are available for clm in
package ordinal.
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Table 4: Income distribution (percentages) in the Northeast US adopted from McCullagh
(1980).

Year Income
0-3 3-5 5-7 7-10 10-12 12-15 15+

1960 6.50 8.20 11.30 23.50 15.60 12.70 22.20
1970 4.30 6.00 7.70 13.20 10.50 16.30 42.10

Example 5: McCullagh (1980) present data on income distribution in the Northeast US repro-
duced in Table 4 and available in package ordinal as the object income. The unit of the income
groups are thousands of (constant) 1973 US dollars. The numbers in the body of the table are
percentages of the population summing to 100 in each row6, so these are not the original obser-
vations. The uncertainty of parameter estimates depends on the sample size, which is unknown
here, so we will not consider hypothesis tests. Rather the most important systematic component
is an upward shift in the income distribution from 1960 to 1970 which can be estimated from a
cumulative link model. This is possible since the parameter estimates themselves only depend
on the relative proportions and not the absolute numbers.

McCullagh considers which of the logit or cloglog links best fit the data in a model with an
additive effect of year. He concludes that a the complementary log-log link corresponding to
a right-skew distribution is a good choice. We can compare the relative merit of the links by
comparing the value of the log-likelihood of models with different link functions:

> links <- c("logit", "probit", "cloglog", "loglog", "cauchit")

> sapply(links, function(link) {

clm(income ~ year, data=income, weights=pct, link=link)$logLik })

logit probit cloglog loglog cauchit

-353.3589 -353.8036 -352.8980 -355.6028 -352.8434

The cauchit link attains the highest log-likelihood closely followed by the complementary log-log
link. This indicates that a symmetric heavy tailed distribution such as the Cauchy provides an
even slightly better description of these data than a right skew distribution.

Adopting the complementary log-log link we can summarize the connection between the income
in the two years by the following: If p1960(x) is proportion of the population with an income
larger than $x in 1960 and p1970(x) is the equivalent in 1970, then approximately

log p1960(x) = exp(β̂) log p1970(x)

= exp(0.568) log p1970(x) �

2.4 Maximum likelihood estimation of cumulative link models

Cumulative link models are usually estimated by maximum likelihood (ML) and this is
also the criterion used in package ordinal. The log-likelihood function (ignoring additive
constants) can be written as

`(θ,β;y) =

n∑
i=1

wi log πi (6)

5the distribution of the response, the multinomial, is not a member of the (univariate) exponential family
of distributions.

6save rounding error
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where i index all scalar observations (not multinomial vector observations), wi are potential
case weights and πi is the probability of the ith observation falling in the response category
that it did, i.e., πi are the non-zero elements of πijI(Yi = j). Here I(·) is the indicator function

being 1 if its argument is true and zero otherwise. The ML estimates of the parameters; θ̂
and β̂ are those values of θ and β that maximize the log-likelihood function in (6).

Not all data sets can be summarized in a table like Table 1. If a continuous variable takes a
unique value for each observation, each row of the resulting table would contain a single 1 and
zeroes for the rest. In this case all {wi} are one unless the observations are weighted for some
other reason. If the data can be summarized as in Table 1, a multinomial observation vector
such as [3, 1, 2] can be fitted using y = [1, 1, 1, 2, 3, 3] with w = [1, 1, 1, 1, 1, 1] or by using
y = [1, 2, 3] with w = [3, 1, 2]. The latter construction is considerably more computationally
efficient (an therefore faster) since the log-likelihood function contains three rather than six
terms and the design matrix, X will have three rather than six rows.

The details of the actual algorithm by which the likelihood function is optimized is deferred
to a later section.

According to standard likelihood theory, the variance-covariance matrix of the parameters
can be obtained as the inverse of the observed Fisher information matrix. This matrix is
given by the negative Hessian of the log-likelihood function7 evaluated at the maximum
likelihood estimates. Standard errors can be obtained as the square root of the diagonal of
the variance-covariance matrix.

Let α = [θ,β] denote the full set of parameters. The Hessian matrix is then given as the
second order derivative of the log-likelihood function evaluated at the ML estimates:

H =
∂2`(α;y)

∂α∂αT

∣∣∣∣
α=α̂

. (7)

The observed Fisher information matrix is then I(α̂) = −H and the standard errors are
given by

se(α̂) =
√

diag[I(α̂)−1] =
√

diag[−H(α̂)−1]. (8)

Another general way to obtain the variance-covariance matrix of the parameters is to use
the expected Fisher information matrix. The choice of whether to use the observed or the
expected Fisher information matrix is often dictated by the fitting algorithm: re-weighted
least squares methods often produce the expected Fisher information matrix as a by-product
of the algorithm, and Newton-Raphson algorithms (such as the one used for clm in ordinal)
similarly produce the observed Fisher information matrix. Efron and Hinkley (1978) consid-
ered the choice of observed versus expected Fisher information and argued that the observed
information contains relevant information thus it is preferred over the expected information.

Pratt (1981) and Burridge (1981) showed (seemingly independent of each other) that the log-
likelihood function of cumulative link models with the link functions considered in Table 3,
except for the cauchit link, is concave. This means that there is a unique global optimum so
there is no risk of convergence to a local optimum. It also means that the step of a Newton-
Raphson algorithm is guarantied to be in the direction of a higher likelihood although the
step may be too larger to cause an increase in the likelihood. Successively halving the step
whenever this happens effectively ensures convergence.

7equivalently the Hessian of the negative log-likelihood function.
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Notably the log likelihood of cumulative cauchit models is not guarantied to be concave, so
convergence problems may occur with the Newton-Raphson algorithm. Using the estimates
from a cumulative probit models as starting values seems to be a widely successful approach.

Observe also that the concavity property does not extend to cumulative link models with
scale effects, but that structured thresholds (cf. section 2.7) are included.

2.5 Deviance and model comparison

2.5.1 Model comparison with likelihood ratio tests

A general way to compare models is by means of the likelihood ratio statistic. Consider two
models, m0 and m1, where m0 is a submodel of model m1, that is, m0 is simpler than m1

and m0 is nested in m1. The likelihood ratio statistic for the comparison of m0 and m1 is

LR = −2(`0 − `1) (9)

where `0 is the log-likelihood of m0 and `1 is the log-likelihood of m1. The likelihood ratio
statistic measures the evidence in the data for the extra complexity in m1 relative to m0.
The likelihood ratio statistic asymptotically follows a χ2 distribution with degrees of freedom
equal to the difference in the number of parameter of m0 and m1. The likelihood ratio test
is generally more accurate than Wald tests. Cumulative link models can be compared by
means of likelihood ratio tests with the anova method.

Example 6: Consider the additive model for the wine data in example 3 with a main effect of
temperature and contact. We can use the likelihood ratio test to assess whether the interaction
between these factors are supported by the data:

> fm2 <- clm(rating ~ contact * temp, data = wine)

> anova(fm1, fm2)

Likelihood ratio tests of cumulative link models:

formula: link: threshold:

fm1 rating ~ contact + temp logit flexible

fm2 rating ~ contact * temp logit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm1 6 184.98 -86.492

fm2 7 186.83 -86.416 0.1514 1 0.6972

The likelihood ratio statistic is small in this case and compared to a χ2 distribution with 1 df,
the p-value turns out insignificant. We conclude that the interaction is not supported by the
data. �

2.5.2 Deviance and ANODE tables

In linear models ANOVA tables and F -tests are based on the decomposition of sums of
squares. The concept of sums of squares does not make much sense for categorical observa-
tions, but a more general measure called the deviance is defined for generalized linear models
and contingency tables8. The deviance can be used in much the same way to compare nested

8i.e., for likelihood based models for contingency tables
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models and to make a so-called analysis of deviance (ANODE) table. The deviance is closely
related to sums of squares for linear models (McCullagh and Nelder, 1989).

The deviance is defined as minus twice the difference between the log-likelihoods of a full
(or saturated) model and a reduced model:

D = −2(`reduced − `full) (10)

The full model has a parameter for each observation and describes the data perfectly while
the reduced model provides a more concise description of the data with fewer parameters.

A special reduced model is the null model which describes no other structure in the data than
what is implied by the design. The corresponding deviance is known as the null deviance
and analogous to the total sums of squares for linear models. The null deviance is therefore
also denoted the total deviance. The residual deviance is a concept similar to a residual
sums of squares and simply defined as

Dresid = Dtotal −Dreduced (11)

A difference in deviance between two nested models is identical to the likelihood ratio statis-
tic for the comparison of these models. Thus the deviance difference, just like the likelihood
ratio statistic, asymptotically follows a χ2-distribution with degrees of freedom equal to the
difference in the number of parameters in the two models. In fact the deviance in (10) is
just the likelihood ratio statistic for the comparison of the full and reduced models.

The likelihood of reduced models are available from fits of cumulative link models, but since
it is not always easy to express the full model as a cumulative link model, the log-likelihood
of the full model has to be obtained in another way. For a two-way table like Table 1
indexed by h (rows) and j (columns), the log-likelihood of the full model (comparable to the
likelihood in (6)) is given by

`full =
∑
h

∑
j

whj log π̂hj (12)

where π̂hj = whj/wh., whj is the count in the (h, j)th cell and wh. is the sum in row h.

Example 7: We can get the likelihood of the full model for the wine data in Table 1 with

> tab <- with(wine, table(temp:contact, rating))

> ## Get full log-likelihood:

> pi.hat <- tab / rowSums(tab)

> (ll.full <- sum(tab * ifelse(pi.hat > 0, log(pi.hat), 0))) ## -84.01558

[1] -84.01558

The total deviance (10) for the wine data is given by

> ## fit null-model:

> fm0 <- clm(rating ~ 1, data = wine)

> ll.null <- fm0$logLik

> ## The null or total deviance:

> (Deviance <- -2 * (ll.null - ll.full)) ## 39.407

[1] 39.407

�

Example 8: An ANODE table for the wine data in Table 1 is presented in Table 5 where
the total deviance is broken up into model deviance (due to treatments) and residual deviance.
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Table 5: ANODE table for the data in Table 1.
Source df deviance p-value
Total 12 39.407 < 0.001
Treatment 3 34.606 < 0.001

Temperature, T 1 26.928 < 0.001
Contact, C 1 11.043 < 0.001
Interaction, T × C 1 0.1514 0.6972

Residual 9 4.8012 0.8513

Further, the treatment deviance is described by contributions from main effects and interaction.
Observe that the deviances for the main effects and interaction do not add up to the deviance
for Treatment as the corresponding sums of squares would have in a analogous linear model
(ANOVA)9. The deviances for these terms can instead be interpreted as likelihood ratio tests
of nested models: the deviance for the interaction term is the likelihood ratio statistics of
the interaction controlling for the main effects, and the deviances for the main effects are the
likelihood ratio statistics for these terms while controlling for the other main effect and ignoring
the interaction term. As is clear from Table 5, there are significant treatment differences and
these seem to describe the data well since the residual deviance is insignificant—the latter is
a goodness of fit test for the cumulative logit model describing treatment differences. Further,
the treatment differences are well captured by the main effects and there is no indication of an
important interaction. �

The terminology can be a bit confusing in this area. Sometimes any difference in deviance
between two nested models, i.e., a likelihood ratio statistic is denoted a deviance and some-
times any quantity that is proportional to minus twice the log-likelihood of a model is
denoted the deviance of that model.

2.5.3 Goodness of fit tests with the deviance

The deviance can be used to test the goodness of fit of a particular reduced model. The
deviance asymptotically follows as χ2 distribution with degrees of freedom equal to the dif-
ference in the number of parameters between the two models. The asymptotics are generally
good if the expected frequencies under the reduced model are not too small and as a general
rule they should all be at least five. This provides a goodness of fit test of the reduced
model. The expectation of a random variable that follows a χ2-distribution is equal to the
degrees of freedom of the distribution, so as a rule of thumb, if the deviance in (10) is about
the same size as the difference in the number of parameters, there is not evidence of lack of
fit.

One problem with the deviance for a particular (reduced) model is that it depends on
which model is considered the full model, i.e., how the total deviance is calculated, which
often derives from the tabulation of the data. Observe that differences in deviance for
nested models are independent of the likelihood of a full model, so deviance differences are
insensitive to this choice. Collett (2002) recommends that the data are aggregated as much
as possible when evaluating deviances and goodness of fit tests are performed.

Example 9: In the presentation of the wine data in example 1 and Table 1, the data were
aggregated over judges and bottles. Had we included bottle in the tabulation of the data we

9This holds for orthogonal designs including balanced and complete tables like Table 1.
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Table 6: Table of the wine data similar to Table 1, but including bottle in the tabulation.
Least—Most bitter

Temperature Contact Bottle 1 2 3 4 5
cold no 1 3 4 2 0 0
cold no 2 1 5 3 0 0
cold yes 3 1 2 5 1 0
cold yes 4 0 5 3 1 0
warm no 5 0 3 4 1 1
warm no 6 0 2 4 2 1
warm yes 7 0 1 2 2 4
warm yes 8 0 0 3 5 1

would have arrived at Table 6. A full model for the data in Table 1 has (5 − 1)(4 − 1) = 12
degrees of freedom while a full model for Table 6 has (5− 1)(8− 1) = 28 degrees of freedom and
a different deviance.

If it is decided that bottle is not an important variable, Collett’s recommendation is that we
base the residual deviance on a full model defined from Table 1 rather than Table 6. �

2.6 Latent variable motivation for cumulative link models

A cumulative link model can be motivated by assuming an underlying continuous latent
variable, S with cumulative distribution function, F . The ordinal response variable, Yi is
then observed in category j if Si is between the thresholds θ∗j−1 < Si ≤ θ∗j where

−∞ ≡ θ∗0 < θ∗1 < . . . < θ∗J−1 < θ∗J ≡ ∞

divide the real line on which S lives into J+1 intervals. The situation is illustrated in Fig. 2
where a probit link and J = 4 is adopted. The three thresholds, θ1, θ2, θ3 divide the area
under the curve into four parts each of which represent the probability of a response falling
in the four response categories. The thresholds are fixed on the scale, but the location of
the latent distribution, and therefore also the four areas under the curve, changes with xi.
A normal linear model for the latent variable is

Si = α+ xTi β
∗ + εi , εi ∼ N(0, σ2) (13)

where {εi} are random disturbances and α is the intercept, i.e., the mean value of Si when xi
correspond to a reference level for factors and to zero for continuous covariates. Equivalently
we could write: Si ∼ N(α+ xTi β

∗, σ2).

The cumulative probability of an observation falling in category j or below is then:

γij = P (Yi ≤ j) = P (Si ≤ θ∗j ) = P

(
Zi ≤

θ∗j − α− xTi β∗

σ

)
= Φ

(
θ∗j − α− xTi β∗

σ

)
(14)

where Zi = (Si − α− xTi β∗)/σ ∼ N(0, 1) and Φ is the standard normal CDF.

Since the absolute location and scale of the latent variable, α and σ respectively, are not
identifiable from ordinal observations, an identifiable model is

γij = Φ(θj − xTi β), (15)
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θ1 θ2 θ3

πi1 πi2 πi3 πi4

x i
Tβ

Figure 2: Illustration of a cumulative link model in terms of the latent distribution.

with identifiable parameter functions:

θj = (θ∗j − α)/σ and β = β∗/σ . (16)

Observe how the minus in (15) entered naturally such that a positive β means a shift of the
latent distribution in a positive direction.

Model (15) is exactly a cumulative link model with a probit link. Other distributional as-
sumptions for S correspond to other link functions. In general assuming that the cumulative
distribution function of S is F corresponds to assuming the link function is F−1, cf. Table 3.

Some expositions of the latent variable motivation for cumulative link models get around
the identifiability problem by introducing restrictions on α and σ, usually α = 0 and σ = 1
are chosen, which leads to the same definition of the threshold and regression parameters
that we use here. However, it seems misleading to introduce restrictions on unidentifiable
parameters. If observations really arise from a continuous latent variable, α and σ are real
unknown parameters and it makes little sense to restrict them to take certain values. This
draws focus from the appropriate relative signal-to-ratio interpretation of the parameters
evident from (16).

The standard form of the logistic distribution has mean zero and variance π2/3. The logistic
distribution is symmetric and shows a some resemblance with a normal distribution with
the same mean and variance in the central part of the distribution; the tails of the logistic
distribution are a little heavier than the tails of the normal distribution. In Fig. 3 the normal
and logistic distributions are compared with variance π2/3. Therefore, to a reasonable
approximation, the parameters of logit and probit models are related in the following way:

θprobitj ≈ θlogitj /(π/
√

3) and βprobit ≈ βlogit/(π/
√

3) , (17)

where π/
√

3 ≈ 1.81

Example 10: Considering once again the wine data the coefficients from logit and probit mod-
els with additive effects of temperature and contact are

> fm1 <- clm(rating ~ contact + temp, data = wine, link = "logit")

> fm2 <- clm(rating ~ contact + temp, data = wine, link = "probit")

> structure(rbind(coef(fm1), coef(fm2)),

dimnames=list(c("logit", "probit"), names(coef(fm1))))
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Figure 3: Left: densities. Right: distributions of logistic (solid) and normal (dashed) distri-
butions with mean zero and variance π2/3 which corresponds to the standard form for the
logistic distribution.

1|2 2|3 3|4 4|5 contactyes tempwarm

logit -1.3443834 1.2508088 3.466887 5.006404 1.5277977 2.503102

probit -0.7732627 0.7360215 2.044680 2.941345 0.8677435 1.499375

In comparison the approximate probit estimates using (17) are

> coef(fm1) / (pi / sqrt(3))

1|2 2|3 3|4 4|5 contactyes tempwarm

-0.7411974 0.6896070 1.9113949 2.7601753 0.8423190 1.3800325

These estimates are a great deal closer to the real probit estimates than the unscaled logit
estimates. The average difference between the probit and approximate probit estimates being
-0.079. �

2.6.1 More on parameter interpretation

Observe that the regression parameter in cumulative link models, cf. (16) are signal-to-
noise ratios. This means that adding a covariate to a cumulative link model that reduces
the residual noise in the corresponding latent model will increase the signal-to-noise ratios.
Thus adding a covariate will (often) increase the coefficients of the other covariates in the
cumulative link model. This is different from linear models, where (in orthogonal designs)
adding a covariate does not alter the value of the other coefficients10. Bauer (2009), extend-
ing work by Winship and Mare (1984) suggests a way to rescale the coefficients such they
are comparable in size during model development. See also Fielding (2004).

Example 11: Consider the estimate of temp in models for the wine data ignoring and control-
ling for contact, respectively:

> coef(clm(rating ~ temp, data = wine, link = "probit"))["tempwarm"]

tempwarm

1.37229

10but the same thing happens in other generalized linear models, e.g., binomial and Poisson models, where
the variance is determined by the mean.
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> coef(clm(rating ~ temp + contact, data = wine, link = "probit"))["tempwarm"]

tempwarm

1.499375

and observe that the estimate of temp is larger when controlling for contact. In comparison
the equivalent estimates in linear models are not affected—here we use the observed scores for
illustration:

> coef(lm(as.numeric(rating) ~ temp, data = wine))["tempwarm"]

tempwarm

1.166667

> coef(lm(as.numeric(rating) ~ contact + temp, data = wine))["tempwarm"]

tempwarm

1.166667

In this case the coefficients are exactly identical, but in designs that are not orthogonal and
observed studies with correlated covariates they will only be approximately the same. �

Regardless of how the threshold parameters discretize the scale of the latent variable, the
regression parameters β have the same interpretation. Thus β have the same meaning
whether the ordinal variable is measured in, say, five or six categories. Further, the nature
of the model interpretation will not chance if two or more categories are amalgamated, while
parameter estimates will, of course, not be completely identical. This means that regression
parameter estimates can be compared (to the extent that the noise level is the same) across
studies where response scales with a different number of response categories are adopted. In
comparison, for linear models used on scores, it is not so simple to just combine two scores,
and parameter estimates from different linear models are not directly comparable.

If the latent variable, Si is approximated by scores assigned to the response variable, denote
this variable Y ∗

i , then a linear model for Y ∗
i can provide approximate estimates of β by

applying (16) for cumulative probit models11. The quality of the estimates rest on a number
of aspects:

• The scores assigned to the ordinal response variable should be structurally equivalent
to the thresholds, θ∗ that generate Yi from Si. In particular, if the (equidistant)
numbers 1, . . . , J are the scores assigned to the response categories, the thresholds, θ∗

are also assumed to be equidistant.

• The distribution of Y ∗
i should not deviate too much from a bell-shaped curve; especially

there should not be too many observations in the end categories

• By appeal to the central limit theorem the coarsening of Si into Y ∗
i will “average out”

such that bias due to coarsening is probably small.

This approximate estimation scheme extends to other latent variable distributions than the
normal where linear models are exchanged with the appropriate location-scale models, cf.
Table 3.

11these approximate regression parameters could be used as starting values for an iterative algorithm to
find the ML estimates of β, but we have not found it worth the trouble in our Newton algorithm
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Figure 4: Histogram of the ratings in the wine data, cf. Table 1.

Example 12: Consider the following linear model for the rating scores of the wine data, cf.
Table 1:

Y ∗i = α+ β1tempi + β2contacti + εi εi ∼ N(0, σ2
ε)

The relative parameter estimates, β̃ are

> lm1 <- lm(as.numeric(rating) ~ contact + temp, data =wine)

> sd.lm1 <- summary(lm1)$sigma

> coef(lm1)[-1] / sd.lm1

contactyes tempwarm

0.791107 1.384437

which should be compared with the estimates from the corresponding cumulative probit model:

> fm1 <- clm(rating ~ contact + temp, data = wine, link = "probit")

> coef(fm1)[-(1:4)]

contactyes tempwarm

0.8677435 1.4993746

The relative estimates from the linear model are a lower than the cumulative probit estimates,
which is a consequence of the fact that the assumptions for the linear model are not fulfilled. In
particular the distance between the thresholds is not equidistant:

> diff(coef(fm1)[1:4])

2|3 3|4 4|5

1.5092842 1.3086590 0.8966645

while the distribution is probably sufficiently bell-shaped, cf. Fig 4.

�

2.7 Structured thresholds

In this section we will motivate and describe structures on the thresholds in cumulative link
models. Three options are available in clm using the threshold argument: flexible, sym-
metric and equidistant thresholds. The default option is "flexible", which corresponds
to the conventional ordered, but otherwise unstructured thresholds. The "symmetric" op-
tion restricts the thresholds to be symmetric while the "equidistant" option restricts the
thresholds to be equally spaced.
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Table 7: Symmetric thresholds with six response categories use the three parameters a, b
and c.

θ1 θ2 θ3 θ4 θ5
−b+ c −a+ c c a+ c b+ c

Table 8: Symmetric thresholds with seven response categories use the four parameters, a, b,
c and d.

θ1 θ2 θ3 θ4 θ5 θ6
−b+ c −a+ c c d a+ d b+ d

2.7.1 Symmetric thresholds

The basic cumulative link model assumed that the thresholds are constant for all values of
xTi β, that they are ordered and finite but otherwise without structure. In questionnaire
type response scales, the question is often of the form “how much do you agree with state-
ment” with response categories ranging from “completely agree” to “completely disagree” in
addition to a number of intermediate categories possibly with appropriate anchoring words.
In this situation the response scale is meant to be perceived as being symmetric, thus, for
example, the end categories are equally far from the central category/categories. Thus, in
the analysis of such data it can be relevant to restrict the thresholds to be symmetric or
at least test the hypothesis of symmetric thresholds against the more general alternative
requiring only that the thresholds are ordered in the conventional cumulative link model.
An example with six response categories and five thresholds is given in Table 7 where the
central threshold, θ3 maps to c while a and b are spacings determining the distance to the
remaining thresholds. Symmetric thresholds is a parsimonious alternative since three rather
than five parameters are required to determine the thresholds in this case. Naturally at least
four response categories, i.e., three thresholds are required for the symmetric thresholds to
use less parameters than the general alternative. With an even number of thresholds, we
use a parameterization with two central thresholds as shown in Table 8.

Example 13: I am missing some good data to use here. �

2.7.2 Equidistant thresholds

Ordinal data sometimes arise when the intensity of some perception is rated on an ordinal
response scale. An example of such a scale is the ratings of the bitterness of wine described
in example 1. In such cases it is natural to hypothesize that the thresholds are equally
spaced, or equidistant as we shall denote this structure. Equidistant thresholds use only two
parameters and our parameterization can be described by the following mapping:

θj = a+ b(j − 1), for j = 1, . . . , J − 1 (18)

such that θ1 = a is the first threshold and b denotes the distance between adjacent thresholds.

Example 14: In example 3 we fitted a model for the wine data (cf. Table 1) with additive
effects of temperature and contact while only restricting the thresholds to be suitably ordered.
For convenience this model fit is repeated here:

> fm1 <- clm(rating ~ temp + contact, data=wine)

> summary(fm1)
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formula: rating ~ temp + contact

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 72 -86.49 184.98 6(0) 4.01e-12 2.7e+01

Coefficients:

Estimate Std. Error z value Pr(>|z|)

tempwarm 2.5031 0.5287 4.735 2.19e-06 ***

contactyes 1.5278 0.4766 3.205 0.00135 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Threshold coefficients:

Estimate Std. Error z value

1|2 -1.3444 0.5171 -2.600

2|3 1.2508 0.4379 2.857

3|4 3.4669 0.5978 5.800

4|5 5.0064 0.7309 6.850

The successive distances between the thresholds in this model are

> diff(fm1$alpha)

2|3 3|4 4|5

2.595192 2.216078 1.539517

so the distance between the thresholds seems to be decreasing. However, the standard errors
of the thresholds are about half the size of the distances, so their position is not that well
determined. A model where the thresholds are restricted to be equally spaced is fitted with

> fm2 <- clm(rating ~ temp + contact, data=wine, threshold="equidistant")

> summary(fm2)

formula: rating ~ temp + contact

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit equidistant 72 -87.86 183.73 5(0) 4.80e-07 3.2e+01

Coefficients:

Estimate Std. Error z value Pr(>|z|)

tempwarm 2.4632 0.5164 4.77 1.84e-06 ***

contactyes 1.5080 0.4712 3.20 0.00137 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Threshold coefficients:

Estimate Std. Error z value

threshold.1 -1.0010 0.3978 -2.517

spacing 2.1229 0.2455 8.646

so here θ̂1 = â = −1.001 and b̂ = 2.123 in the parameterization of (18). We can test the
assumption of equidistant thresholds against the flexible alternative with a likelihood ratio test:

> anova(fm1, fm2)

Likelihood ratio tests of cumulative link models:
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formula: link: threshold:

fm2 rating ~ temp + contact logit equidistant

fm1 rating ~ temp + contact logit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm2 4 183.73 -87.865

fm1 6 184.98 -86.492 2.7454 2 0.2534

so the p-value is p = 0.253 not providing much evidence against equidistant thresholds. �

3 Assessing the likelihood and model convergence

Cumulative link models are non-linear models and in general the likelihood function of
non-linear models is not guaranteed to be well behaved or even uni-modal. However, as
mentioned in section 2.4 Pratt (1981) and Burridge (1981) showed that the log-likelihood
function of cumulative link models with the link functions considered in Table 3, except for
the cauchit link, is concave. This means that there is a unique global optimum so there is no
risk of convergence to a local optimum. There is no such guarantee in more general models.

There are no closed form expressions for the ML estimates of the parameters in cumulative
link models. This means that iterative methods have to be used to fit the models. There is no
guarantee that the iterative method converges to the optimum. In complicated models the
iterative method may terminate at a local optimum or just far from the optimum resulting
in inaccurate parameter estimates. We may hope that the optimization process warns about
non-convergence, but that can also fail. To be sure the likelihood function is well behaved
and that an unequivocal optimum has been reached we have to inspect the likelihood function
in a neighborhood around the optimum as reported by the optimization.

As special feature for cumulative link models, the threshold parameters are restricted to be
ordered and therefore naturally bounded. This may cause the log-likelihood function to be
irregular for one or more parameters. This also motivates visualizing the likelihood function
in the neighborhood of the optimum. To do this we use the slice function. As the name
implies, it extracts a (one-dimensional) slice of the likelihood function.

We use the likelihood slices for two purposes:

1. To visualize and inspect the likelihood function in a neighborhood around the optimum.
We choose a rather large neighborhood and look at how well-behaved the likelihood
function is, how close to a quadratic function it is, and if there is only one optimum.

2. To verify that the optimization converged and that the parameter estimates are ac-
curately determined. For this we choose a rather narrow neighborhood around the
optimum.

The log-likelihood slice is defined as

`slice(αa;y) = `(αa, α̂−a;y) , (19)

where α denotes the joint parameter vector. Thus the slice is the log-likelihood function
regarded as a function of the ath parameter while the remaining parameters are fixed at
their ML estimates.
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The Hessian at the optimum measures the curvature in the log-likelihood function in the
parameter space. To scale the range of the parameters at which the likelihood is sliced, we
consider the following measures of curvature:

ζ =
√

diag(−H) (20)

Here ζ is a (q + p)-vector of curvature units for the q threshold parameters θ and the p
regression parameters β. We can understand ζ as a vector of standard errors which are
not controlled for the dependency of the other parameters. Indeed, if the parameters are
completely uncorrelated, H is diagonal and ζ coincide with standard errors, cf. (8), however,
this is not possible in cumulative link models.

The range of the parameters at which the log-likelihood is sliced is then a simple multiple
(λ) of the curvature units in each direction: λζ. Working in curvature units is a way to
standardize the parameter range even if some parameters are much better determined (much
less curvature in the log-likelihood) than others.

A well-behave log-likelihood function will be approximately quadratic in shape in a neigh-
borhood around the optimum. Close enough to the optimum, the log-likelihood function
will be virtually indistinguishable from a quadratic approximation if all parameters are iden-
tified. For the ath parameter the quadratic approximation to the log-likelihood function is
given by

− (α̂a − αa)2

2ζ2a
.

Example 15: Consider again a cumulative link model for the wine data. In the following we
ask for a slice of the log-likelihood function for each of the parameters and plot these. By setting
λ = 5 we ask for the slice in a rather wide neighborhood around the optimum:

> fm1 <- clm(rating ~ temp + contact, data=wine)

> slice.fm1 <- slice(fm1, lambda = 5)

> par(mfrow = c(2, 3))

> plot(slice.fm1)

The result is shown in Fig. 5. By default the quadratic approximation is included for reference
in the plot.

For this model we see that the log-likelihood function is nicely quadratic for the regression
parameters while it is less so for the threshold parameters and particularly bad for the end
thresholds. The log-likelihood is relative as indicated by the label on the vertical axis since the
values are relative to the maximum log-likelihood value.

From Fig. 5 it seems that the parameter estimates as indicated by the vertical bars are close to
the optimum indicating successful model convergence. To investigate more closely we slice the
likelihood at a much smaller scale using λ = 10−5:

> slice2.fm1 <- slice(fm1, lambda = 1e-5)

> par(mfrow = c(2, 3))

> plot(slice2.fm1)

The resulting figure is shown in Fig. 6. Observe that 1) the model has converged, 2) from
inspection of the horizontal axis all parameters estimates are correct to at least six decimals,
3) the quadratic approximation is indistinguishable from the log-likelihood at this scale and 4)
from the vertical axis the log-likelihood value is determined accurately to at least 12 digits. �

Example 16: Example with confidence contours. �
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Figure 5: Slices of the log-likelihood function for parameters in a model for the bitterness-
of-wine data. Dashed lines indicate quadratic approximations to the log-likelihood function
and vertical bars indicate maximum likelihood estimates.

24



−1.344388 −1.344382

−
5e

−
11

−
2e

−
11

0e
+

00

1|2

R
el

at
iv

e 
lo

g−
lik

el
ih

oo
d

1.250806 1.250809

−
5e

−
11

−
2e

−
11

0e
+

00

2|3

R
el

at
iv

e 
lo

g−
lik

el
ih

oo
d

3.466885 3.466888

−
5e

−
11

−
2e

−
11

0e
+

00

3|4
R

el
at

iv
e 

lo
g−

lik
el

ih
oo

d

5.006402 5.006406

−
5e

−
11

−
2e

−
11

0e
+

00

4|5

R
el

at
iv

e 
lo

g−
lik

el
ih

oo
d

2.503099 2.503102 2.503105

−
5e

−
11

−
2e

−
11

0e
+

00

tempwarm

R
el

at
iv

e 
lo

g−
lik

el
ih

oo
d

1.527795 1.527798

−
5e

−
11

−
2e

−
11

0e
+

00

contactyes

R
el

at
iv

e 
lo

g−
lik

el
ih

oo
d

Figure 6: Slices of the log-likelihood function for parameters in a model for the bitterness-
of-wine data very close to the MLEs. Dashed lines indicate quadratic approximations to the
log-likelihood function and vertical bars the indicate maximum likelihood estimates.
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Unfortunately there is no general way to infer confidence intervals from the likelihood slices—
for that we have to use the computationally more intensive profile likelihoods. Compared to
the profile likelihoods discussed in section 4, the slice is much less computationally demand-
ing since the likelihood function is only evaluated—not optimized, at a range of parameter
values.

4 Confidence intervals and profile likelihood

Confidence intervals are convenient for summarizing the uncertainty about estimated pa-
rameters. The classical symmetric estimates given by β̂ ± z1−α/2ŝe(β̂) are based on the

Wald statistic12, w(β) = (β̂−β)/ŝe(β̂) and available by confint(fm1, type = "Wald"). A
similar result could be obtained by confint.default(fm1). However, outside linear mod-
els asymmetric confidence intervals often better reflect the uncertainty in the parameter
estimates. More accurate, and generally asymmetric, confidence intervals can be obtained
by using the likelihood root statistic instead; this relies on the so-called profile likelihood
written here for an arbitrary scalar parameter βa:

`p(βa;y) = max
θ,β−a

`(θ,β;y) ,

where β−a is the vector of regression parameters without the ath one. In words, the profile
log-likelihood for βa is given as the full log-likelihood optimized over all parameters but βa.
To obtain a smooth function, the likelihood is optimized over a range of values of βa around
the ML estimate, β̂a, further, these points are interpolated by a spline to provide an even
smoother function.

The likelihood root statistic (see e.g., Pawitan, 2001; Brazzale et al., 2007) is defined as:

r(βa) = sign(β̂a − βa)

√
−2[`(θ̂, β̂;y)− `p(βa;y)]

and just like the Wald statistic its reference distribution is the standard normal. Confidence
intervals based on the likelihood root statistic are defined as those values of βa for which
r(βa) is in between specified bounds, e.g., −1.96 and 1.96 for 95% confidence intervals.
Formally the confidence intervals are defined as

CI :
{
βa; |r(βa)| < z1−α/2

}
.

Example 17: Consider again a model for the wine data. The profile likelihood confidence
intervals are obtained with

> fm1 <- clm(rating ~ temp + contact, data=wine)

> confint(fm1)

2.5 % 97.5 %

tempwarm 1.5097627 3.595225

contactyes 0.6157925 2.492404

where we would have appended type = "profile" since this is the default. Confidence intervals
with other confidence levels are obtained using the level argument. The equivalent confidence
intervals based on the Wald statistic are

> confint(fm1, type = "Wald")

12where z1−α/2 is the (1− α/2)-quantile of the standard normal CDF.
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2.5 % 97.5 %

1|2 -2.3578848 -0.330882

2|3 0.3925794 2.109038

3|4 2.2952980 4.638476

4|5 3.5738541 6.438954

tempwarm 1.4669081 3.539296

contactyes 0.5936345 2.461961

In this case the Wald bounds are a little too low compared to the profile likelihood confidence
bounds. �

Visualization of the likelihood root statistic can be helpful in diagnosing non-linearity in the
parameterization of the model. The linear scale is particularly suited for this rather than
other scales, such as the quadratic scale at which the log-likelihood lives.

The plot method for profile objects that can produce a range of different plots on different
scales. The plot method takes the following arguments:

function (x, which.par = seq_len(nprofiles), level = c(0.95, 0.99),

Log = FALSE, relative = TRUE, root = FALSE, fig = TRUE, approx = root,

n = 1000, ask = prod(par("mfcol")) < length(which.par) && dev.interactive(),

..., ylim = NULL)

If root = TRUE an approximately linear plot of βa versus −r(βa) is produced13. If approx
= TRUE (the default when root = TRUE) the Wald statistic is also included on the square

root scale, −
√
w(βa). This is the tangient line to −r(βa) at β̂a and provides a reference

against which to measure curvature in r(βa). Horizontal lines at ±1.96 and ±2.58 indicate
95% and 99% confidence intervals.

When root = FALSE, the Log argument controls whether the likelihood should be plotted on
the log scale, and similarly the relative argument controls whether the absolute or relative
(log-) likelihood should be plotted. At the default settings, the plot method produce a plot

Example 18: Consider the model from the previous example. The likelihood root statistic can
be obtained with

> pr1 <- profile(fm1, which.beta="tempwarm")

> plot(pr1, root=TRUE)

The resulting figure is shown in Fig. 7. A slight skewness in the profile likelihood for temp-

warm translates into curvature in the likelihood root statistic. The Wald and profile likelihood
confidence intervals are given as intersections with the horizontal lines. �

In summarizing the results of a models fit, I find the relative likelihood scale, exp(−r(βa)2/2) =

exp{`(θ̂, β̂;y)−`p(βa;y)} informative. The evidence about the parameters is directly visible
on this scale (cf. Fig. 8); the ML estimate has maximum support, and values away from
here are less supported by the data, 95% and 99% confidence intervals are readily read of
the plots as intersections with the horizontal lines. Most importantly the plots emphasize
that a range of parameter values are actually quite well supported by the data—something
which is easy to forget when focus is on the exact numbers representing the ML estimates.

Example 19: The relative profile likelihoods are obtained with

> pr1 <- profile(fm1, alpha=1e-4)

> plot(pr1)

13actually we reversed the sign of the statistic in the display since a line from lower-left to upper-right
looks better than a line from upper-left to lower-right.

27



1 2 3 4

−
3

−
2

−
1

0
1

2
3

tempwarm

pr
of

ile
 tr

ac
e

Figure 7: Likelihood root statistic (solid) and Wald statistic (dashed) for the tempwarm

parameter in the model for the wine data. Horizontal lines indicate 95% and 99% confidence
bounds for both statistics.

and provided in Fig. 8. From the relative profile likelihood for tempwarm we see that parameter
values between 1 and 4 are reasonably well supported by the data, and values outside this range
has little likelihood. Values between 2 and 3 are very well supported by the data and all have
high likelihood. �

A An approximate ML estimation method for CLMs

The approach with multiple ordinary logistic regression models considered in example 2
and summarized in Table 2 can be improved on by constructing a single ordinary logistic
regression model that estimates the regression parameters only once while also estimating all
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Figure 8: Relative profile likelihoods for the regression parameters in the Wine study. Hor-
izontal lines indicate 95% and 99% confidence bounds.
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the threshold parameters. This approach estimates the same parameters as the cumulative
logit model, but it does not yield ML estimates of the parameters although generally the
estimates are quite close. A larger difference is typically seen in the standard errors which
are generally too small. This approach is further described by Winship and Mare (1984).

The basic idea is to form a binary response: y∗ = [I(y ≤ 1), . . . , I(y ≤ j), . . . , I(y ≤ J − 1)]
of lenght n(J − 1), where originally we had n observations falling in J categories. The
original design matrix, X is stacked J − 1 times and indicator variables for j = 1, . . . , J − 1
are included to give estimates for the thresholds.

Example 20: We now continue example 2 by estimating the parameters with the approach
described above. First we form the data set to which we will fit the model:

> tab <- with(wine, table(contact, rating))

> dat <- data.frame(freq =c(tab),

contact=rep(c("no", "yes"), 5),

rating = factor(rep(1:5, each=2), ordered=TRUE))

> dat

freq contact rating

1 4 no 1

2 1 yes 1

3 14 no 2

4 8 yes 2

5 13 no 3

6 13 yes 3

7 3 no 4

8 9 yes 4

9 2 no 5

10 5 yes 5

The cumulative link model would be fitted with

> fm1 <- clm(rating ~ contact, weights=freq)

Then we generate the new response and new data set:

> thresholds <- 1:4

> cum.rate <- as.vector(sapply(thresholds, function(x) dat$rating <= x))

> rating.factor <- gl(n=length(thresholds), k=nrow(dat),

length=nrow(dat) * length(thresholds))

> thres.X <- model.matrix(~ rating.factor - 1)

> colnames(thres.X) <- paste("t", thresholds, sep="")

> old.X <- -model.matrix(~contact, dat)[, -1, drop=FALSE]

> new.X <- kronecker(matrix(rep(1, length(thresholds)), nc = 1), old.X)

> weights <- kronecker(matrix(rep(1, length(thresholds)), nc = 1), dat$freq)

> new.X <- cbind(thres.X, new.X)

> colnames(new.X)[-seq(length(thresholds))] <- colnames(old.X)

> p.df <- cbind(cum.rate = 1*cum.rate, as.data.frame(new.X), weights)

> p.df

cum.rate t1 t2 t3 t4 contactyes weights

1 1 1 0 0 0 0 4

2 1 1 0 0 0 -1 1

3 0 1 0 0 0 0 14

4 0 1 0 0 0 -1 8

5 0 1 0 0 0 0 13

6 0 1 0 0 0 -1 13
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7 0 1 0 0 0 0 3

8 0 1 0 0 0 -1 9

9 0 1 0 0 0 0 2

10 0 1 0 0 0 -1 5

11 1 0 1 0 0 0 4

12 1 0 1 0 0 -1 1

13 1 0 1 0 0 0 14

14 1 0 1 0 0 -1 8

15 0 0 1 0 0 0 13

16 0 0 1 0 0 -1 13

17 0 0 1 0 0 0 3

18 0 0 1 0 0 -1 9

19 0 0 1 0 0 0 2

20 0 0 1 0 0 -1 5

21 1 0 0 1 0 0 4

22 1 0 0 1 0 -1 1

23 1 0 0 1 0 0 14

24 1 0 0 1 0 -1 8

25 1 0 0 1 0 0 13

26 1 0 0 1 0 -1 13

27 0 0 0 1 0 0 3

28 0 0 0 1 0 -1 9

29 0 0 0 1 0 0 2

30 0 0 0 1 0 -1 5

31 1 0 0 0 1 0 4

32 1 0 0 0 1 -1 1

33 1 0 0 0 1 0 14

34 1 0 0 0 1 -1 8

35 1 0 0 0 1 0 13

36 1 0 0 0 1 -1 13

37 1 0 0 0 1 0 3

38 1 0 0 0 1 -1 9

39 0 0 0 0 1 0 2

40 0 0 0 0 1 -1 5

where the first column is the new binary response variable, the next four columns are indicator
variables for the thresholds, the following column is the indicator variable for contact and the
last column holds the weights. Observe that while the original data set had 10 rows, the new
data set has 40 rows. We fit the ordinary logistic regression model for these data with

> glm1 <- glm(cum.rate ~ t1+t2 +t3 +t4 - 1 + contactyes,

weights=weights, family=binomial, data=p.df)

> summary(glm1)

Call:

glm(formula = cum.rate ~ t1 + t2 + t3 + t4 - 1 + contactyes,

family = binomial, data = p.df, weights = weights)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.3864 -1.8412 -0.0202 1.7772 4.7924

Coefficients:

Estimate Std. Error z value Pr(>|z|)

t1 -2.14176 0.47616 -4.498 6.86e-06 ***
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t2 0.04797 0.29048 0.165 0.86883

t3 1.71907 0.35132 4.893 9.93e-07 ***

t4 2.97786 0.47203 6.309 2.81e-10 ***

contactyes 1.21160 0.33593 3.607 0.00031 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 399.25 on 40 degrees of freedom

Residual deviance: 246.47 on 35 degrees of freedom

AIC: 256.47

Number of Fisher Scoring iterations: 5

Notice that we suppressed the intercept since the thresholds play the role as intercepts. In
comparing these estimates with the estimates from the genuine cumulative logit model presented
in the last two columns of Table 2 we see that these approximate ML estimates are remarkably
close to the true ML estimates. Observe however that the standard error of the contact effect
is much smaller; this is due to the fact that the model was fitted to n(J − 1) observations while
originally we only had n of those. The weights could possibly be modified to adjust for this, but
we will not persue this any further.

In lack of efficient software that yields ML estimates of the cumulative logit model, this approach
could possibly be justified. This might have been the case some 20 years ago. However, in the
present situation this approximate approach is only cumbersome for practical applications. �
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