
Using and extending the optimr package
John C. Nash
2016-01-11

optimr is a package intended to provide improved and extended function minimization tools for R. Such
facilities are commonly referred to as “optimization”, but the original optim() function and its replacement
in this package, which has the same name as the package, namely optimr(), only allow for the minimization
or maximization of nonlinear functions of multiple parameters subject to at most bounds constraints. Some
methods also permit fixed (masked) parameters, which could be considered as equal upper and lower bounds,
though that is a VERY bad way to implement masks. In general, we wish to find the vector of parameters
bestpar that minimize an objective function specified by an R function fn(par, ...) where par is the
general vector of parameters, initially provided as the vector start, and the dot arguments are additional
information needed to compute the function. Function minimization methods may require information on the
gradient or Hessian of the function, which we will identify as gr(par, ...) and hess(par,).

How the optimr() function works

optimr() is an aggregation of wrappers for a number of individual function minimization (“optimization”)
tools available for R. The individual wrappers are selected by a sequence of if() statements using the
argument method in the call to optimr().

To add a new optimizer, we need in general terms to carry out the following:

• Ensure the new function is available, that is, the package containing it is installed;
• Add an appropriate if() statement to select the new “method”;
• Translate the control list elements of optimr() into the corresponding control arguments (possibly

not in a list of that name but in one or more other structures, or even arguments or environment
variables) for the new “method”;

• If necessary, redefine the R function or functions to compute the value of the function, gradient and
possibly Hessian of the objective function so that the output is suited to the method at hand.

• When derivative information is required by a method, we may also need to incorporate the possibility
of numerical approximations to the derivative information.

• Add code to check for situations where the new method cannot be applied, and in such cases return
a result with appropriate diagnostic information so that the user can either adjust the inputs or else
choose a different method. \end{itemize}

Adjusting the objective function

The method nlm() provides a good example of a situation where the default fn() and gr() are inappropriate
to the method to be added to optimr(). Don’t forget the dot arguments!

nlmfn <- function(spar, ...){
f <- efn(spar, ...)
g <- egr(spar, ...)
attr(f,"gradient") <- g
attr(f,"hessian") <- NULL # ?? maybe change later
f

}

1

In the present optimr(), the definition of nlmfn is put near the top of optimr() and it is always loaded. It
is the author’s understanding that such functions will always be loaded/interpreted no matter where they are
in the code of a function. For ease of finding the code, I have put it near the top, as the structure can be
then shared across several similar optimizers. There are other methods that compute the objective function
and gradient at the same set of parameters. Though nlm() can make use of Hessian information, we have
chosen here to omit the computation of the Hessian.

2

	How the optimr() function works
	Adjusting the objective function

