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Abstract

This vignette provides some worked examples of the analysis of multivariate linear
models (MvLMs) with graphical methods for visualizing results using the heplots package
and the candisc package. The emphasis here is on using these methods in R, and under-
standing how they help reveal aspects of these models that might not be apparent from
other graphical displays.

No attempt is made here to describe the theory of MvLMs or the statistical details
behind HE plots and their reduced-rank canonical cousins. For that, see Fox et al. (2009);
Friendly (2007, 2006).
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1 MANOVA Designs

1.1 Plastic film data

An experiment was conducted to determine the optimum conditions for extruding plastic film.
Three responses, tear resistance, film gloss and film opacity were measured in relation to
two factors, rate of extrusion and amount of an additive, both of these being set to two
values, High and Low. The design is thus a 2 × 2 MANOVA, with n = 5 per cell. This
example illustrates 2D and 3D HE plots, the difference between“effect” scaling and“evidence”
(significance) scaling, and visualizing composite linear hypotheses.

We begin with an overall MANOVA for the two-way MANOVAmodel. Because each effect
has 1 df, all of the multivariate statistics are equivalent, but we specify test.statistic="Roy"
because Roy’s test has a natural visual interpretation in HE plots.
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> plastic.mod <- lm(cbind(tear, gloss, opacity) ~ rate*additive, data=Plastic)
> Anova(plastic.mod, test.statistic="Roy")

Type II MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

rate 1 1.619 7.55 3 14 0.003 **
additive 1 0.912 4.26 3 14 0.025 *
rate:additive 1 0.287 1.34 3 14 0.302
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

For the three responses jointly, the main effects of rate and additive are significant, while
their interaction is not. In some approaches to testing effects in multivariate linear models
(MvLM), significant multivariate tests are often followed by univariate tests on each of the
responses separately to determine which responses contribute to each significant effect. In
R, these analyses are most convieniently performed using the update() method for the mlm

object plastic.mod.

> Anova(update(plastic.mod, tear ~ .))

Anova Table (Type II tests)

Response: tear
Sum Sq Df F value Pr(>F)

rate 1.74 1 15.8 0.0011 **
additive 0.76 1 6.9 0.0183 *
rate:additive 0.00 1 0.0 0.9471
Residuals 1.76 16
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

> Anova(update(plastic.mod, gloss ~ .))

Anova Table (Type II tests)

Response: gloss
Sum Sq Df F value Pr(>F)

rate 1.300 1 7.92 0.012 *
additive 0.612 1 3.73 0.071 .
rate:additive 0.544 1 3.32 0.087 .
Residuals 2.628 16
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

> Anova(update(plastic.mod, opacity ~ .))

Anova Table (Type II tests)

Response: opacity
Sum Sq Df F value Pr(>F)

rate 0.4 1 0.10 0.75
additive 4.9 1 1.21 0.29
rate:additive 4.0 1 0.98 0.34
Residuals 64.9 16

The results above show significant main effects for tear, a significant main effect of rate for
gloss, and no significant effects for opacity, but they don’t shed light on the nature of these
effects. Traditional univariate plots of the means for each variable separately are useful, but
they don’t allow visualization of the relations among the response variables.

We can visualize these effects for pairs of variables in an HE plot, showing the “size” and
orientation of hypothesis variation (H) in relation to error variation (E) as ellipsoids. When,
as here, the model terms have 1 degree of freedom, the H ellipsoids degenerate to a line.
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> # Compare evidence and effect scaling
> colors = c("red", "darkblue", "darkgreen", "brown")
> heplot(plastic.mod, size="evidence", col=colors, cex=1.25)
> heplot(plastic.mod, size="effect", add=TRUE, lwd=4, term.labels=FALSE, col=colors)

With effect scaling, both the H and E sums of squares and products matrices are both
divided by the error df, giving multivariate analogs of univariate measures of effect size, e.g.,
(ȳ1− ȳ2)/s. With significance scaling, the H ellipse is further divided by λα, the critical value
of Roy’s largest root statistic. This scaling has the property that an H ellipse will protrude
somewhere outside the E ellipse iff the multivariate test is significant at level α. Figure 1
shows both scalings, using a thinner line for significance scaling. Note that the (degenerate)
ellipse for additive is significant, but does not protrude outside the E ellipse in this view.
All that is guarranteed is that it will protrude somewhere in the 3D space of the responses.

By design, means for the levels of interaction terms are not shown in the HE plot, be-
cause doing so in general can lead to messy displays. We can add them here for the term
rate:additive as follows:
> ## add interaction means
> intMeans <- termMeans(plastic.mod, ✬rate:additive✬, abbrev.levels=2)
> #rownames(intMeans) <- apply(expand.grid(c(✬Lo✬,✬Hi✬), c(✬Lo✬, ✬Hi✬)), 1, paste, collapse=✬:✬)
> points(intMeans[,1], intMeans[,2], pch=18, cex=1.2, col="brown")
> text(intMeans[,1], intMeans[,2], rownames(intMeans), adj=c(0.5,1), col="brown")
> lines(intMeans[c(1,3),1], intMeans[c(1,3),2], col="brown")
> lines(intMeans[c(2,4),1], intMeans[c(2,4),2], col="brown")
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Figure 1: HE plot for effects on tear and gloss according to the factors rate, additive
and their interaction, rate:additive. The thicker lines show effect size scaling, the thinner
lines show significance scaling.

The factor means in this plot (Figure 1) have a simple interpretation: The high rate

level yields greater tear resistance but lower gloss than the low level. The high additive

amount produces greater tear resistance and greater gloss.
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The rate:additive interaction is not significant overall, though it approaches significance
for gloss. The cell means for the combinations of rate and additive shown in this figure
suggest an explanation, for tutorial purposes: with the low level of rate, there is little
difference in gloss for the levels of additive. At the high level of rate, there is a larger
difference in gloss. The H ellipse for the interaction of rate:additive therefore “points”
in the direction of gloss indicating that this variable contributes to the interaction in the
multivariate tests.

In some MANOVA models, it is of interest to test sub-hypotheses of a given main effect
or interaction, or conversely to test composite hypotheses that pool together certain effects
to test them jointly. All of these tests (and, indeed, the tests of terms in a given model) are
carried out as tests of general linear hypotheses in the MvLM.

In this example, it might be useful to test two composite hypotheses: one corresponding
to both main effects jointly, and another corresponding to no difference among the means of
the four groups (equivalent to a joint test for the overall model). These tests are specified in
terms of subsets or linear combinations of the model parameters.

> plastic.mod

Call:
lm(formula = cbind(tear, gloss, opacity) ~ rate * additive, data = Plastic)

Coefficients:
tear gloss opacity

(Intercept) 6.30 9.56 3.74
rateHigh 0.58 -0.84 -0.60
additiveHigh 0.38 0.02 0.10
rateHigh:additiveHigh 0.02 0.66 1.78

Thus, for example, the joint test of both main effects tests the parameters rateHigh and
additiveHigh.

> print(linearHypothesis(plastic.mod, c("rateHigh", "additiveHigh"), title="Main effects"), SSP=FALSE)

Multivariate Tests: Main effects
Df test stat approx F num Df den Df Pr(>F)

Pillai 2 0.71161 2.7616 6 30 0.029394 *
Wilks 2 0.37410 2.9632 6 28 0.022839 *
Hotelling-Lawley 2 1.44400 3.1287 6 26 0.019176 *
Roy 2 1.26253 6.3127 3 15 0.005542 **
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

> print(linearHypothesis(plastic.mod, c("rateHigh", "additiveHigh", "rateHigh:additiveHigh"), title="Groups"), S

Multivariate Tests: Groups
Df test stat approx F num Df den Df Pr(>F)

Pillai 3 1.14560 3.2948 9 48.000 0.003350 **
Wilks 3 0.17802 3.9252 9 34.223 0.001663 **
Hotelling-Lawley 3 2.81752 3.9654 9 38.000 0.001245 **
Roy 3 1.86960 9.9712 3 16.000 0.000603 ***
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Correspondingly, we can display these tests in the HE plot by specifying these tests in
the hypothesis argument to heplot(), as shown in Figure 2.

Finally, a 3D HE plot can be produced with heplot3d(), giving Figure 3. This plot
was rotated interactively to a view that shows both main effects protruding outside the error
ellipsoid.

> colors = c("pink", "darkblue", "darkgreen", "brown")
> heplot3d(plastic.mod, col=colors)
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> heplot(plastic.mod, hypotheses=list("Group" =
c("rateHigh", "additiveHigh", "rateHigh:additiveHigh ")),
col=c(colors, "purple"),
lwd=c(2, 3, 3, 3, 2), cex=1.25)

> heplot(plastic.mod, hypotheses=list("Main effects" =
c("rateHigh", "additiveHigh")), add=TRUE,
col=c(colors, "darkgreen"), cex=1.25)
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Figure 2: HE plot for tear and gloss, supplemented with ellipses representing the joint tests
of main effects and all group differences

1.2 Effects of physical attractiveness on mock jury decisions

In a social psychology study of influences on jury decisions by Plaster (1989), male partici-
pants (prison inmates) were shown a picture of one of three young women. Pilot work had
indicated that one woman was beautiful, another of average physical attractiveness, and the
third unattractive. Participants rated the woman they saw on each of twelve attributes on
scales of 1–9. These measures were used to check on the manipulation of “attractiveness” by
the photo.

Then the participants were told that the person in the photo had committed a Crime,
and asked to rate the seriousness of the crime and recommend a prison sentence, in Years.
The data are contained in the data frame MockJury.1

> str(MockJury)

1The data were made available courtesy of Karl Wuensch, from http://core.ecu.edu/psyc/wuenschk/

StatData/PLASTER.dat
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Figure 3: 3D HE plot for the plastic film data

✬data.frame✬: 114 obs. of 17 variables:
$ Attr : Factor w/ 3 levels "Beautiful","Average",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Crime : Factor w/ 2 levels "Burglary","Swindle": 1 1 1 1 1 1 1 1 1 1 ...
$ Years : int 10 3 5 1 7 7 3 7 2 3 ...
$ Serious : int 8 8 5 3 9 9 4 4 5 2 ...
$ exciting : int 6 9 3 3 1 1 5 4 4 6 ...
$ calm : int 9 5 4 6 1 5 6 9 8 8 ...
$ independent : int 9 9 6 9 5 7 7 2 8 7 ...
$ sincere : int 8 3 3 8 1 5 6 9 7 5 ...
$ warm : int 5 5 6 8 8 8 7 6 1 7 ...
$ phyattr : int 9 9 7 9 8 8 8 5 9 8 ...
$ sociable : int 9 9 4 9 9 9 7 2 1 9 ...
$ kind : int 9 4 2 9 4 5 5 9 5 7 ...
$ intelligent : int 6 9 4 9 7 8 7 9 9 9 ...
$ strong : int 9 5 5 9 9 9 5 2 7 5 ...
$ sophisticated: int 9 5 4 9 9 9 6 2 7 6 ...
$ happy : int 5 5 5 9 8 9 5 2 6 8 ...
$ ownPA : int 9 7 5 9 7 9 6 5 3 6 ...

Sample sizes were roughly balanced for the independent variables in the three conditions of
the attractiveness of the photo, and the combinations of this with Crime:

> table(MockJury$Attr)

Beautiful Average Unattractive
39 38 37

> table(MockJury$Attr, MockJury$Crime)

Burglary Swindle
Beautiful 21 18
Average 18 20
Unattractive 20 17
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The main questions of interest were: (a) Does attractiveness of the “defendent” influence
the sentence or perceived seriousness of the crime? (b) Does attractiveness interact with the
nature of the crime?

But first, we try to assess the ratings of the photos in relation to the presumed categories
of the independent variable Attr. The questions here are (a) do the ratings of the photos
on physical attractiveness (phyattr) confirm the original classification? (b) how do other
ratings differentiate the photos? To keep things simple, we consider ony a few of the other
ratings in a one-way MANOVA.

> (jury.mod1 <- lm( cbind(phyattr, happy, independent, sophisticated) ~ Attr, data=MockJury))

Call:
lm(formula = cbind(phyattr, happy, independent, sophisticated) ~

Attr, data = MockJury)

Coefficients:
phyattr happy independent sophisticated

(Intercept) 8.282 5.359 6.410 6.077
AttrAverage -4.808 0.430 0.537 -1.340
AttrUnattractive -5.390 -1.359 -1.410 -1.753

> Anova(jury.mod1, test="Roy")

Type II MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

Attr 2 1.77 48.2 4 109 <2e-16 ***
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Note that Beautiful is the baseline category of Attr, so the intercept term gives the means for
this level. We see that the means are significantly different on all four variables collectively,
by a joint multivariate test. A traditional analysis might follow up with univariate ANOVAs
for each measure separately.

As an aid to interpretation of the MANOVA results We can examine the test of Attr in
this model with an HE plot for pairs of variables, e.g., for phyattr and happy (Figure 4).
The means in this plot show that Beautiful is rated higher on physical attractiveness than
the other two photos, while Unattractive is rated less happy than the other two. Comparing
the sizes of the ellipses, differences among group means on physical attractiveness contributes
more to significance than do ratings on happy.

> heplot(jury.mod1, main="HE plot for manipulation check")

The HE plot for all pairs of variables (Figure 5) shows that the means for happy and
independent are highly correlated, as are the means for phyattr and sophisticated. In
most of these pairwise plots, the means form a triangle rather than a line, suggesting that
these attributes are indeed measuring different aspects of the photos.

With 3 groups and 4 variables, the H ellipsoid has only s = min(dfh, p) = 2 dimensions.
candisc() carries out a canonical discriminant analysis for the MvLM and returns an object
that can be used to show an HE plot in the space of the canonical dimensions. This is plotted
in Figure 6.

> jury.can <- candisc(jury.mod1)
> jury.can
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Figure 4: HE plot for ratings of phyattr and happy according to the classification of photos
on Attr

Canonical Discriminant Analysis for Attr:

CanRsq Eigenvalue Difference Percent Cumulative
1 0.639 1.767 1.6 91.33 91.3
2 0.144 0.168 1.6 8.67 100.0

Test of H0: The canonical correlations in the
current row and all that follow are zero

LR test stat approx F num Df den Df Pr(> F)
1 0.309 43.9 4 220 < 2e-16 ***
2 0.856 18.6 1 111 3.5e-05 ***
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

From this we can see that 91% of the variation among group means is accounted for by the
first dimension, and this is nearly completely aligned with phyattr. The second dimension,
accounting for the remaining 9% is determined nearly entirely by ratings on happy and
independent. This display gives a relatively simple account of the results of the MANOVA
and the relations of each of the ratings to discrimination among the photos.

Proceeding to the main questions of interest, we carry out a two-way MANOVA of the
responses Years and Serious in relation to the independent variables Attr and Crime.

> # influence of Attr of photo and nature of crime on Serious and Years
> jury.mod2 <- lm( cbind(Serious, Years) ~ Attr * Crime, data=MockJury)
> Anova(jury.mod2, test="Roy")
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> pairs(jury.mod1)
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Figure 5: HE plots for all pairs of ratings according to the classification of photos on Attr

Type II MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

Attr 2 0.0756 4.08 2 108 0.020 *
Crime 1 0.0047 0.25 2 107 0.778
Attr:Crime 2 0.0501 2.71 2 108 0.071 .
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

We see that there is a nearly significant interaction between Attr and Crime and a strong
effect of Attr.

The HE plot shows that the nearly significant interaction of Attr:Crime is mainly in
terms of differences among the groups on the response of Years of sentence, with very little
contribution of Serious. We explore this interaction in a bit more detail below. The main
effect of Attr is also dominated by differences among groups on Years.

If we assume that Years of sentence is the main outcome of interest, it also makes sense
to carry out a step-down test of this variable by itself, controlling for the rating of seriousness
(Serious) of the crime. The model jury.mod3 below is equivalent to an ANCOVA for Years.

> # stepdown test (ANCOVA), controlling for Serious
> jury.mod3 <- lm( Years ~ Serious + Attr * Crime, data=MockJury)
> t(coef(jury.mod3))

(Intercept) Serious AttrAverage AttrUnattractive CrimeSwindle
[1,] 0.011612 0.83711 0.39586 0.60285 -0.26302
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> opar <- par(xpd=TRUE)
> heplot(jury.can, prefix="Canonical dimension", main="Canonical HE plot")
> par(opar)
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Figure 6: Canonical discriminant HE plot for the MockJury data

AttrAverage:CrimeSwindle AttrUnattractive:CrimeSwindle
[1,] -0.53701 2.5123

> Anova(jury.mod3)

Anova Table (Type II tests)

Response: Years
Sum Sq Df F value Pr(>F)

Serious 379 1 41.14 3.9e-09 ***
Attr 74 2 4.02 0.021 *
Crime 4 1 0.43 0.516
Attr:Crime 49 2 2.67 0.074 .
Residuals 987 107
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Thus, even when adjusting for Serious rating, there is still a significant main effect of Attr
of the photo, but also a hint of an interaction of Attr with Crime. The coefficient for Serious
indicates that participants awarded 0.84 additional years of sentence for each 1 unit step on
the scale of seriousness of crime.

A particularly useful method for visualizing the fitted effects in such univariate response
models is provided by the effects package. By default allEffects() calculates the predicted
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> heplot(jury.mod2)
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Figure 7: HE plot for the two-way MANOVA for Years and Serious

values for all high-order terms in a given model, and the plot method produces plots of these
values for each term. The statements below produce Figure 8.

> library(effects)
> jury.eff <- allEffects(jury.mod3)
> plot(jury.eff, ask=FALSE)

The effect plot for Serious shows the expected linear relation between that variable and
Years. Of greater interest here is the nature of the possible interaction of Attr and Crime

on Years of sentence, controlling for Serious. The effect plot shows that for the crime of
Swindle, there is a much greater Years of sentence awarded to Unattractive defendents.

1.3 Egyptian skulls from five epochs

This example examines physical measurements of size and shape made on 150 Egyptian skulls
from five epochs ranging from 4000 BC to 150 AD. The measures are: maximal breadth
(mb), basibregmatic height (bh), basialveolar length (bl), and nasal height (nh) of each
skull. See http://www.redwoods.edu/instruct/agarwin/anth_6_measurements.htm for
the definitions of these measures, and Figure 9 for a diagram. The question of interest is
whether and how these measurements change over time. Systematic changes over time is of
interest because this would indicate interbreeding with immigrant populations.
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Figure 8: Effect plots for Serious and the Attr * Crime in the ANCOVA model jury.mod3.

Figure 9: Diagram of the skull measurements

> data(Skulls)
> str(Skulls)

✬data.frame✬: 150 obs. of 5 variables:
$ epoch: Ord.factor w/ 5 levels "c4000BC"<"c3300BC"<..: 1 1 1 1 1 1 1 1 1 1 ...
$ mb : num 131 125 131 119 136 138 139 125 131 134 ...
$ bh : num 138 131 132 132 143 137 130 136 134 134 ...
$ bl : num 89 92 99 96 100 89 108 93 102 99 ...
$ nh : num 49 48 50 44 54 56 48 48 51 51 ...

> table(Skulls$epoch)

c4000BC c3300BC c1850BC c200BC cAD150
30 30 30 30 30
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Note that epoch is an ordered factor, so the default contrasts will be orthogonal polynomials.
This assumes that epoch values are equally spaced, which they are not. However, examining
the linear and quadratic trends is useful to a first approximation.

For ease of labeling various outputs, it is useful to trim the epoch values and assign more
meaningful variable labels.

> # make shorter labels for epochs
> Skulls$epoch <- factor(Skulls$epoch, labels=sub("c","",levels(Skulls$epoch)))
> # assign better variable labels
> vlab <- c("maxBreadth", "basibHeight", "basialLength", "nasalHeight")

We start with some simple displays of the means by epoch. From the numbers, the means
don’t seem to vary much. A pairs plot, Figure 10, joining points by epoch is somewhat
more revealing for the bivariate relations among means.

> means <- aggregate(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls, FUN=mean)[,-1]
> rownames(means) <- levels(Skulls$epoch)
> means

mb bh bl nh
4000BC 131.37 133.60 99.167 50.533
3300BC 132.37 132.70 99.067 50.233
1850BC 134.47 133.80 96.033 50.567
200BC 135.50 132.30 94.533 51.967
AD150 136.17 130.33 93.500 51.367

> pairs(means, vlab,
panel = function(x, y) {

text(x, y, levels(Skulls$epoch))
lines(x,y)

})

Perhaps better for visualizing the trends over time is a set of boxplots, joining means over
epoch. Using bwplot() from the lattice package package requires reshaping the data from
wide to long format. The following code produces Figure 11.

> library(lattice)
> library(reshape2)
> sklong <- melt(Skulls, id="epoch")
> bwplot(value ~ epoch | variable, data=sklong, scales="free",

ylab="Variable value", xlab="Epoch",
strip=strip.custom(factor.levels=paste(vlab, " (", levels(sklong$variable), ")", sep="")),
panel = function(x,y, ...) {

panel.bwplot(x, y, ...)
panel.linejoin(x,y, col="red", ...)

})

Now, fit the MANOVA model, and test the effect of epoch with Manova(). We see that
the multivariate means differ substantially.

> # fit manova model
> sk.mod <- lm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)
> Manova(sk.mod)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

epoch 4 0.353 3.51 16 580 4.7e-06 ***
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Perhaps of greater interest are the more focused tests of trends over time. These are based
on tests of the coefficients in the model sk.mod being jointly equal to zero, for subsets of the
(polynomial) contrasts in epoch.
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Figure 10: Pairs plot of means of Skulls data, by epoch

> coef(sk.mod)

mb bh bl nh
(Intercept) 133.97333 132.54667 96.460000 50.93333
epoch.L 4.02663 -2.19251 -5.017481 1.07517
epoch.Q -0.46325 -1.26504 -0.089087 0.12472
epoch.C -0.46380 -0.78003 1.075174 -0.83273
epoch^4 0.34263 0.80479 -0.661360 -0.41833

We use linearHypothesis() for a multivariate test of the epoch.L linear effect. The
linear trend is highly significant. It is not obvious from Figure 10 that maximal breadth and
nasal are increasing over time, while the other two measurements have negative slopes.

> coef(sk.mod)["epoch.L",]

mb bh bl nh
4.0266 -2.1925 -5.0175 1.0752

> print(linearHypothesis(sk.mod, "epoch.L"), SSP=FALSE) # linear component
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Figure 11: Boxplots of Skulls data, by epoch, for each variable

Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.29138 14.597 4 142 5.195e-10 ***
Wilks 1 0.70862 14.597 4 142 5.195e-10 ***
Hotelling-Lawley 1 0.41119 14.597 4 142 5.195e-10 ***
Roy 1 0.41119 14.597 4 142 5.195e-10 ***
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

linearHypothesis() can also be used to test composite hypotheses. Here we test all non-
linear coefficients jointly. The result indicates that, collectively, all non-linear terms are not
significantly different from zero.

> print(linearHypothesis(sk.mod, c("epoch.Q", "epoch.C", "epoch^4")), SSP=FALSE)

Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 3 0.06819 0.83726 12 432.00 0.6119
Wilks 3 0.93296 0.83263 12 375.99 0.6167
Hotelling-Lawley 3 0.07063 0.82791 12 422.00 0.6216
Roy 3 0.04519 1.62676 4 144.00 0.1707

Again, HE plots can show the patterns of these tests of multivariate hypotheses. With
four response variables, it is easiest to look at all pairwise HE plots with the pairs.mlm()
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function. The statement below produces Figure 12. In this plot, we show the hypothesis
ellipsoids for the overall effect of epoch, as well as those for the tests just shown for the linear
trend component epoch.L as well as the joint test of all non-linear terms.

> pairs(sk.mod, variables = c(1, 4, 2, 3), hypotheses = list(Lin = "epoch.L",
NonLin = c("epoch.Q", "epoch.C", "epoch^4")), var.labels = vlab[c(1,
4, 2, 3)])

maxBreadth

119

148

+

Error

epochLin

NonLin

●
●

●
●●

4000BC3300BC
1850BC200BCAD150

+

Error

epochLin

NonLin

●
●

●
●●

4000BC3300BC
1850BC200BCAD150

+

Error

epochLin

NonLin
●
●

●
●●

4000BC3300BC
1850BC200BCAD150

+

Error
epoch

LinNonLin

●●
●

●
●4000BC3300BC1850BC

200BC
AD150

nasalHeight

120

145

+

Error

epoch
Lin

NonLin

●●
●

●
● 4000BC3300BC1850BC
200BC

AD150

+

Error

epoch
LinNonLin

●●
●

●
●4000BC3300BC1850BC

200BC
AD150

+

Error

epoch
Lin

NonLin

●
●

●

●

●

4000BC
3300BC

1850BC
200BC
AD150 +

Error

epoch
Lin

NonLin

●
●
●

●

●

4000BC
3300BC
1850BC

200BC
AD150 basibHeight

81

114

+

Error epoch
Lin

NonLin

●
●

●

●

●

4000BC
3300BC

1850BC
200BC

AD150

+

Error

epochLin

NonLin

●●

●
●
●

4000BC3300BC
1850BC200BCAD150 +

Error

epochLin

NonLin

●●

●
●

●

4000BC3300BC
1850BC200BCAD150 +

Error

epochLin

NonLin

●●

●
●

●

4000BC3300BC
1850BC200BCAD150 basialLength

44

60

Figure 12: Pairs HE plot of Skulls data, showing multivariate tests of epoch, as well as tests
of linear and nonlinear trends.

These plots have an interesting geometric interpretation: the H ellipses for the overall
effect of epoch are representations of the additive decomposition of this effect into H ellipses
for the linear and nonlinear linear hypothesis tests according to

Hepoch = Hlinear +Hnonlinear

where the linear term has rank 1 (and so plots as a line), while the nonlinear term has rank 3.
In each panel, it can be seen that the large direction of theHepoch leading to significance of this
effect corresponds essentially to the linear contrast. Hnonlinear is the orthogonal complement
of Hlinear in the space of Hepoch, but nowhere does it protrude beyond the boundary of the
E ellipsoid.
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These relations can be seen somewhat more easily in 3D, as produced using heplot3d()

by the following statement. The resulting plot is better viewed interactively in R and is not
reproduced here. It would be seen there that the ellipsoid for the nonlinear terms is nearly
flat in one direction, corresponding to the panel for (mb, hb) in Figure 12.

> heplot3d(sk.mod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q",
NonLin=c("epoch.Q", "epoch.C", "epoch^4")),

col=c("pink", "blue"))

Finally, a simpler view of these effects can be shown in the canonical space correspond-
ing to the canonical discriminant analysis for epoch. The computations are performed by
candisc() which returns a class "candisc" object.

> library(candisc)
> sk.can <- candisc(sk.mod)
> sk.can

Canonical Discriminant Analysis for epoch:

CanRsq Eigenvalue Difference Percent Cumulative
1 0.29829 0.42510 0.386 88.227 88.2
2 0.03754 0.03900 0.386 8.094 96.3
3 0.01546 0.01570 0.386 3.259 99.6
4 0.00202 0.00202 0.386 0.419 100.0

Test of H0: The canonical correlations in the
current row and all that follow are zero

LR test stat approx F num Df den Df Pr(> F)
1 0.664 3.90 16 434 7e-07 ***
2 0.946 0.90 9 348 0.53
3 0.983 0.64 4 288 0.64
4 0.998 0.29 1 145 0.59
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

The output above shows that, although Hepoch is of rank 4, two dimensions account for 96%
of the between-epoch variation. By the likelihood ratio test, only the canonical correlation
for the first dimension can be considered non-zero.

The canonical HE plot is produced by plotting the sk.can object, giving Figure 13.

> heplot(sk.can, prefix="Canonical dimension")

In this plot, the first canonical dimension (88%) essentially corresponds to the ordered values
of epoch, from right to left. The variable vectors for maximum breadth (mb), basialiveolar
length (bl) and nasal height (nh) are largely aligned with this dimension, indicating that they
distinguish the groups of skulls according to time. The lengths of these vectors indicates their
relative contribution to discrimination among the group means. Only the variable vector
for basibregmatic height (bh) points in the direction of the second canonical dimension,
corresponding to higher means in the middle of the range of epochs. We leave it to forensic
anthropologists to determine if this has any meaning.

2 Multivariate Multiple Regression Designs

The ideas behind HE plots extend naturally to multivariate multiple regression (MMRA)
and multivariate analysis of covariance (MANCOVA). In MMRA, the X matrix contains
only quantitative predictors, while in MANCOVA designs, there is a mixture of factors and
quantitative predictors (covariates).
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Figure 13: Canonical discriminant HE plot of the Skulls data

In the MANCOVA case, there is often a subtle difference in emphasis: true MANCOVA
analyses focus on the differences among groups defined by the factors, adjusting for (or con-
trolling for) the quantitative covariates. Analyses concerned with homogeneity of regression

focus on quantitative predictors and attempt to test whether the regression relations are the
same for all groups defined by the factors.

2.1 Rohwer data

To illustrate the homogeneity of regression flavor, we use data from a study by Rohwer (given
in Timm, 1975: Ex. 4.3, 4.7, and 4.23) on kindergarten children, designed to determine
how well a set of paired-associate (PA) tasks predicted performance on the Peabody Picture
Vocabulary test (PPVT), a student achievement test (SAT), and the Raven Progressive matrices
test (Raven). The PA tasks varied in how the stimuli were presented, and are called named

(n), still (s), named still (ns), named action (na), and sentence still (ss).
Two groups were tested: a group of n = 37 children from a low socioeconomic status

(SES) school, and a group of n = 32 high SES children from an upper-class, white residential
school. The data are in the data frame Rohwer in the heplots package:

> some(Rohwer,n=6)
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group SES SAT PPVT Raven n s ns na ss
14 1 Lo 30 55 13 2 1 12 20 17
17 1 Lo 19 66 13 7 12 21 35 27
18 1 Lo 45 54 10 0 6 6 14 16
21 1 Lo 32 48 16 0 7 9 14 18
37 1 Lo 79 54 14 0 6 6 15 14
57 2 Hi 99 94 16 4 6 14 27 19

At one extreme, we might be tempted to fit separate regression models for each of the
High and Low SES groups. This approach is not recommended because it lacks power and
does not allow hypotheses about equality of slopes and intercepts to be tested directly.

> rohwer.ses1 <- lm(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss, data=Rohwer, subset=SES=="Hi")
> Anova(rohwer.ses1)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

n 1 0.202 2.02 3 24 0.1376
s 1 0.310 3.59 3 24 0.0284 *
ns 1 0.358 4.46 3 24 0.0126 *
na 1 0.465 6.96 3 24 0.0016 **
ss 1 0.089 0.78 3 24 0.5173
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

> rohwer.ses2 <- lm(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss, data=Rohwer, subset=SES=="Lo")
> Anova(rohwer.ses2)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

n 1 0.0384 0.39 3 29 0.764
s 1 0.1118 1.22 3 29 0.321
ns 1 0.2252 2.81 3 29 0.057 .
na 1 0.2675 3.53 3 29 0.027 *
ss 1 0.1390 1.56 3 29 0.220
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

This allows separate slopes and intercepts for each of the two groups, but it is difficult to
compare the coefficients numerically.

> coef(rohwer.ses1)

SAT PPVT Raven
(Intercept) -28.46747 39.697090 13.243836
n 3.25713 0.067283 0.059347
s 2.99658 0.369984 0.492444
ns -5.85906 -0.374380 -0.164022
na 5.66622 1.523009 0.118980
ss -0.62265 0.410157 -0.121156

> coef(rohwer.ses2)

SAT PPVT Raven
(Intercept) 4.151060 33.005769 11.173378
n -0.608872 -0.080567 0.210995
s -0.050156 -0.721050 0.064567
ns -1.732395 -0.298303 0.213584
na 0.494565 1.470418 -0.037318
ss 2.247721 0.323965 -0.052143

Nevertheless, we can visualize the results with HE plots, and here we make use of the fact
that several HE plots can be overlaid using the option add=TRUE as shown in Figure 14.
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Figure 14: HE plot for SAT and PPVT, showing the effects for the PA predictors for the High
and Low SES groups separately

> heplot(rohwer.ses1, ylim=c(40,110),col=c("red", "black"), lwd=2, cex=1.2)
> heplot(rohwer.ses2, add=TRUE, col=c("blue", "black"), grand.mean=TRUE, error.ellipse=TRUE, lwd=2, cex=1.2)
> means <- aggregate(cbind(SAT,PPVT)~SES, data=Rohwer, mean)
> text(means[,2], means[,3], labels=means[,1], pos=3, cex=2, col=c("red", "blue"))

We can readily see the difference in means for the two SES groups (High greater on both
variables) and it also appears that the slopes of the predictor ellipses are shallower for the
High than the Low group, indicating greater relation with the SAT score.

Alternatively (and optimistically), we can fit a MANCOVA model that allows different
means for the two SES groups on the responses, but constrains the slopes for the PA covariates
to be equal.

> # MANCOVA, assuming equal slopes
> rohwer.mod <- lm(cbind(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss,

data=Rohwer)
> Anova(rohwer.mod)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

SES 1 0.379 12.18 3 60 2.5e-06 ***
n 1 0.040 0.84 3 60 0.4773
s 1 0.093 2.04 3 60 0.1173
ns 1 0.193 4.78 3 60 0.0047 **
na 1 0.231 6.02 3 60 0.0012 **
ss 1 0.050 1.05 3 60 0.3770
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Note that, although the multivariate tests for two of the covariates (ns and na) are
highly significant, univariate multiple regression tests for the separate responses [from sum-

mary(rohwer.mod)] are relatively weak. We can also test the global 5 df hypothesis, B = 0,
that all covariates have null effects for all responses as a linear hypothesis (suppressing display
of the error and hypothesis SSP matrices),
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> (covariates <- rownames(coef(rohwer.mod))[-(1:2)])

[1] "n" "s" "ns" "na" "ss"

> Regr<-linearHypothesis(rohwer.mod, covariates)
> print(Regr, digits=5, SSP=FALSE)

Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 5 0.66579 3.5369 15 186.00 2.309e-05 ***
Wilks 5 0.44179 3.8118 15 166.03 8.275e-06 ***
Hotelling-Lawley 5 1.03094 4.0321 15 176.00 2.787e-06 ***
Roy 5 0.75745 9.3924 5 62.00 1.062e-06 ***
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Then 2D views of the additive MANCOVA model rohwer.mod and the overall test for all
covariates are produced as follows, giving the plots in Figure 15.

> colors <- c("red", "blue", rep("black",5), "#969696")
> heplot(rohwer.mod, col=colors,

hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")),
cex=1.5, lwd=c(2, rep(3,5), 4),
main="(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss")

> heplot(rohwer.mod, col=colors, variables=c(1,3),
hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")),
cex=1.5, lwd=c(2, rep(3,5), 4),
main="(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss")
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Figure 15: HE plot for SAT and PPVT (left) and for SAT and Raven (right) using the MAN-
COVA model

The positive orientation of the Regr ellipses shows that the prediced values for all three
responses are positively correlated (more so for SAT and PPVT). As well, the High SES group
is higher on all responses than the Low SES group.

Alternatively, all pairwise plots among these responses could be drawn using the pairs

function (figure not shown),
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> pairs(rohwer.mod, col=colors,
hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")),
cex=1.3, lwd=c(2, rep(3,5), 4))

or as a 3D plot, using heplot3d() as shown in Figure 16.

> colors <- c("pink", "blue", rep("black",5), "#969696")
> heplot3d(rohwer.mod, col=colors,

hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")))

Figure 16: 3D HE plot for the MANCOVA model fit to the Rohwer data

The MANCOVA model, rohwer.mod, has relatively simple interpretations (large effect
of SES, with ns and na as the major predictors) but the test of relies on the assumption of
homogeneity of slopes for the predictors. We can test this as follows, adding interactions of
SES with each of the covariates:

> rohwer.mod2 <- lm(cbind(SAT, PPVT, Raven) ~ SES * (n + s + ns + na + ss),
data=Rohwer)

> Anova(rohwer.mod2)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

SES 1 0.391 11.78 3 55 4.5e-06 ***
n 1 0.079 1.57 3 55 0.20638
s 1 0.125 2.62 3 55 0.05952 .
ns 1 0.254 6.25 3 55 0.00100 ***
na 1 0.307 8.11 3 55 0.00015 ***
ss 1 0.060 1.17 3 55 0.32813
SES:n 1 0.072 1.43 3 55 0.24417
SES:s 1 0.099 2.02 3 55 0.12117
SES:ns 1 0.118 2.44 3 55 0.07383 .
SES:na 1 0.148 3.18 3 55 0.03081 *
SES:ss 1 0.057 1.12 3 55 0.35094
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

It appears from the above that there is only weak evidence of unequal slopes from the separate
SES: terms. The evidence for heterogeneity is stronger, however, when these terms are tested
collectively using the linearHypothesis() function:
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> (coefs <- rownames(coef(rohwer.mod2)))

[1] "(Intercept)" "SESLo" "n" "s" "ns"
[6] "na" "ss" "SESLo:n" "SESLo:s" "SESLo:ns"
[11] "SESLo:na" "SESLo:ss"

> print(linearHypothesis(rohwer.mod2, coefs[grep(":", coefs)]), SSP=FALSE)

Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 5 0.41794 1.8452 15 171.00 0.032086 *
Wilks 5 0.62358 1.8936 15 152.23 0.027695 *
Hotelling-Lawley 5 0.53865 1.9272 15 161.00 0.023962 *
Roy 5 0.38465 4.3850 5 57.00 0.001905 **
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

This model (rohwer.mod2) is similar in spirit to the two models (rohwer.ses1 and ro-

hwer.ses2) fit for the two SES groups separately and show in Figure 14, except that model
rohwer.mod2 assumes a common within-groups error covariance matrix and allows overall
tests.

To illustrate model rohwer.mod2, we construct an HE plot for SAT and PPVT shown in
Figure 17. To simplify this display, we show the hypothesis ellipses for the overall effects of
the PA tests in the baseline high-SES group, and a single combined ellipse for all the SESLo:
interaction terms that we tested previously, representing differences in slopes between the
low and high-SES groups.

Because SES is “treatment-coded” in this model, the ellipse for each covariate represents
the hypothesis that the slopes for that covariate are zero in the high-SES baseline category.
With this parameterization, the ellipse for Slopes represents the joint hypothesis that slopes
for the covariates do not differ in the low-SES group.

> colors <- c("red", "blue", rep("black",5), "#969696")
> heplot(rohwer.mod2, col=c(colors, "brown"),

terms=c("SES", "n", "s", "ns", "na", "ss"),
hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss"),

"Slopes" = coefs[grep(":", coefs)]))

Comparing Figure 17 for the heterogeneous slopes model with Figure 15 (left) for the
homogeneous slopes model, it can be seen that most of the covariates have ellipses of similar
size and orientation, reflecting simlar evidence against the respective null hypotheses, as does
the effect of SES, showing the greater performance of the high-SES group on all response
measures. Somewhat more subtle, the error ellipse is noticeably smaller in Figure 17, reflecting
the additional variation accounted for by differences in slopes.

2.2 Recovery from hernia repair

This example uses the Hernior data, comprising data on measures of post-operative recovery
of 32 patients undergoing an elective herniorrhaphy operation, in relation to pre-operative
measures.

The response measures are the patient’s condition upon leaving the recovery room (leave,
a 1-4 scale, 1=best), level of nursing required one week after operation (nurse, a 1-5 scale,
1=worst) and length of stay in hospital after operation (los, in days)
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Figure 17: HE plot for SAT and PPVT, fitting the model rohwer.mod2 that allows unequal
slopes for the covariates.

The predictor variables are patient age, sex, physical status (pstat, a 1-5 scale, with
1=perfect health, 5=very poor health), body build (build, a 1-5 scale, with 1=emaciated,
. . . , 5=obsese), and preoperative complications with (cardiac) heart and respiration (resp).

We begin with a model fitting all predictors. Note that the ordinal predictors, pstat,
build, cardiac and resp could arguably be treated as factors, rather than linear, regression
terms. We ignore this possibility in this example.

> Hern.mod <- lm(cbind(leave, nurse, los) ~ age + sex + pstat + build + cardiac + resp,
data=Hernior)

> Anova(Hern.mod)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

age 1 0.143 1.27 3 23 0.307
sex 1 0.026 0.21 3 23 0.892
pstat 1 0.333 3.84 3 23 0.023 *
build 1 0.257 2.65 3 23 0.073 .
cardiac 1 0.228 2.26 3 23 0.108
resp 1 0.248 2.53 3 23 0.082 .
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

The results of the multivariate tests above are somewhat disappointing. Only the physical
status predictor (pstat) appears to be significant at conventional levels.

The univariate models for each response are implicit in the MvLM Hern.mod. These can
be printed using summary(), or we can use summary() to extract certain statistics for each
univariate response model, as we do here.

> Hern.summary <- summary(Hern.mod)
> unlist(lapply(Hern.summary, function(x) x$r.squared))

Response leave Response nurse Response los
0.59176 0.24740 0.36531
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The univariate tests for predictors in each of these models (not shown here) are hard to
interpret, and largely show only significant effects for the leave variable. Yet, the R2 values
for the other responses are slightly promising. We proceed to an overall test of B = 0 for all
predictors.

> # test overall regression
> Regr <- linearHypothesis(Hern.mod, c("age", "sexm", "pstat", "build", "cardiac", "resp"))
> print(Regr, digits=5, SSP=FALSE)

Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 6 1.10198 2.4192 18 75.000 0.0041356 **
Wilks 6 0.21734 2.6046 18 65.539 0.0025239 **
Hotelling-Lawley 6 2.26797 2.7300 18 65.000 0.0016285 **
Roy 6 1.55434 6.4764 6 25.000 0.0003232 ***
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

> clr <- c("red", "darkgray", "blue", "darkgreen", "magenta", "brown", "black")
> vlab <- c("LeaveCondition\n(leave)", "NursingCare\n(nurse)", "LengthOfStay\n(los)")
> hyp <- list("Regr" = c("age", "sexm", "pstat", "build", "cardiac", "resp"))
> pairs(Hern.mod, hypotheses=hyp, col=clr, var.labels=vlab)

A pairs() plot for the MvLM gives the set of plots shown in Figure 18 helps to interpret
the relations among the predictors which lead to the highly significant overall test. Among
the predictors, age and sex have small and insignificant effects on the outcome measures
jointly. The other predictors all contribute to the overall test of B = 0, though in different
ways for the various responses. For example, in the panel for (leave, los) in Figure 18,
it can be seen that while only pstat individually is outside the E ellipse, build and resp

contribute to the overall test in an opposite direction.
In this multivariate regression example, all of the terms in the model Hern.mod have 1 df,

and so plot as lines in HE plots. An alternative view of these effects can be seen in canonical
discriminant space, which, for each predictor shows the scores on the linear combination of
the responses that contributes most to the multivariate test of that effect, together with the
weights for the responses. We use candiscList() to calculate the canonical analyses for all
terms in Hern.mod.

> Hern.canL <- candiscList(Hern.mod)

1D canonical discriminant plots for all terms can be obtained interactively with a menu,
simply by plotting the Hern.canL object.

> plot(Hern.canL)

Plots for separate terms are produced by the lines below, and shown in Figure 19 and Fig-
ure 20.

> plot(Hern.canL, term="pstat")
> plot(Hern.canL, term="build")
> plot(Hern.canL, term="age")
> plot(Hern.canL, term="cardiac")

In these plots, the canonical scores panel shows the linear combinations of the response
variables which have the largest possible R2. Better outcomes correspond to numerically
smaller canonical scores. The arrows in the structure panel are proportional to the canonical
weights.

These plots provide simple interpretations of the results for the canonical combinations
of the responses. Better physical status, smaller body build, lower age and absence of cardiac
complications are all positively related to better outcomes.

25



LeaveCondition
(leave)

1

3

+

Error

agesex

pstat

build

cardiac

resp

Regr

●

●

f

m +

Error

age

sex

pstat

build

cardiac

resp

Regr

●

●

f

m

+

Error

age

sex

pstat

build

cardiac

resp

Regr

●

● f
m NursingCare

(nurse)

3

5

+

Error

age

sex

pstat
build

cardiac
resp

Regr

●

● f
m

+

Error

age

sex

pstat

build

cardiac

resp

Regr

●
●

f
m +

Error

age

sex

pstat

build

cardiac

resp

Regr

●
●

f
m LengthOfStay

(los)

0

35

Figure 18: HE pairs plot for Hernior data

2.3 Grades in a Sociology Course

The data set SocGrades contains four outcome measures on student performance in an in-
troductory sociology course together with six potential predictors. These data were used
by Marascuilo and Levin (1983) for an example of canonical correlation analysis, but are
also suitable as examples of multivariate multiple regression, MANOVA, MANCOVA and
step-down analysis in multivariate linear models.

The outcome measures used here are three test scores during the course, midterm1,
midterm2, final, and a course evaluation (eval).2 Predictor variables are student’s so-
cial class (class, an ordered factor with levels 1 > 2 > 3) sex, grade point average (gpa),
College Board test scores (boards), previous high school unit in sociology? (hssoc: no, yes),
and score on a course pretest (pretest).

The basic MvLM is fit below as grades.mod.

> data(SocGrades)
> grades.mod <- lm(cbind(midterm1, midterm2, final, eval) ~

2It is arguable that the students’ course evaluation should not be considered a response variable here. It

could be used as a predictor in a follow-up, step-down analysis, which would address the separate question of

whether the effects on exam grades remain, when eval is controlled for.
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Figure 19: 1D Canonical discriminant plots for pstat and build. The canonical scores are
such that better outcomes are associated with smaller scores.
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Figure 20: 1D Canonical discriminant plots for age and cardiac.

class + sex + gpa + boards + hssoc + pretest, data=SocGrades)
> Anova(grades.mod, test="Roy")

Type II MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

class 2 1.567 11.75 4 30 7.3e-06 ***
sex 1 0.553 4.01 4 29 0.0104 *
gpa 1 1.208 8.76 4 29 9.2e-05 ***
boards 1 0.731 5.30 4 29 0.0025 **
hssoc 1 0.035 0.25 4 29 0.9052
pretest 1 0.313 2.27 4 29 0.0859 .
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---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

In both univariate and multivariate response models, it is often useful to screen for higher-
order terms (interactions, non-linear predictors). This can most easily be done using up-

date(), as we do below. First, try the extended model with all pairwise interactions of the
predictors.

> grades.mod2 <- update(grades.mod, . ~ .^2)
> Anova(grades.mod2, test="Roy")

Type II MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

class 2 2.817 7.04 4 10 0.0058 **
sex 1 0.487 1.09 4 9 0.4152
gpa 1 1.998 4.49 4 9 0.0286 *
boards 1 2.338 5.26 4 9 0.0183 *
hssoc 1 0.281 0.63 4 9 0.6522
pretest 1 0.510 1.15 4 9 0.3946
class:sex 2 2.039 5.10 4 10 0.0168 *
class:gpa 2 0.982 2.45 4 10 0.1137
class:boards 2 0.522 1.31 4 10 0.3321
class:hssoc 2 0.356 0.89 4 10 0.5041
class:pretest 2 1.005 2.51 4 10 0.1082
sex:gpa 1 0.269 0.60 4 9 0.6694
sex:boards 1 0.184 0.41 4 9 0.7944
sex:hssoc 1 0.909 2.04 4 9 0.1714
sex:pretest 1 0.885 1.99 4 9 0.1795
gpa:boards 1 0.447 1.00 4 9 0.4537
gpa:hssoc 1 0.596 1.34 4 9 0.3269
gpa:pretest 1 0.472 1.06 4 9 0.4291
boards:hssoc 1 0.353 0.80 4 9 0.5573
boards:pretest 1 0.705 1.59 4 9 0.2593
hssoc:pretest 1 1.464 3.29 4 9 0.0635 .
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

In the results above, only the interaction of class:sex is significant, and the main effects of
hssoc and pretest remain insignificant. A revised model to explore is grades.mod3,

> grades.mod3 <- update(grades.mod, . ~ . + class:sex - hssoc - pretest)
> Anova(grades.mod3, test="Roy")

Type II MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

class 2 1.588 11.91 4 30 6.5e-06 ***
sex 1 0.575 4.17 4 29 0.00864 **
gpa 1 1.434 10.40 4 29 2.4e-05 ***
boards 1 0.895 6.49 4 29 0.00074 ***
class:sex 2 0.450 3.38 4 30 0.02143 *
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

A pairwise HE plot for all responses (Figure 21) shows that nearly all effects are in
the expected directions: higher gpa, boards, class leads to better performance on most
outcomes. The interaction of class:sex seems to be confined largely to midterm1.

> pairs(grades.mod3)

These effects are easier to appreciate for the three exam grades jointly in a 3D HE plot.
A snapshot is shown in Figure 22.

> heplot3d(grades.mod3, wire=FALSE)
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Figure 21: HE pairs plot for SocGrades

Interactive rotation of this plot shows that the effect of class is only two dimensional, and
of these, one is very small. The major axis of the class ellipsoid is aligned with increasing
performance on all three grades, with the expected ordering of the three social classes.

The representation of these effects in canonical space is particularly useful here. Again,
use candiscList() to compute the canonical decompositions for all terms in the model, and
extract the canonical R2 from the terms in the result.

> # calculate canonical results for all terms
> grades.can <- candiscList(grades.mod3)
> # extract canonical R^2s
> unlist(lapply(grades.can, function(x) x$canrsq))

class1 class2 sex gpa boards class:sex1 class:sex2
0.613620 0.024186 0.365269 0.589145 0.472268 0.310461 0.132931

We use heplot() on the "candiscList" object to show the effects of class in canonical
space, giving Figure 23.

> # plot class effect in canonical space
> op <- par(xpd=TRUE)
> heplot(grades.can, term="class", scale=4, fill=TRUE, var.col="black", var.lwd=2)
> par(op)
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Figure 22: 3D HE plot for SocGrades, model grades.mod3

It can be seen in Figure 23 that nearly all variation in exam performance due to class
is aligned with the first canonical dimension. The three tests and course evaluation all have
similar weights on this dimension, but the course evaluation differs from the rest along a
second, very small dimension.

1D plots of the canonical scores for other effects in the model are also of interest, and
provide simple interpretations of these effects on the response variables. The statements
below produce the plots shown in Figure 24.

> plot(grades.can, term="sex")
> plot(grades.can, term="gpa")

It is readily seen that males perform better overall, but the effect of sex is strongest for the
midterm2. As well, increasing course performance on tests is strongly associated with gpa.
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Figure 24: 1D Canonical discriminant plots for sex and gpa. Higher canonical scores reflect
better course performance.
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