
Using the package glmBfp:
a binary regression example.

Daniel Sabanés Bové

11th April 2016

This short vignette shall introduce into the usage of the package glmBfp. For more
information on the methodology, see Sabanés Bové and Held (2011). There you can also
find the references for the other tools mentioned here.

If you have any questions or critique concerning the package, write an email to me:
daniel.sabanesbove@ifspm.uzh.ch. Many thanks in advance!

0.1 Pima Indians diabetes data

We will have a look at the Pima Indians diabetes data, which is available in the package
MASS:

> library(MASS)

> pima <- rbind(Pima.tr, Pima.te)

> pima$hasDiabetes <- as.numeric(pima$type == "Yes")

> pima.nObs <- nrow(pima)

Setup For n = 532 women of Pima Indian heritage, seven possible predictors for the
presence of diabetes are recorded. We would like to investigate with a binary regression,
which of them are relevant, and what form the statistical association has – is it a linear
effect, or rather a nonlinear effect? Here we will model possible nonlinear effects with
the fractional polynomials.

First, we need to decide on the prior distributions to use. We are going to use the
generalised hyper-g priors for GLMs (Sabanés Bové and Held, 2011). They are automatic
and are supposed to yield reasonable results. We only need to specify which hyper-prior
to put on the factor g. One possible choice is the Zellner-Siow hyper-prior which says
g ∼ IG(1/2, n/2):

> library(glmBfp)

> ## define the prior distributions for g which we are going to use:

> prior <- InvGammaGPrior(a=1/2,

+ b=pima.nObs/2)

> ## (the warning can be ignored)

This corresponds to the F1 prior in Sabanés Bové and Held (2011). Another possible
choice is the hyper-g/n prior. For this there is no special constructor function, instead
you can directly specify the log prior density, as follows:

> ## You may also use the hyper-g/n prior:

> prior.f2 <- CustomGPrior(logDens=function(g)

+ - log(pima.nObs) - 2 * log(1 + g / pima.nObs))

Stochastic model search Next, we will do a stochastic search on the (very large) model
space to find “good” models. Here we have to decide on the model prior, and in this
example we use the sparse type which was also used in the paper. We use a chainlength

2

mailto:daniel.sabanesbove@ifspm.uzh.ch

of 100, which is very small but enough for illustration purposes (usually one should use at
least 10 000 as a rule of thumb), and save all models (in general nModels is the number of
models which are saved from all visited models). Finally, we decide that we do not want
to use OpenMP acceleration (this would parallelise loops over all observations on all
cores of your processor) and that we want to do higher order correction for the Laplace
approximations. In order to be able to reproduce the analysis, it is advisable to set a
seed for the random number generator before starting the stochastic search.

> set.seed(102)

> time.pima <-

+ system.time(models.pima <-

+ glmBayesMfp(type ~

+ bfp(npreg) +

+ bfp(glu) +

+ bfp(bp) +

+ bfp(skin) +

+ bfp(bmi) +

+ bfp(ped) +

+ bfp(age),

+ data=pima,

+ family=binomial("logit"),

+ priorSpecs=

+ list(gPrior=prior,

+ modelPrior="sparse"),

+ nModels=1e3L,

+ chainlength=1e1L,

+ method="sampling",

+ useOpenMP=FALSE,

+ higherOrderCorrection=TRUE))

Starting sampler...

0%__100%

Number of non-identifiable model proposals: 0

Number of total cached models: 9

Number of returned models: 9

> time.pima

user system elapsed

0.364 0.012 0.385

> attr(models.pima, "numVisited")

[1] 9

3

Wee see that the search took 0 seconds, and 9 models were found. Now, if we want
to have a table of the found models, with their posterior probability, the log marginal
likelihood, the log prior probability, and the powers for every covariate the and the
number of times that the sampler encountered that model:

> table.pima <- as.data.frame(models.pima)

> table.pima

posterior logMargLik logPrior age bmi bp glu npreg ped skin

1 5.752526e-01 -265.8779 -11.849169 1 -0.5

2 4.036782e-01 -266.2321 -11.849169 2 -0.5

3 7.971175e-03 -270.1569 -11.849169 2 3

4 6.638447e-03 -268.2604 -13.928611 0 2 -0.5

5 6.134410e-03 -272.4983 -9.769728 2

6 3.250886e-04 -273.3564 -11.849169 3 2

7 2.089908e-20 -310.6396 -11.849169 2 -0.5

8 2.131992e-23 -317.5274 -11.849169 2 3

9 2.726801e-31 -339.8609 -7.690286

Note that while frequency refers to the frequency of the models in the sampling chain,
thus providing a Monte Carlo estimate of the posterior model probabilities, posterior
refers to the renormalised posterior model probabilities. The latter has the advantage
that ratios of posterior probabilities between any two models are exact, while the former
is unbiased (but obviously has larger variance).

Inclusion probabilities The estimated marginal inclusion probabilities for all covariates
are also saved:

> round(attr(models.pima, "inclusionProbs"),2)

age bmi bp glu npreg ped skin

0.00 0.00 0.01 1.00 0.00 0.00 0.99

Sampling model parameters If we now want to look at the estimated covariate effects
in the estimated MAP model which has the configuration given in the last seven columns
of table.pima, then we first need to generate parameter samples from that model:

> ## MCMC settings

> mcmcOptions <- McmcOptions(iterations=1e4L,

+ burnin=1e3L,

+ step=2L)

> ## get samples from the MAP model

> set.seed(634)

> mapSamples <- sampleGlm(models.pima[1L],

+ mcmc=mcmcOptions,

+ useOpenMP=FALSE)

4

Taking the linear approximation method

0%__100%

--

Finished MCMC simulation with acceptance ratio 0.868

With the function McmcOptions, we have defined an S4 object of MCMC settings,
comprising the number of iterations, the length of the burn-in, the thinning step (here
save every second iteration), here the acceptance rate was 0.87). Note that you can also
get predictive samples for new data points via the newdata option of sampleGlm. The
result mapSamples has the following structure:

> str(mapSamples)

List of 5

$ tbf : logi FALSE

$ acceptanceRatio: num 0.868

$ logMargLik :List of 5

..$ estimate : Named num -266

.. ..- attr(*, "names")= chr "numeratorTerms"

..$ standardError : num [1, 1] 0.00237

..$ numeratorTerms : num [1:4500] 0.542 0.657 0.664 0.619 0.559 ...

..$ denominatorTerms : num [1:4500] 1 1 0.989 1 1 ...

..$ highDensityPointLogUnPosterior: num -266

$ coefficients : num [1:3, 1:4500] -0.932 4.211 -5.46 -0.827 3.745 ...

$ samples :Formal class 'GlmBayesMfpSamples' [package "glmBfp"] with 8 slots

.. ..@ fitted : num [1:532, 1:4500] -2.29 2.55 -2.11 1.66 -1.6 ...

..- attr(*, "dimnames")=List of 2

..$: chr [1:532] "1" "2" "3" "4" ...

..$: NULL

.. ..@ predictions : logi[0 , 0]

.. ..@ fixed : num [1:4500] -0.932 -0.827 -0.932 -0.936 -1.073 ...

.. ..@ z : num [1:4500] 5.32 5.44 7.19 5.08 5.57 ...

.. ..@ bfpCurves :List of 2

..$ glu : num [1:327, 1:4500] -3.05 -3.02 -3.01 -2.99 -2.96 ...

..- attr(*, "scaledGrid")= num [1:327, 1] 0.56 0.567 0.57 0.574 0.581 ...

..- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr "glu"

..- attr(*, "whereObsVals")= int [1:532] 62 318 40 251 113 88 55 313 197 163 ...

..$ skin: num [1:251, 1:4500] -3.67 -3.47 -3.28 -3.25 -3.11 ...

..- attr(*, "scaledGrid")= num [1:251, 1] 0.7 0.746 0.791 0.8 0.837 ...

..- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr "skin"

5

..- attr(*, "whereObsVals")= int [1:532] 67 83 108 115 57 63 76 28 25 95 ...

.. ..@ ucCoefs : list()

.. ..@ shiftScaleMax: num [1:7, 1:4] 0 0 0 0 1 0 0 10 100 100 ...

..- attr(*, "dimnames")=List of 2

..$: chr [1:7] "age" "bmi" "bp" "glu" ...

..$: chr [1:4] "shift" "scale" "maxDegree" "cardPowerset"

.. ..@ nSamples : int 4500

It is a list with the acceptanceRatio of the Metropolis-Hastings proposals, an MCMC
estimate for the log marginal likelihood including an associated standard error (logMargLik),
the coefficients samples of the model, and an S4 object samples. This S4 object in-
cludes the fitted samples on the linear predictor scale (in our case on the log Odds
Ratio scale), possibly predictions samples, samples of the intercept (fixed), samples
of z = log(g), samples of the fractional polynomial curves (bfpCurves), coefficients of
uncertain but fixed form covariates (ucCoefs), the shifts and scales applied to the ori-
ginal covariates (shiftScaleMax) and the number of samples (nSamples). You can read
more details on the results on the help page by typing ?"GlmBayesMfpSamples-class"

in R.
If we wanted to get posterior fitted values on the probability scale, we can use the

following code:

> mapFit <- rowMeans(plogis(mapSamples$samples@fitted))

> head(mapFit)

1 2 3 4 5 6

0.1017081 0.8967206 0.1096366 0.7864968 0.1794264 0.1412198

We can also analyse the MCMC output in greater detail by applying the functions in
the coda package:

> library(coda)

> coefMcmc <- mcmc(data=t(mapSamples$coefficients),

+ start=mcmcOptions@burnin + 1,

+ thin=mcmcOptions@step)

> str(coefMcmc)

mcmc [1:4500, 1:3] -0.932 -0.827 -0.932 -0.936 -1.073 ...

- attr(*, "mcpar")= num [1:3] 1001 9999 2

> ## standard summary table for the coefficients:

> summary(coefMcmc)

Iterations = 1001:9999

Thinning interval = 2

Number of chains = 1

6

Sample size per chain = 4500

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

[1,] -0.9298 0.1144 0.001705 0.001812

[2,] 3.8503 0.3963 0.005907 0.006548

[3,] -4.0626 1.0093 0.015046 0.017079

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

var1 -1.158 -1.008 -0.929 -0.8514 -0.7113

var2 3.085 3.581 3.846 4.0998 4.6522

var3 -6.053 -4.736 -4.057 -3.3781 -2.1071

> autocorr(coefMcmc)

, , 1

[,1] [,2] [,3]

Lag 0 1.000000000 -0.198545301 0.22364820

Lag 2 0.060585352 -0.021893505 0.02726208

Lag 10 -0.009556659 0.011005546 0.02048678

Lag 20 -0.008033578 0.001619819 -0.02348717

Lag 100 0.009020242 -0.025143099 -0.01664317

, , 2

[,1] [,2] [,3]

Lag 0 -0.198545301 1.000000000 0.033350565

Lag 2 -0.015649028 0.102578846 -0.011644669

Lag 10 -0.006802564 -0.007056528 -0.009870305

Lag 20 0.025457688 -0.016328556 -0.004131432

Lag 100 0.010054085 0.004816710 0.006559927

, , 3

[,1] [,2] [,3]

Lag 0 0.22364820 0.0333505648 1.0000000000

Lag 2 0.05308624 0.0007788738 0.0863690518

Lag 10 0.01053958 -0.0013760573 0.0004120856

Lag 20 -0.02397061 0.0008594713 -0.0206584864

Lag 100 -0.02560623 -0.0044481063 -0.0312199772

7

> ## etc.

>

> plot(coefMcmc)

2000 4000 6000 8000 10000

−
1.

2
−

0.
8

Iterations

Trace of var1

−1.4 −1.2 −1.0 −0.8 −0.6 −0.4

0.
0

1.
5

3.
0

Density of var1

N = 4500 Bandwidth = 0.02254

2000 4000 6000 8000 10000

2.
5

3.
5

4.
5

Iterations

Trace of var2

2.5 3.0 3.5 4.0 4.5 5.0 5.5

0.
0

0.
4

0.
8

Density of var2

N = 4500 Bandwidth = 0.07638

2000 4000 6000 8000 10000

−
7

−
4

−
1

Iterations

Trace of var3

−8 −6 −4 −2 0

0.
0

0.
2

0.
4

Density of var3

N = 4500 Bandwidth = 0.1989

> ## samples of z:

> zMcmc <- mcmc(data=mapSamples$samples@z,

+ start=mcmcOptions@burnin + 1,

+ thin=mcmcOptions@step)

> plot(zMcmc)

> ## etc.

8

2000 6000 10000

4
6

8
10

Iterations

Trace of var1

4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

Density of var1

N = 4500 Bandwidth = 0.1785

Curve estimates Now we can use the samples to plot the estimated effects of the MAP
model covariates, with the plotCurveEstimate function. For example:

> plotCurveEstimate(termName="skin",

+ samples=mapSamples$samples)

9

20 40 60 80 100

−
4

−
3

−
2

−
1

0
1

skin

A
ve

ra
ge

 p
ar

tia
l p

re
di

ct
or

 g
(s

ki
n)

 a
fte

r
th

e
tr

an
sf

or
m

 s
ki

n
←

sk
in

÷
10

Model averaging Model averaging works in principle similar to sampling from a single
model, but multiple model configurations are supplied and their respective log posterior
probabilities. For example, if we wanted to average the top three models found, we
would do the following:

> set.seed(312)

> bmaSamples <-

+ sampleBma(models.pima[1:3],

+ mcmc=mcmcOptions,

+ useOpenMP=FALSE,

+ nMargLikSamples=1000)

10

Starting sampling ...

Now at model 1 ...

Taking the linear approximation method

0%__100%

--

Finished MCMC simulation with acceptance ratio 0.875

Now at model 2 ...

Taking the linear approximation method

0%__100%

Finished MCMC simulation with acceptance ratio 0.864

Now at model 3 ...

Taking the linear approximation method

0%__100%

--

Finished MCMC simulation with acceptance ratio 0.886

> ## look at the list element names:

> names(bmaSamples)

[1] "modelData" "samples"

> ## now we can see how close the MCMC estimates ("margLikEstimate")

> ## are to the ILA estimates ("logMargLik") of the log marginal likelihood:

> bmaSamples$modelData[, c("logMargLik", "margLikEstimate")]

logMargLik margLikEstimate

1 -265.8779 -265.8792

2 -266.2321 -266.2333

3 -270.1569 -270.1514

> ## the "samples" list is again of class "GlmBayesMfpSamples":

> class(bmaSamples$samples)

[1] "GlmBayesMfpSamples"

attr(,"package")

[1] "glmBfp"

Then internally, first the models are sampled, and for each sampled model so many
samples are drawn as determined by the model frequency in the model average sample.
The result is a list with two elements: modelData is similar to the table.pima, and
contains in addition to that the BMA probability and frequency in the sample, the
MCMC acceptance ratios (which should be high). On the second element samples,
which is again of class GlmBayesMfpSamples, the above presented functions can again
be applied (e.g. plotCurveEstimate).

11

Bibliography

D. Sabanés Bové and L. Held. Hyper-g priors for generalized linear models. 6(3):387–410,
2011. doi: 10.1214/11-BA615. URL http://ba.stat.cmu.edu/abstracts/Sabanes.

php.

12

http://ba.stat.cmu.edu/abstracts/Sabanes.php
http://ba.stat.cmu.edu/abstracts/Sabanes.php

	Pima Indians diabetes data

