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Abstract

This vignette is a slightly modified version of Hofner et al. (2015b) which was accepted
for publication in the Journal of Statistical Software. Please cite that article when
using the package gamboostLSS in your work.

Generalized additive models for location, scale and shape are a flexible class of regres-
sion models that allow to model multiple parameters of a distribution function, such as
the mean and the standard deviation, simultaneously. With the R package gamboostLSS,
we provide a boosting method to fit these models. Variable selection and model choice
are naturally available within this regularized regression framework. To introduce and
illustrate the R package gamboostLSS and its infrastructure, we use a data set on stunted
growth in India. In addition to the specification and application of the model itself, we
present a variety of convenience functions, including methods for tuning parameter selec-
tion, prediction and visualization of results. The package gamboostLSS is available from
CRAN (http://cran.r-project.org/package=gamboostLSS).

Keywords: additive models, prediction intervals, high-dimensional data.

1. Introduction

Generalized additive models for location, scale and shape (GAMLSS) are a flexible statis-
tical method to analyze the relationship between a response variable and a set of predictor
variables. Introduced by Rigby and Stasinopoulos (2005), GAMLSS are an extension of the
classical GAM (generalized additive model) approach (Hastie and Tibshirani 1990). The main
difference between GAMs and GAMLSS is that GAMLSS do not only model the conditional
mean of the outcome distribution (location) but several of its parameters, including scale
and shape parameters (hence the extension “LSS”). In Gaussian regression, for example, the
density of the outcome variable Y conditional on the predictors X may depend on the mean
parameter µ, and an additional scale parameter σ, which corresponds to the standard devia-
tion of Y |X. Instead of assuming σ to be fixed, as in classical GAMs, the Gaussian GAMLSS
regresses both parameters on the predictor variables,

µ = E(y |X) = ηµ = βµ,0 +
∑
j

fµ,j(xj), (1)

log(σ) = log(
√
VAR(y |X)) = ησ = βσ,0 +

∑
j

fσ,j(xj), (2)

where ηµ and ησ are additive predictors with parameter specific intercepts βµ,0 and βσ,0,

http://cran.r-project.org/package=gamboostLSS
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and functions fµ,j(xj) and fσ,j(xj), which represent the effects of predictor xj on µ and σ,
respectively. In this notation, the functional terms f(·) can denote various types of effects
(e.g., linear, smooth, random).

In our case study, we will analyze the prediction of stunted growth for children in India via
a Gaussian GAMLSS. The response variable is a stunting score, which is commonly used to
relate the growth of a child to a reference population in order to assess effects of malnutrition
in early childhood. In our analysis, we model the expected value (µ) of this stunting score
and also its variability (σ) via smooth effects for mother- or child-specific predictors, as well
as a spatial effect to account for the region of India where the child is growing up. This way,
we are able to construct point predictors (via ηµ) and additionally child-specific prediction
intervals (via ηµ and ησ) to evaluate the individual risk of stunted growth.

In recent years, due to their versatile nature, GAMLSS have been used to address research
questions in a variety of fields. Applications involving GAMLSS range from the normalization
of complementary DNA microarray data (Khondoker et al. 2009) and the analysis of flood
frequencies (Villarini et al. 2009) to the development of rainfall models (Serinaldi and Kilsby
2012) and stream-flow forecasting models (van Ogtrop et al. 2011). The most prominent
application of GAMLSS is the estimation of centile curves, e.g., for reference growth charts
(de Onis 2006; Borghi et al. 2006; Kumar et al. 2013). The use of GAMLSS in this context
has been recommended by the World Health Organization (see Rigby and Stasinopoulos 2014,
and the references therein).

Classical estimation of a GAMLSS is based on backfitting-type Gauss-Newton algorithms with
AIC-based selection of relevant predictors. This strategy is implemented in the R (R Core
Team 2014) package gamlss (Rigby and Stasinopoulos 2005; Stasinopoulos and Rigby 2007,
2014a), which provides a great variety of functions for estimation, hyper-parameter selection,
variable selection and hypothesis testing in the GAMLSS framework.

In this article we present the R package gamboostLSS (Hofner et al. 2015a), which is designed
as an alternative to gamlss for high-dimensional data settings where variable selection is of
major importance. Specifically, gamboostLSS implements the gamboostLSS algorithm, which
is a new fitting method for GAMLSS that was recently introduced by Mayr et al. (2012a).
The gamboostLSS algorithm uses the same optimization criterion as the Gauss-Newton type
algorithms implemented in the package gamlss (namely, the log-likelihood of the model un-
der consideration) and hence fits the same type of statistical model. In contrast to gamlss,
however, the gamboostLSS package operates within the component-wise gradient boosting
framework for model fitting and variable selection (Bühlmann and Yu 2003; Bühlmann and
Hothorn 2007). As demonstrated in Mayr et al. (2012a), replacing Gauss-Newton optimiza-
tion by boosting techniques leads to a considerable increase in flexibility: Apart from being
able to fit basically any type of GAMLSS, gamboostLSS implements an efficient mechanism
for variable selection and model choice. As a consequence, gamboostLSS is a convenient
alternative to the AIC-based variable selection methods implemented in gamlss. The lat-
ter methods can be unstable, especially when it comes to selecting possibly different sets of
variables for multiple distribution parameters. Furthermore, model fitting via gamboostLSS
is also possible for high-dimensional data with more candidate variables than observations
(p > n), where the classical fitting methods become unfeasible.

The gamboostLSS package is a comprehensive implementation of the most important is-
sues and aspects related to the use of the gamboostLSS algorithm. The package is avail-
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able on CRAN (http://cran.r-project.org/package=gamboostLSS). Current develop-
ment versions are hosted on GitHub (https://github.com/hofnerb/gamboostLSS). As will
be demonstrated in this paper, the package provides a large number of response distributions
(e.g., distributions for continuous data, count data and survival data, including all distri-
butions currently available in the gamlss framework; see Stasinopoulos and Rigby 2014b).
Moreover, users of gamboostLSS can choose among many different possibilities for modeling
predictor effects. These include linear effects, smooth effects and trees, as well as spatial and
random effects, and interaction terms.

After starting with a toy example (Section 2) for illustration, we will provide a brief theoretical
overview of GAMLSS and component-wise gradient boosting (Section 3). In Section 4, we
will introduce the india data set, which is shipped with the R package gamboostLSS. We
present the infrastructure of gamboostLSS, discuss model comparison methods and model
tuning, and will show how the package can be used to build regression models in the GAMLSS
framework (Section 5). In particular, we will give a step by step introduction to gamboostLSS
by fitting a flexible GAMLSS model to the india data. In addition, we will present a variety
of convenience functions, including methods for the selection of tuning parameters, prediction
and the visualization of results (Section 5.6).

2. A toy example

Before we discuss the theoretical aspects of the gamboostLSS algorithm and the details of
the implementation, we present a short, illustrative toy example. This highlights the ease of
use of the gamboostLSS package in simple modeling situations. Before we start, we load the
package

R> library("gamboostLSS")

Note that gamboostLSS 1.2-0 or newer is needed. We simulate data from a heteroscedastic
normal distribution, i.e., both the mean and the variance depend on covariates:

R> set.seed(1907)

R> n <- 150

R> x1 <- rnorm(n)

R> x2 <- rnorm(n)

R> x3 <- rnorm(n)

R> toydata <- data.frame(x1 = x1, x2 = x2, x3 = x3)

R> toydata$y <- rnorm(n, mean = 1 + 2 * x1 - x2,

+ sd = exp(0.5 - 0.25 * x1 + 0.5 * x3))

Next we fit a linear model for location, scale and shape to the simulated data

R> lmLSS <- glmboostLSS(y ~ x1 + x2 + x3, data = toydata)

and extract the coefficients using coef(lmLSS). When we add the offset (i.e., the starting
values of the fitting algorithm) to the intercept, we obtain

R> coef(lmLSS, off2int = TRUE)

http://cran.r-project.org/package=gamboostLSS
https://github.com/hofnerb/gamboostLSS
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$mu

(Intercept) x1 x2

0.8139756 1.6411143 -0.3905382

$sigma

(Intercept) x1 x2 x3

0.62351136 -0.22308703 -0.02128006 0.30850745

Usually, model fitting involves additional tuning steps, which are skipped here for the sake
of simplicity (see Section 5.5 for details). Nevertheless, the coefficients coincide well with
the true effects, which are βµ = (1, 2,−1, 0) and βσ = (0.5,−0.25, 0, 0.5). To get a graphical
display, we plot the resulting model

R> par(mfrow = c(1, 2), mar = c(4, 4, 2, 5))

R> plot(lmLSS, off2int = TRUE)
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Figure 1: Coefficient paths for linear LSS models, which depict the change of the coefficients
over the iterations of the algorithm.

To extract fitted values for the mean, we use the function fitted(, parameter = "mu").
The results are very similar to the true values:

R> muFit <- fitted(lmLSS, parameter = "mu")

R> rbind(muFit, truth = 1 + 2 * x1 - x2)[, 1:5]

1 2 3 4 5

muFit -3.243757 -0.6727116 0.8922116 1.049360 0.8499387

truth -4.331456 -0.8519794 0.7208595 1.164517 1.1033806

The same can be done for the standard deviation, but we need to make sure that we apply
the response function (here exp(η)) to the fitted values by additionally using the option type

= "response":
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R> sigmaFit <- fitted(lmLSS, parameter = "sigma", type = "response")[, 1]

R> rbind(sigmaFit, truth = exp(0.5 - 0.25 * x1 + 0.5 * x3))[, 1:5]

[,1] [,2] [,3] [,4] [,5]

sigmaFit 2.613536 1.469919 1.503953 2.225158 2.527370

truth 2.260658 1.017549 1.221171 2.261453 2.684958

For new observations stored in a data set newData we could use predict(lmLSS, newdata =

newData) essentially in the same way. As presented in Section 5.6, the complete distribution
could also be depicted as marginal prediction intervals via the function predint().

3. Boosting GAMLSS models

GamboostLSS is an algorithm to fit GAMLSS models via component-wise gradient boosting
(Mayr et al. 2012a) adapting an earlier strategy by Schmid et al. (2010). While the concept
of boosting emerged from the field of supervised machine learning, boosting algorithms are
nowadays often applied as flexible alternative to estimate and select predictor effects in sta-
tistical regression models (statistical boosting, Mayr et al. 2014). The key idea of statistical
boosting is to iteratively fit the different predictors with simple regression functions (base-
learners) and combine the estimates to an additive predictor. In case of gradient boosting,
the base-learners are fitted to the negative gradient of the loss function; this procedure can be
described as gradient descent in function space (Bühlmann and Hothorn 2007). For GAMLSS,
we use the negative log-likelihood as loss function. Hence, the negative gradient of the loss
function equals the (positive) gradient of the log-likelihood. To avoid confusion we directly
use the gradient of the log-likelihood in the remainder of the article.

To adapt the standard boosting algorithm to fit additive predictors for all distribution param-
eters of a GAMLSS we extended the component-wise fitting to multiple parameter dimensions:
In each iteration, gamboostLSS calculates the partial derivatives of the log-likelihood func-
tion l(y,θ) with respect to each of the additive predictors ηθk , k = 1, . . . ,K. The predictors
are related to the parameter vector θ = (θk)

>
k=1,...,K via parameter-specific link functions gk,

θk = g−1k (ηθk). Typically, we have at maximum K = 4 distribution parameters (Rigby and
Stasinopoulos 2005), but in principle more are possible. The predictors are updated succes-
sively in each iteration, while the current estimates of the other distribution parameters are
used as offset values. A schematic representation of the updating process of gamboostLSS
with four parameters in iteration m+ 1 looks as follows:

∂

∂ηµ
l(y, µ̂[m] ,σ̂[m] ,ν̂[m] ,τ̂ [m])

update−→ η̂[m+1]
µ =⇒ µ̂[m+1] ,

∂

∂ησ
l(y, µ̂[m+1],σ̂[m] ,ν̂[m] ,τ̂ [m])

update−→ η̂[m+1]
σ =⇒ σ̂[m+1] ,

∂

∂ην
l(y, µ̂[m+1],σ̂[m+1],ν̂[m] ,τ̂ [m])

update−→ η̂[m+1]
ν =⇒ ν̂[m+1] ,

∂

∂ητ
l(y, µ̂[m+1],σ̂[m+1],ν̂[m+1],τ̂ [m])

update−→ η̂[m+1]
τ =⇒ τ̂ [m+1] .
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The algorithm hence circles through the different parameter dimensions: in every dimension,
it carries out one boosting iteration, updates the corresponding additive predictor and includes
the new prediction in the loss function for the next dimension.

As in classical statistical boosting, inside each boosting iteration only the best fitting base-
learner is included in the update. Typically, each base-learner corresponds to one component
of X, and in every boosting iteration only a small proportion (a typical value of the step-length

is 0.1) of the fit of the selected base-learner is added to the current additive predictor η
[m]
θk

.
This procedure effectively leads to data-driven variable selection which is controlled by the
stopping iterations mstop = (mstop,1, ...,mstop,K)>: Each additive predictor ηθk is updated
until the corresponding stopping iterations mstop,k is reached. If m is greater than mstop,k,
the kth distribution parameter dimension is no longer updated. Predictor variables that have
never been selected up to iteration mstop,k are effectively excluded from the resulting model.
The vector mstop is a tuning parameter that can, for example, be determined using multi-
dimensional cross-validation (see Section 5.5 for details). A discussion of model comparison
methods and diagnostic checks can be found in Section 5.4. The complete gamboostLSS
algorithm can be found in Appendix A and is described in detail in Mayr et al. (2012a).

Scalability of boosting algorithms One of the main advantages of boosting algorithms
in practice, besides the automated variable selection, is their applicability in situations with
more variables than observations (p > n). Despite the growing model complexity, the run
time of boosting algorithms for GAMs increases only linearly with the number of base-learners
Bühlmann and Yu (2007). An evaluation of computing times for up to p = 10000 predictors
can be found in Binder et al. (2012). In case of boosting GAMLSS, the computational com-
plexity additionally increases with the number of distribution parameters K. For an example
on the performance of gamboostLSS in case of p > n see the simulation studies provided in
Mayr et al. (2012a). To speed up computations for the tuning of the algorithm via cross-
validation or resampling, gamboostLSS incorporates parallel computing (see Section 5.5).

4. Childhood malnutrition in India

Eradicating extreme poverty and hunger is one of the Millennium Development Goals that
all 193 member states of the United Nations have agreed to achieve by the year 2015. Yet,
even in democratic, fast-growing emerging countries like India, which is one of the biggest
global economies, malnutrition of children is still a severe problem in some parts of the
population. Childhood malnutrition in India, however, is not necessarily a consequence of
extreme poverty but can also be linked to low educational levels of parents and cultural
factors (Arnold et al. 2009). Following a bulletin of the World Health Organization, growth
assessment is the best available way to define the health and nutritional status of children
(de Onis et al. 1993). Stunted growth is defined as a reduced growth rate compared to a
standard population and is considered as the first consequence of malnutrition of the mother
during pregnancy, or malnutrition of the child during the first months after birth. Stunted
growth is often measured via a Z score that compares the anthropometric measures of the
child with a reference population:

Zi =
AIi −MAI

s
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In our case, the individual anthropometric indicator (AIi) will be the height of the child i,
while MAI and s are the median and the standard deviation of the height of children in a
reference population. This Z score will be denoted as stunting score in the following. Negative
values of the score indicate that the child’s growth is below the expected growth of a child
with normal nutrition.

The stunting score will be the outcome (response) variable in our application,: we analyze
the relationship of the mother’s and the child’s body mass index (BMI) and age with stunted
growth resulting from malnutrition in early childhood. Furthermore, we will investigate re-
gional differences by including also the district of India in which the child is growing up. The
aim of the analysis is both, to explain the underlying structure in the data as well as to develop
a prediction model for children growing up in India. A prediction rule, based also on regional
differences, could help to increase awareness for the individual risk of a child to suffer from
stunted growth due to malnutrition. For an in-depth analysis on the multi-factorial nature
of child stunting in India, based on boosted quantile regression, see Fenske et al. (2011), and
Fenske et al. (2013).

The data set that we use in this analysis is based on the Standard Demographic and Health
Survey, 1998-99, on malnutrition of children in India, which can be downloaded after registra-
tion from http://www.measuredhs.com. For illustrative purposes, we use a random subset of
4000 observations from the original data (approximately 12%) and only a (very small) subset
of variables. For details on the data set and the data source see the help file of the india

data set in the gamboostLSS package and Fahrmeir and Kneib (2011).

Case study: Childhood malnutrition in India First of all we load the data sets india
and india.bnd into the workspace. The first data set includes the outcome and 5 explanatory
variables. The latter data set consists of a special boundary file containing the neighborhood
structure of the districts in India.

R> data("india")

R> data("india.bnd")

R> names(india)

[1] "stunting" "cbmi" "cage" "mbmi" "mage"

[6] "mcdist" "mcdist_lab"

The outcome variable stunting is depicted with its spatial structure in Figure 2. An overview
of the data set can be found in Table 1. One can clearly see a trend towards malnutrition in
the data set as even the 75% quantile of the stunting score is below zero. ♦

5. The package gamboostLSS

The gamboostLSS algorithm is implemented in the publicly available R add-on package gam-
boostLSS (Hofner et al. 2015a). The package makes use of the fitting algorithms and some
of the infrastructure of mboost (Bühlmann and Hothorn 2007; Hothorn et al. 2010, 2014).
Furthermore, many naming conventions and features are implemented in analogy to mboost.
By relying on the mboost package, gamboostLSS incorporates a wide range of base-learners

http://www.measuredhs.com
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Figure 2: Spatial structure of stunting in India. The raw mean per district is given in the
left figure, ranging from dark blue (low stunting score), to dark red (higher scores). The
right figure depicts the standard deviation of the stunting score in the district, ranging from
dark blue (no variation) to dark red (maximal variability). Dashed regions represent regions
without data.

Min. 25% Qu. Median Mean 75% Qu. Max.

Stunting stunting -5.99 -2.87 -1.76 -1.75 -0.65 5.64
BMI (child) cbmi 10.03 14.23 15.36 15.52 16.60 25.95
Age (child; months) cage 0.00 8.00 17.00 17.23 26.00 35.00
BMI (mother) mbmi 13.14 17.85 19.36 19.81 21.21 39.81
Age (mother; years) mage 13.00 21.00 24.00 24.41 27.00 49.00

Table 1: Overview of india data.

and hence offers a great flexibility when it comes to the types of predictor effects on the
parameters of a GAMLSS distribution. In addition to making the infrastructure available for
GAMLSS, mboost constitutes a well-tested, mature software package in the back end. For
the users of mboost, gamboostLSS offers the advantage of providing a drastically increased
number of possible distributions to be fitted by boosting.

As a consequence of this partial dependency on mboost, we recommend users of gamboostLSS
to make themselves familiar with the former before using the latter package. To make this
tutorial self-contained, we try to shortly explain all relevant features here as well. However, a
dedicated hands-on tutorial is available for an applied introduction to mboost (Hofner et al.
2014b).

5.1. Model fitting

The models can be fitted using the function glmboostLSS() for linear models. For all kinds
of structured additive models the function gamboostLSS() can be used. The function calls
are as follows:
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R> glmboostLSS(formula, data = list(), families = GaussianLSS(),

+ control = boost_control(), weights = NULL, ...)

R> gamboostLSS(formula, data = list(), families = GaussianLSS(),

+ control = boost_control(), weights = NULL, ...)

Note that here and in the remainder of the paper we sometimes focus on the most relevant
(or most interesting) arguments of a function only. Further arguments might exist. Thus, for
a complete list of arguments and their description we refer the reader to the respective help
file.

The formula can consist of a single formula object, yielding the same candidate model for
all distribution parameters. For example,

R> glmboostLSS(y ~ x1 + x2 + x3, data = toydata)

specifies linear models with predictors x1 to x3 for all GAMLSS parameters (here µ and σ
of the Gaussian distribution). As an alternative, one can also use a named list to specify
different candidate models for different parameters, e.g.,

R> glmboostLSS(list(mu = y ~ x1 + x2, sigma = y ~ x1 + x3), data = toydata)

fits a linear model with predictors x1 and x2 for the mu component and a linear model
with predictors x1 and x3 for the sigma component. As for all R functions with a formula
interface, one must specify the data set to be used (argument data). Additionally, weights
can be specified for weighted regression. Instead of specifying the argument family as in
mboost and other modeling packages, the user needs to specify the argument families, which
basically consists of a list of sub-families, i.e., one family for each of the GAMLSS distribution
parameters. These sub-families define the parameters of the GAMLSS distribution to be
fitted. Details are given in the next section.

The initial number of boosting iterations as well as the step-lengths (νsl; see Appendix A) are
specified via the function boost_control() with the same arguments as in mboost. However,
in order to give the user the possibility to choose different values for each additive predictor
(corresponding to the different parameters of a GAMLSS), they can be specified via a vector
or list. Preferably a named vector or list should be used, where the names correspond to the
names of the sub-families. For example, one can specify:

R> boost_control(mstop = c(mu = 100, sigma = 200),

+ nu = c(mu = 0.2, sigma = 0.01))

Specifying a single value for the stopping iteration mstop or the step-length nu results in equal
values for all sub-families. The defaults is mstop = 100 for the initial number of boosting
iterations and nu = 0.1 for the step-length. Additionally, the user can specify if status
information should be printed by setting trace = TRUE in boost_control. Note that the
argument nu can also refer to one of the GAMLSS distribution parameters in some families
(and is also used in gamlss as the name of a distribution parameter). In boost_control,
however, nu always represents the step-length νsl.

5.2. Distributions
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Some GAMLSS distributions are directly implemented in the R add-on package gamboost-
LSS and can be specified via the families argument in the fitting function gamboostLSS()

and glmboostLSS(). An overview of the implemented families is given in Table 2. The
parametrization of the negative binomial distribution, the log-logistic distribution and the
t distribution in boosted GAMLSS models is given in Mayr et al. (2012a). The derivation
of boosted beta regression, another special case of GAMLSS, can be found in Schmid et al.
(2013). In our case study we will use the default GaussianLSS() family to model childhood
malnutrition in India. The resulting object of the family looks as follows:

R> str(GaussianLSS(), 1)

List of 2

$ mu :Formal class 'boost_family' [package "mboost"] with 10 slots

$ sigma:Formal class 'boost_family' [package "mboost"] with 10 slots

- attr(*, "class")= chr "families"

- attr(*, "qfun")=function (p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)

- attr(*, "name")= chr "Gaussian"

We obtain a list of class "families" with two sub-families, one for the µ parameter of
the distribution and another one for the σ parameter. Each of the sub-families is of type
"boost_family" from package mboost. Attributes specify the name and the quantile function
("qfun") of the distribution.

In addition to the families implemented in the gamboostLSS package, there are many more
possible GAMLSS distributions available in the gamlss.dist package (Stasinopoulos and Rigby
2014b). In order to make our boosting approach available for these distributions as well, we
provide an interface to automatically convert available distributions of gamlss.dist to objects
of class "families" to be usable in the boosting framework via the function as.families().
As input, a character string naming the "gamlss.family", or the function itself is required.
The function as.families() then automatically constructs a "families" object for the gam-
boostLSS package. To use for example the gamma family as parametrized in gamlss.dist, one
can simply use as.families("GA") and plug this into the fitting algorithms of gamboostLSS:

R> gamboostLSS(y ~ x, families = as.families("GA"))
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Name Response µ σ ν Note

Continuous response
Gaussian GaussianLSS() cont. id log
Student’s t StudentTLSS() cont. id log log The 3rd parameter is denoted by df (degrees

of freedom).

Continuous non-negative response
Gamma GammaLSS() cont. > 0 log log

Fractions and bounded continuous response
Beta BetaLSS() ∈ (0, 1) logit log The 2nd parameter is denoted by phi.

Models for count data
Negative binomial NBinomialLSS() count log log For over-dispersed count data.
Zero inflated Poisson ZIPoLSS() count log logit For zero-inflated count data; the 2nd param-

eter is the probability parameter of the zero
mixture component.

Zero inflated neg. binomial ZINBLSS() count log log logit For over-dispersed and zero-inflated count
data; the 3rd parameter is the probability pa-
rameter of the zero mixture component.

Survival models (accelerated failure time models; see, e.g., Klein and Moeschberger 2003)
Log-normal LogNormalLSS() cont. > 0 id log All three families assume that the data are

subject to right-censoring. Therefore the
response must be a Surv() object.

Weibull WeibullLSS() cont. > 0 id log
Log-logistic LogLogLSS() cont. > 0 id log

Table 2: Overview of "families" that are implemented in gamboostLSS. For every distribution parameter the corresponding link-
function is displayed (id = identity link).
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With this interface, it is possible to apply boosting for any distribution implemented in
gamlss.dist and for all new distributions that will be added in the future. Note that one can
also fit censored or truncated distributions by using gen.cens() (from package gamlss.cens;
see Stasinopoulos et al. 2014) or gen.trun() (from package gamlss.tr; see Stasinopoulos
and Rigby 2014c), respectively. An overview of common GAMLSS distributions is given in
Appendix C. Minor differences in the model fit when applying a pre-specified distribution (e.g.,
GaussianLSS()) and the transformation of the corresponding distribution from gamlss.dist
(e.g., as.families("NO")) can be explained by possibly different offset values.

5.3. Base-learners

For the base-learners, which carry out the fitting of the gradient vectors using the covariates,
the gamboostLSS package completely depends on the infrastructure of mboost. Hence, every
base-learner which is available in mboost can also be applied to fit GAMLSS distributions via
gamboostLSS. The choice of base-learners is crucial for the application of the gamboostLSS
algorithm, as they define the type(s) of effect(s) that covariates will have on the predictors of
the GAMLSS distribution parameters. See Hofner et al. (2014b) for details and application
notes on the base-learners.

The available base-learners include simple linear models for linear effects and penalized re-
gression splines (P -splines, Eilers and Marx 1996) for non-linear effects. Spatial or other
bivariate effects can be incorporated by setting up a bivariate tensor product extension of
P-splines for two continuous variables (Kneib et al. 2009). Another way to include spatial
effects is the adaptation of Markov random fields for modeling a neighborhood structure
(Sobotka and Kneib 2012) or radial basis functions (Hofner 2011). Constrained effects such
as monotonic or cyclic effects can be specified as well (Hofner et al. 2011, 2014a). Random
effects can be taken into account by using ridge-penalized base-learners for fitting categorical
grouping variables such as random intercepts or slopes (see supplementary material of Kneib
et al. 2009).

Case study (cont’d): Childhood malnutrition in India
First, we are going to set up and fit our model. Usually, one could use bmrf(mcdist, bnd

= india.bnd) to specify the spatial base-learner using a Markov random field. However, as
it is relatively time-consuming to compute the neighborhood matrix from the boundary file
and as we need it several times, we pre-compute it once. Note that R2BayesX (Umlauf et al.
2013) needs to be loaded in order to use this function:

R> library("R2BayesX")

R> neighborhood <- bnd2gra(india.bnd)

The other effects can be directly specified without further care. We use smooth effects for the
age (mage) and BMI (mbmi) of the mother and smooth effects for the age (cage) and BMI
(cbmi) of the child. Finally, we specify the spatial effect for the district in India where mother
and child live (mcdist).

We set the options

R> ctrl <- boost_control(trace = TRUE, mstop = c(mu = 1269, sigma = 84))



Benjamin Hofner, Andreas Mayr, Matthias Schmid 13

and fit the boosting model

R> mod_nonstab <- gamboostLSS(stunting ~ bbs(mage) + bbs(mbmi) +

+ bbs(cage) + bbs(cbmi) +

+ bmrf(mcdist, bnd = neighborhood),

+ data = india,

+ families = GaussianLSS(),

+ control = ctrl)

[ 1] .................................... -- risk: 7351.327

[ 39] .................................... -- risk: 7256.697

(...)

[1'217] .................................... -- risk: 7082.747

[1'255] .............

Final risk: 7082.266

We specified the initial number of boosting iterations as mstop = c(mu = 1269, sigma =

84), i.e., we used 1269 boosting iterations for the µ parameter and only 84 for the σ param-
eter. This means that we cycle between the µ and σ parameter until we have computed 84
update steps in both sub-models. Subsequently, we update only the µ model and leave the
σ model unchanged. The selection of these tuning parameters will be discussed in the next
section. ♦

Instead of optimizing the gradients per GAMLSS parameter in each boosting iteration, one
can potentially stabilize the estimation further by standardizing the gradients in each step.
Details and an explanation are given in Appendix B.

Case study (cont’d): Childhood malnutrition in India We now refit the model
with the built-in median absolute deviation (MAD) stabilization by setting stabilization

= "MAD" in the definition of the families:

R> mod <- gamboostLSS(stunting ~ bbs(mage) + bbs(mbmi) +

+ bbs(cage) + bbs(cbmi) +

+ bmrf(mcdist, bnd = neighborhood),

+ data = india,

+ families = GaussianLSS(stabilization = "MAD"),

+ control = ctrl)

[ 1] .................................... -- risk: 7231.517

[ 39] .................................... -- risk: 7148.868

(...)

[1'217] .................................... -- risk: 7003.024
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[1'255] .............

Final risk: 7002.32

One can clearly see that the stabilization changes the model and reduces the intermediate
and final risks. ♦

5.4. Model complexity and diagnostic checks

Measuring the complexity of a GAMLSS is a crucial issue for model building and parameter
tuning, especially with regard to the determination of optimal stopping iterations for gradient
boosting (see next section). In the GAMLSS framework, valid measures of the complexity of
a fitted model are even more important than in classical regression, since variable selection
and model choice have to be carried out in several additive predictors within the same model.

In the original work by Rigby and Stasinopoulos (2005), the authors suggested to evaluate
AIC-type information criteria to measure the complexity of a GAMLSS. Regarding the com-
plexity of a classical boosting fit with one predictor, AIC-type measures are available for a
limited number of distributions (see Bühlmann and Hothorn 2007). Still, there is no com-
monly accepted approach to measure the degrees of freedom of a boosting fit, even in the
classical framework with only one additive predictor. This is mostly due to the algorithmic
nature of gradient boosting, which results in regularized model fits for which complexity is
difficult to evaluate Hastie (2007). As a consequence, the problem of deriving valid (and easy-
to-compute) complexity measures for boosting remains largely unsolved (Bühlmann et al.
2014, Sec. 4).

In view of these considerations, and because it is not possible to use the original information
criteria specified for GAMLSS in the gamboostLSS framework, Mayr et al. (2012a) suggested
to use cross-validated estimates of the empirical risk (i.e., of the predicted log-likelihood)
to measure the complexity of gamboostLSS fits. Although this strategy is computationally
expensive and might be affected by the properties of the used cross-validation technique, it is
universally applicable to all gamboostLSS families and does not rely on possibly biased estima-
tors of the effective degrees of freedom. We therefore decided to implement various resampling
procedures in the function cvrisk() to estimate model complexity of a gamboostLSS fit via
cross-validated empirical risks (see next section).

A related problem is to derive valid diagnostic checks to compare different families or link
functions. For the original GAMLSS method, Rigby and Stasinopoulos (2005) proposed to
base diagnostic checks on normalized quantile residuals. In the boosting framework, however,
residual checks are generally difficult to derive because boosting algorithms result in regu-
larized fits that reflect the trade-off between bias and variance of the effect estimators. As
a consequence, residuals obtained from boosting fits usually contain a part of the remain-
ing structure of the predictor effects, rendering an unbiased comparison of competing model
families via residual checks a highly difficult issue. While it is of course possible to com-
pute residuals from gamboostLSS models, valid comparisons of competing models are more
conveniently obtained by considering estimates of the predictive risk.

Case study (cont’d): Childhood malnutrition in India To extract the empirical
risk in the last boosting iteration (i.e., in the last step) of the model which was fitted with
stabilization (see Page 13) one can use
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R> emp_risk <- risk(mod, merge = TRUE)

R> tail(emp_risk, n = 1)

mu

7002.32

and compare it to the risk of the non-stabilized model

R> emp_risk_nonstab <- risk(mod_nonstab, merge = TRUE)

R> tail(emp_risk_nonstab, n = 1)

mu

7082.266

In this case, the stabilized model has a lower (in-bag) risk than the non-stabilized model.
Note that usually both models should be tuned before the empirical risk is compared. Here
it merely shows that the risk of the stabilized model decreases quicker.

To compare the risk on new data sets, i.e., the predictive risk, one could combine all data in
one data set and use weights that equal zero for the new data. Let us fit the model only on
a random subset of 2000 observations. To extract the risk for observations with zero weights,
we need to additionally set risk = "oobag".

R> weights <- sample(c(rep(1, 2000), rep(0, 2000)))

R> mod_subset <- update(mod, weights = weights, risk = "oobag")

Note that we could also specify the model anew via

R> mod_subset <- gamboostLSS(stunting ~ bbs(mage) + bbs(mbmi) +

+ bbs(cage) + bbs(cbmi) +

+ bmrf(mcdist, bnd = neighborhood),

+ data = india,

+ weights = weights,

+ families = GaussianLSS(),

+ control = boost_control(mstop = c(mu = 1269, sigma = 84),

+ risk = "oobag"))

To refit the non-stabilized model we use

R> mod_nonstab_subset <- update(mod_nonstab,

+ weights = weights, risk = "oobag")

Now we extract the predictive risks which are now computed on the 2000 “new” observations:

R> tail(risk(mod_subset, merge = TRUE), 1)

mu

3580.326
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R> tail(risk(mod_nonstab_subset, merge = TRUE), 1)

mu

3591.653

Again, the stabilized model has a lower predictive risk. ♦

5.5. Model tuning: Early stopping to prevent overfitting

As for other component-wise boosting algorithms, the most important tuning parameter of the
gamboostLSS algorithm is the stopping iterationmstop (here aK-dimensional vector). In some
low-dimensional settings it might be convenient to let the algorithm run until convergence
(i.e., use a large number of iterations for each of the K distribution parameters). In these
cases, as they are optimizing the same likelihood, boosting should converge to the same model
as gamlss – at least when the same penalties are used for smooth effects.

However, in most settings, where the application of boosting is favorable, it is crucial that
the algorithm is not run until convergence but some sort of early stopping is applied (Mayr
et al. 2012b). Early stopping results in shrunken effect estimates, which has the advantage
that predictions become more stable since the variance of the estimates is reduced. Another
advantage of early stopping is that gamboostLSS has an intrinsic mechanism for data-driven
variable selection, since only the best-fitting base-learner is updated in each boosting iteration.
Hence, the stopping iteration mstop,k does not only control the amount of shrinkage applied to
the effect estimates but also the complexity of the models for the distribution parameter θk.

To find the optimal complexity, the resulting model should be evaluated regarding the pre-
dictive risk on a large grid of stopping values by cross-validation or resampling methods,
using the function cvrisk(). In case of gamboostLSS, the predictive risk is computed as the
negative log likelihood of the out-of-bag sample. The search for the optimal mstop based on
resampling is far more complex than for standard boosting algorithms. Different stopping
iterations can be chosen for the parameters, thus allowing for different levels of complex-
ity in each sub-model (multi-dimensional early stopping). In the package gamboostLSS a
multi-dimensional grid can be easily created utilizing the function make.grid().

In most of the cases the µ parameter is of greatest interest in a GAMLSS model and thus more
care should be taken to accurately model this parameter. Stasinopoulos and Rigby (2014a),
the inventors of GAMLSS, stated on the help page for the function gamlss(): “Respect the
parameter hierarchy when you are fitting a model. For example a good model for µ should be
fitted before a model for σ is fitted.”. Consequently, we provide an option dense_mu_grid in
the make.grid() function that allows to have a finer grid for (a subset of) the µ parameter.
Thus, we can better tune the complexity of the model for µ which helps to avoid over- or
underfitting of the mean without relying to much on the grid. Details and explanations are
given in the following paragraphs.

Case study (cont’d): Childhood malnutrition in India We first set up a grid for
mstop values starting at 20 and going in 10 equidistant steps on a logarithmic scale to 500:

R> grid <- make.grid(max = c(mu = 500, sigma = 500), min = 20,

+ length.out = 10, dense_mu_grid = FALSE)
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Additionally, we can use the dense_mu_grid option to create a dense grid for µ. This means
that we compute the risk for all iterations mstop,µ, if mstop,µ ≥ mstop,σ and do not use the
values on the sparse grid only:

R> densegrid <- make.grid(max = c(mu = 500, sigma = 500), min = 20,

+ length.out = 10, dense_mu_grid = TRUE)

R> plot(densegrid, pch = 20, cex = 0.2,

+ xlab = "Number of boosting iterations (mu)",

+ ylab = "Number of boosting iterations (sigma)")

R> abline(0,1)

R> points(grid, pch = 20, col = "red")

A comparison and an illustration of the sparse and the dense grids can be found in Figure 3
(left). Red dots refer to all possible combinations of mstop,µ and mstop,σ on the sparse grid,
whereas the black lines refer to the additional combinations when a dense grid is used. For a
given mstop,σ, all iterations mstop,µ ≥ mstop,σ (i.e., below the bisecting line) can be computed
without additional computing time. For example, if we fit a model with mstop = c(mu = 30,

sigma = 15), all mstop combinations on the red path (Figure 3, right) are computed. Until
the point where mstop,µ = mstop,σ, we move along the bisecting line. Then we stop increasing
mstop,σ and increase mstop,µ only, i.e., we start moving along a horizontal line. Thus, all
iterations on this horizontal line are computed anyway. Note that it is quite expensive to
move from the computed model to one with mstop = c(mu = 30, sigma = 16). One cannot
simply increase mstop,σ by 1 but needs to go along the black dotted path. As the dense grid
does not increase the run time (or only marginally), we recommend to always use this option,
which is also the default.
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Figure 3: Left: Comparison between sparse grid (red) and dense µ grid (black horizontal lines
in addition to the sparse red grid). Right: Example of the path of the iteration counts.

The dense_mu_grid option also works for asymmetric grids (e.g., make.grid(max = c(mu

= 100, sigma = 200))) and for more than two parameters (e.g., make.grid(max = c(mu
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= 100, sigma = 200, nu = 20))). For an example in the latter case see the help file of
make.grid().

Now we use the dense grid for cross-validation (or subsampling to be more precise). The
computation of the cross-validated risk using cvrisk() takes more than one hour on a 64-bit
Ubuntu machine using 2 cores.

R> cores <- ifelse(grepl("linux|apple", R.Version()$platform), 2, 1)

R> if (!file.exists("cvrisk/cvr_india.Rda")) {

+ set.seed(1907)

+ folds <- cv(model.weights(mod), type = "subsampling")

+ densegrid <- make.grid(max = c(mu = 5000, sigma = 500), min = 20,

+ length.out = 10, dense_mu_grid = TRUE)

+ cvr <- cvrisk(mod, grid = densegrid, folds = folds, mc.cores = cores)

+ save("cvr", file = "cvrisk/cvr_india.Rda", compress = "xz")

+ }

By using more computing cores or a larger computer cluster the speed can be easily increased.
The usage of cvrisk() is practically identical to that of cvrisk() from package mboost. See
Hofner et al. (2014b) for details on parallelization and grid computing. As Windows does
not support addressing multiple cores from R, on Windows we use only one core whereas
on Unix-based systems two cores are used. We then load the pre-computed results of the
cross-validated risk:

R> load("cvrisk/cvr_india.Rda")
♦

5.6. Methods to extract and display results

In order to work with the results, methods to extract information both from boosting models
and the corresponding cross-validation results have been implemented. Fitted gamboostLSS
models (i.e., objects of type "mboostLSS") are lists of "mboost" objects. The most important
distinction from the methods implemented in mboost is the widespread occurrence of the ad-
ditional argument parameter, which enables the user to apply the function on all parameters
of a fitted GAMLSS model or only on one (or more) specific parameters.

Most importantly, one can extract the coefficients of a fitted model (coef()) or plot the effects
(plot()). Different versions of both functions are available for linear GAMLSS models (i.e.,
models of class "glmboostLSS") and for non-linear GAMLSS models (e.g., models with P-
splines). Additionally, the user can extract the risk for all iterations using the function risk().
Selected base-learners can be extracted using selected(). Fitted values and predictions can
be obtained by fitted() and predict(). For details and examples, see the corresponding
help files and Hofner et al. (2014b). Furthermore, a special function for marginal prediction
intervals is available (predint()) together with a dedicated plot function (plot.predint()).

For cross-validation results (objects of class "cvriskLSS"), there exists a function to extract
the estimated optimal number of boosting iterations (mstop()). The results can also be
plotted using a special plot() function. Hence, convergence and overfitting behavior can be
visually inspected.
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In order to increase or reduce the number of boosting steps to the appropriate number (as
e.g., obtained by cross-validation techniques) one can use the function mstop. If we want to
reduce our model, for example, to 10 boosting steps for the mu parameter and 20 steps for
the sigma parameter we can use

R> mstop(mod) <- c(10, 20)

This directly alters the object mod. Instead of specifying a vector with separate values for
each sub-family one can also use a single value, which then is used for each sub-family (see
Section 5.1).

Case study (cont’d): Childhood malnutrition in India We first inspect the cross-
validation results (see Figure 4):

R> plot(cvr)
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Figure 4: Cross-validated risk. Darker color represents higher predictive risks. The optimal
combination of stopping iterations is indicated by dashed red lines.

If the optimal stopping iteration is close to the boundary of the grid one should re-run the
cross-validation procedure with different max values for the grid and/or more grid points. This
is not the case here (Figure 4). To extract the optimal stopping iteration one can now use

R> mstop(cvr)

mu sigma

1269 84

To use the optimal model, i.e., the model with the iteration number from the cross-validation,
we set the model to these values:
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R> mstop(mod) <- mstop(cvr)

In the next step, the plot() function can be used to plot the partial effects. A partial effect
is the effect of a certain predictor only, i.e., all other model components are ignored for the
plot. Thus, the reference level of the plot is arbitrary and even the actual size of the effect
might not be interpretable; only changes and hence the functional form are meaningful. If no
further arguments are specified, all selected base-learners are plotted:

R> par(mfrow = c(2, 5))

R> plot(mod)

Special base-learners can be plotted using the argument which (to specify the base-learner)
and the argument parameter (to specify the parameter, e.g., "mu"). Partial matching is used
for which, i.e., one can specify a sub-string of the base-learners’ names. Consequently, all
matching base-learners are selected. Alternatively, one can specify an integer which indicates
the number of the effect in the model formula. Thus

R> par(mfrow = c(2, 4), mar = c(5.1, 4.5, 4.1, 1.1))

R> plot(mod, which = "bbs", type = "l")

plots all P-spline base-learners irrespective if they where selected or not. The partial effects
in Figure 5 can be interpreted as follows: The age of the mother seems to have a minor impact
on stunting for both the mean effect and the effect on the standard deviation. With increasing
BMI of the mother, the stunting score increases, i.e., the child is better nourished. At the
same time the variability increases until a BMI of roughly 25 and then decreases again. The
age of the child has a negative effect until the age of approximately 1.5 years (18 months).
The variability increases over the complete range of age. The BMI of the child has a negative
effect on stunting, with lowest variability for an BMI of approximately 16. While all other
effects can be interpreted quite easily, this effect is more difficult to interpret. Usually, one
would expect that a child that suffers from malnutrition also has a small BMI. However, the
height of the child enters the calculation of the BMI in the denominator, which means that
a lower stunting score (i.e., small height) should lead on average to higher BMI values if the
weight of a child is fixed.

If we want to plot the effects of all P-spline base-learners for the µ parameter, we can use

R> plot(mod, which = "bbs", parameter = "mu")

Instead of specifying (sub-)strings for the two arguments one could use integer values in both
cases. For example,

R> plot(mod, which = 1:4, parameter = 1)

results in the same plots.

Prediction intervals for new observations can be easily constructed by computing the quantiles
of the conditional GAMLSS distribution. This is done by plugging the estimates of the
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Figure 5: Smooth partial effects of the estimated model with the rescaled outcome. The
effects for sigma are estimated and plotted on the log-scale (see Equation 2), i.e., we plot the
predictor against log(σ̂).

distribution parameters (e.g., µ̂(xnew), σ̂(xnew) for a new observation xnew) into the quantile
function (Mayr et al. 2012a).

Marginal prediction intervals, which reflect the effect of a single predictor on the quantiles
(keeping all other variables fixed), can be used to illustrate the combined effect of this variable
on various distribution parameters and hence the shape of the distribution. For illustration
purposes we plot the influence of the children’s BMI via predint(). To obtain marginal
prediction intervals, the function uses a grid for the variable of interest, while fixing all others
at their mean (continuous variables) or modus (categorical variables).

R> plot(predint(mod, pi = c(0.8, 0.9), which = "cbmi"),

+ lty = 1:3, lwd = 3, xlab = "BMI (child)",

+ ylab = "Stunting score")

To additionally highlight observations from Greater Mumbai, we use

R> points(stunting ~ cbmi, data = india, pch = 20,

+ col = rgb(1, 0, 0, 0.5), subset = mcdist == "381")

The resulting marginal prediction intervals are displayed in Figure 6. For the interpretation
and evaluation of prediction intervals, see Mayr et al. (2012c).

For the spatial bmrf() base-learner we need some extra work to plot the effect(s). We need
to obtain the (partial) predicted values per region using either fitted() or predict():

R> fitted_mu <- fitted(mod, parameter = "mu", which = "mcdist",

+ type = "response")



22 gamboostLSS: Model Building and Variable Selection for GAMLSS

10 15 20 25

−
6

−
4

−
2

0
2

4
6

Marginal Prediction Interval(s)

BMI (child)

S
tu

nt
in

g 
sc

or
e

Figure 6: 80% (dashed) and 90% (dotted) marginal prediction intervals for the BMI of the
children in the district of Greater Mumbai (which is the region with the most observations).
For all other variables we used average values (i.e., a child with average age, and a mother
with average age and BMI). The solid line corresponds to the median prediction (which equals
the mean for symmetric distributions such as the Gaussian distribution). Observations from
Greater Mumbai are highlighted in red.

R> fitted_sigma <- fitted(mod, parameter = "sigma", which = "mcdist",

+ type = "response")

In case of bmrf() base-learners we then need to aggregate the data for multiple observations
in one region before we can plot the data. Here, one could also plot the coefficients, which
constitute the effect estimates per region. Note that this interpretation is not possible for for
other bivariate or spatial base-learners such as bspatial() or brad():

R> fitted_mu <- tapply(fitted_mu, india$mcdist, FUN = mean)

R> fitted_sigma <- tapply(fitted_sigma, india$mcdist, FUN = mean)

R> plotdata <- data.frame(region = names(fitted_mu),

+ mu = fitted_mu, sigma = fitted_sigma)

R> par(mfrow = c(1, 2), mar = c(1, 0, 2, 0))

R> plotmap(india.bnd, plotdata[, c(1, 2)], range = c(-0.62, 0.82),

+ main = "Mean", pos = "bottomright", mar.min = NULL)

R> plotmap(india.bnd, plotdata[, c(1, 3)], range = c(0.75, 1.1),

+ main = "Standard deviation", pos = "bottomright", mar.min = NULL)

Figure 7 (left) shows a clear spatial pattern of stunting. While children in the southern
regions like Tamil Nadu and Kerala as well as in the north-eastern regions around Assam
and Arunachal Pradesh seem to have a smaller risk for stunted growth, the central regions
in the north of India, especially Bihar, Uttar Pradesh and Rajasthan seem to be the most
problematic in terms of stunting due to malnutrition. Since we have also modeled the scale
of the distribution, we can gain much richer information concerning the regional distribution
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Figure 7: Spatial partial effects of the estimated model. Dashed regions represent regions
without data. Note that effect estimates for these regions exist and could be extracted.

of stunting: the regions in the south which seem to be less affected by stunting do also have
a lower partial effect with respect to the expected standard deviation (Figure 7, right), i.e.,
a reduced standard deviation compared to the average region. This means that not only the
expected stunting score is smaller on average, but that the distribution in this region is also
narrower. This leads to a smaller size of prediction intervals for children living in that area.
In contrast, the regions around Bihar in the central north, where India shares border with
Nepal, do not only seem to have larger problems with stunted growth but have a positive
partial effect with respect the scale parameter of the conditional distribution as well. This
leads to larger prediction intervals, which could imply a greater risk for very small values
of the stunting score for an individual child in that region. On the other hand, the larger
size of the interval also offers the chance for higher values and could reflect higher differences
between different parts of the population. ♦

6. Summary

The GAMLSS model class has developed into one of the most flexible tools in statistical
modeling, as it can tackle nearly any regression setting of practical relevance. Boosting
algorithms, on the other hand, are one of the most flexible estimation and prediction tools in
the toolbox of a modern statistician (Mayr et al. 2014).

In this paper, we have presented the R package gamboostLSS, which provides the first im-
plementation of a boosting algorithm for GAMLSS. Hence, beeing a combination of boosting
and GAMLSS, gamboostLSS combines a powerful machine learning tool with the world of
statistical modeling (Breiman 2001), offering the advantage of intrinsic model choice and
variable selection in potentially high-dimensional data situations. The package also combines
the advantages of both mboost (with a well-established, well-tested modular structure in the
back-end) and gamlss (which implements a large amount of families that are available via
conversion with the as.families() function).
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While the implementation in the R package gamlss (provided by the inventors of GAMLSS)
must be seen as the gold standard for fitting GAMLSS, the gamboostLSS package offers a
flexible alternative, which can be advantageous, amongst others, in following data settings:
(i) models with a large number of coefficients, where classical estimation approaches become
unfeasible; (ii) data situations where variable selection is of great interest; (iii) models where
a greater flexibility regarding the effect types is needed, e.g., when spatial, smooth, random,
or constrained effects should be included and selected at the same time.
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A. The gamboostLSS algorithm

Let θ = (θk)k=1,...,K be the vector of distribution parameters of a GAMLSS, where θk =
g−1k (ηθk) with parameter-specific link functions gk and additive predictor ηθk . The gam-
boostLSS algorithm (Mayr et al. 2012a) circles between the different distribution parameters
θk, k = 1, . . . ,K, and fits all base-learners h(·) separately to the negative partial derivatives of
the loss function, i.e., in the GAMLSS context to the partial derivatives of the log-likelihood
with respect to the additive predictors ηθk , i.e., ∂

∂ηθk
l(y,θ).

Initialize

(1) Set the iteration counter m := 0. Initialize the additive predictors η̂
[m]
θk,i
, k =

1, . . . ,K, i = 1, . . . , n, with offset values, e.g., η̂
[0]
θk,i
≡ argmax

c

∑n
i=1 l(yi, θk,i = c).

(2) For each distribution parameter θk, k = 1, . . . ,K, specify a set of base-learners:
i.e., for parameter θk by hk,1(·), . . . , hk,pk(·), where pk is the cardinality of the set
of base-learners specified for θk.

Boosting in multiple dimensions

(3) Start a new boosting iteration: increase m by 1 and set k := 0.

(4) (a) Increase k by 1.
If m > mstop,k proceed to step 4(e).
Else compute the partial derivative ∂

∂ηθk
l(y,θ) and plug in the current esti-

mates θ̂
[m−1]
i =

(
θ̂
[m−1]
1,i , . . . , θ̂

[m−1]
K,i

)
=
(
g−11 (η̂

[m−1]
θ1,i

), . . . , g−1K (η̂
[m−1]
θK,i

)
)

:

u
[m−1]
k,i =

∂

∂ηθk
l(yi,θ)

∣∣∣∣
θ=θ̂

[m−1]
i

, i = 1, . . . , n.

(b) Fit each of the base-learners contained in the set of base-learners specified for

the parameter θk in step (2) to the gradient vector u
[m−1]
k .

(c) Select the base-learner j∗ that best fits the partial-derivative vector according
to the least-squares criterion, i.e., select the base-learner hk,j∗ defined by

j∗ = argmin
1≤j≤pk

n∑
i=1

(u
[m−1]
k,i − hk,j(·))2 .

(d) Update the additive predictor ηθk as follows:

η̂
[m−1]
θk

:= η̂
[m−1]
θk

+ νsl · hk,j∗(·) ,

where νsl is a small step-length (0 < νsl � 1).

(e) Set η̂
[m]
θk

:= η̂
[m−1]
θk

.

(f) Iterate steps 4(a) to 4(e) for k = 2, . . . ,K.

Iterate

(5) Iterate steps 3 and 4 until m > mstop,k for all k = 1, . . . ,K.
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B. Data pre-processing and stabilization of gradients

As the gamboostLSS algorithm updates the parameter estimates in turn by optimizing the
gradients, it is important that these are comparable for all GAMLSS parameters. Consider
for example the standard Gaussian distribution where the gradients of the log-likelihood with
respect to ηµ and ησ are

∂

∂ηµ
l(yi, g

−1
µ (ηµ), σ̂) =

yi − ηµi
σ̂2i

,

with identity link, i.e., g−1µ (ηµ) = ηµ, and

∂

∂ησ
l(yi, µ̂, g

−1
σ (ησ)) = −1 +

(yi − µ̂i)2

exp(2ησi)
,

with log link, i.e., g−1σ (ησ) = exp(ησ).

For small values of σ̂i, the gradient vector for µ will hence inevitably become huge, while
for large variances it will become very small. As the base-learners are directly fitted to this
gradient vector, this will have a dramatic effect on convergence speed. Due to imbalances
regarding the range of ∂

∂ηµ
l(yi, µ, σ) and ∂

∂ησ
l(yi, µ, σ), a potential bias might be induced

when the algorithm becomes so unstable that it does not converge to the optimal solution (or
converges very slowly).

Consequently, one can use standardized gradients, where in each step the gradient is divided
by its median absolute deviation, i.e., it is divided by

MAD = mediani(|uk,i −medianj(uk,j)|), (3)

where uk,i is the gradient of the kth GAMLSS parameter in the current boosting step i. If
weights are specified (explicitly or implicitly as for cross-validation) a weighted median is used.
MAD-stabilization can be activated by setting the argument stabilization to "MAD" in the
fitting families (see example on p. 13). Using stabilization = "none" explicitly switches
off the stabilization. As this is the current default, this is only needed for clarity.

Another way to improve convergence speed might be to standardize the response variable
(and/or to use a larger step size νsl). This is especially useful if the range of the response
differs strongly from the range of the negative gradients. Both, the built in stabilization and
the standardization of the response are not always advised but need to be carefully considered
given the data at hand. If convergence speed is slow or if the negative gradient even starts to
become unstable, one should consider one or both options to stabilize the fit. To judge the
impact of these methods one can run the gamboostLSS algorithm using different options and
compare the results via cross-validated predictive risks (see Sections 5.4 and 5.5).
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C. Additional Families

Table 3 gives an overview of common, additional GAMLSS distributions and GAMLSS
distributions with a different parametrization than in gamboostLSS. For a comprehensive
overview see the distribution tables available at www.gamlss.org and the documentation of
the gamlss.dist package (Stasinopoulos and Rigby 2014b). Note that gamboostLSS works only
for more-parametric distributions, while in gamlss.dist also a few one-parametric distributions
are implemented. In this case the as.families() function will construct a corresponding
"boost_family" which one can use as family in mboost (a corresponding advice is given in
a warning message).

www.gamlss.org
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Name Response µ σ ν τ Note

Continuous response
Generalized t GT cont. id log log log
Box-Cox t BCT cont. id log id log
Gumbel GU cont. id log For moderately skewed data.
Reverse Gumbel RG cont. id log Extreme value distribution.

Continuous non-negative response (without censoring)
Gamma GA cont. > 0 log log Also implemented as GammaLSS() a,b.
Inverse Gamma IGAMMA cont. > 0 log log
Zero-adjusted Gamma ZAGA cont. ≥ 0 log log logit Gamma, additionally allowing for zeros.
Inverse Gaussian IG cont. > 0 log log
Log-normal LOGNO cont. > 0 log log For positively skewed data.
Box-Cox Cole and Green BCCG cont. > 0 id log id For positively and negatively skewed data.
Pareto PARETO2 cont. > 0 log log
Box-Cox power exponential BCPE cont. > 0 id log id log Recommended for child growth centiles.

Fractions and bounded continuous response
Beta BE ∈ (0, 1) logit logit Also implemented as BetaLSS() a,c.
Beta inflated BEINF ∈ [0, 1] logit logit log log Beta, additionally allowing for zeros and ones.

Models for count data
Beta binomial BB count logit log
Negative binomial NBI count log log For over-dispersed count data; also imple-

mented as NBinomialLSS() a,d.

Table 3: Overview of common, additional GAMLSS distributions that can be used via as.families() in gamboostLSS. For every
modeled distribution parameter, the corresponding link-function is displayed. a The parametrizations of the distribution functions
in gamboostLSS and gamlss.dist differ with respect to the variance. b GammaLSS(mu, sigma) has VAR(y|x) = mu2/sigma, and
as.families(GA)(mu, sigma) has VAR(y|x) = sigma2 · mu2. c BetaLSS(mu, phi) has VAR(y|x) = mu · (1 − mu) · (1 + phi)−1, and
as.families(BE)(mu, sigma) has VAR(y|x) = mu ·(1−mu) ·sigma2. d NBinomialLSS(mu, sigma) has VAR(y|x) = mu+1/sigma ·mu2,
and as.families(NBI)(mu, sigma) has VAR(y|x) = mu + sigma · mu2.
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