
Fitting distributions by MME, MGE, QME to
non-censored data

Marie Laure Delignette Muller, Christophe Dutang
2016-04-15

Contents

1 Maximum goodness-of-fit estimation (MGE) 1

2 Moment matching estimation (MME) 3

3 Quantile matching estimation (QME) 6

References 7

1 Maximum goodness-of-fit estimation (MGE)

This subsection focuses on alternative estimation methods. One of the alternative for continuous distributions
is the maximum goodness-of-fit estimation method also called minimum distance estimation method [@]. In
this package this method is proposed with eight different distances: the three classical distances defined in
Table~??, or one of the variants of the Anderson-Darling distance proposed by (Luceno {2006}) and defined
in Table~1. The right-tail AD gives more weight to the right-tail, the left-tail AD gives more weight only
to the left tail. Either of the tails, or both of them, can receive even larger weights by using second order
Anderson-Darling Statistics.
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2nd order (AD2R)

Left-tail AD ad2l =
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(AD2)
where Fi

4= F (xi); F i
4= 1− F (xi)

Table 1: Modified Anderson-Darling statistics as defined by [@Luceno06].

To fit a distribution by maximum goodness-of-fit estimation, one needs to fix the argument method to "mge"
in the call to fitdist and to specify the argument gof coding for the chosen goodness-of-fit distance. This
function is intended to be used only with continuous non-censored data.
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Maximum goodness-of-fit estimation may be useful to give more weight to data at one tail of the distribution.
In the previous example from ecotoxicology, we used a non classical distribution (the Burr distribution) to
correctly fit the empirical distribution especially on its left tail. In order to correctly estimate the 5% percentile,
we could also consider the fit of the classical lognormal distribution, but minimizing a goodness-of-fit distance
giving more weight to the left tail of the empirical distribution. In what follows, the left tail Anderson-Darling
distances of first or second order are used to fit a lognormal to ‘endosulfan} data set (see Figure~??).

library(fitdistrplus)
data("endosulfan")
ATV <-endosulfan$ATV
fendo.ln <- fitdist(ATV, "lnorm")
fendo.ln.ADL <- fitdist(ATV, "lnorm", method = "mge", gof = "ADL")
fendo.ln.AD2L <- fitdist(ATV, "lnorm", method = "mge", gof = "AD2L")
cdfcomp(list(fendo.ln, fendo.ln.ADL, fendo.ln.AD2L),

xlogscale = TRUE, ylogscale = TRUE,
main = "Fitting a lognormal distribution",
xlegend = "bottomright",
legendtext = c("MLE","Left-tail AD", "Left-tail AD 2nd order"))
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Comparing the 5% percentiles (HC5) calculated using these three fits to the one calculated from the MLE
fit of the Burr distribution, we can observe, on this example, that fitting the lognormal distribution by
maximizing left tail Anderson-Darling distances of first or second order enables to approach the value obtained
by fitting the Burr distribution by MLE.

library(actuar)
fendo.B <- fitdist(ATV, "burr", start = list(shape1 = 0.3, shape2 = 1,

rate = 1))

(HC5.estimates <- c(
empirical = as.numeric(quantile(ATV, probs = 0.05)),
Burr = as.numeric(quantile(fendo.B, probs = 0.05)$quantiles),
lognormal_MLE = as.numeric(quantile(fendo.ln, probs = 0.05)$quantiles),
lognormal_AD2 = as.numeric(quantile(fendo.ln.ADL,

probs = 0.05)$quantiles),
lognormal_AD2L = as.numeric(quantile(fendo.ln.AD2L,

probs = 0.05)$quantiles)))

## empirical Burr lognormal_MLE lognormal_AD2 lognormal_AD2L
## 0.20000000 0.29392593 0.07258961 0.19590686 0.25877232
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2 Moment matching estimation (MME)

The moment matching estimation (MME) is another method commonly used to fit parametric distributions
(Vose 2010). MME consists in finding the value of the parameter θ that equalizes the first theoretical raw
moments of the parametric distribution to the corresponding empirical raw moments as in Equation~(1):

E(Xk|θ) = 1
n

n∑
i=1

xk
i , (1)

for k = 1, . . . , d, with d the number of parameters to estimate and xi the n observations of variable X. For
moments of order greater than or equal to 2, it may also be relevant to match centered moments. Therefore,
we match the moments given in Equation~(2):

E(X|θ) = x , E
(
(X − E(X))k|θ

)
= mk, for k = 2, . . . , d, (2)

where mk denotes the empirical centered moments. This method can be performed by setting the argument
method to "mme" in the call to fitdist. The estimate is computed by a closed-form formula for the following
distributions: normal, lognormal, exponential, Poisson, gamma, logistic, negative binomial, geometric, beta
and uniform distributions. In this case, for distributions characterized by one parameter (geometric, Poisson
and exponential), this parameter is simply estimated by matching theoretical and observed means, and
for distributions characterized by two parameters, these parameters are estimated by matching theoretical
and observed means and variances (Vose 2010). For other distributions, the equation of moments is solved
numerically using the optim function by minimizing the sum of squared differences between observed and
theoretical moments (see the fitdistrplus reference manual for technical details (Delignette-Muller et al.
2014).

A classical data set from the Danish insurance industry published in (McNeil 1997) will be used to illustrate
this method. In fitdistrplus, the data set is stored in danishuni for the univariate version and contains the
loss amounts collected at Copenhagen Reinsurance between 1980 and 1990. In actuarial science, it is standard
to consider positive heavy-tailed distributions and have a special focus on the right-tail of the distributions.
In this numerical experiment, we choose classic actuarial distributions for loss modelling: the lognormal
distribution and the Pareto type II distribution (Klugman, Panjer, and Willmot 2009).

The lognormal distribution is fitted to ‘danishuni} data set by matching moments implemented as a closed-
form formula. On the left-hand graph of Figure~??, the fitted distribution functions obtained using the
moment matching estimation (MME) and maximum likelihood estimation (MLE) methods are compared.
The MME method provides a more cautious estimation of the insurance risk as the MME-fitted distribution
function (resp. MLE-fitted) underestimates (overestimates) the empirical distribution function for large
values of claim amounts.

data("danishuni")
str(danishuni)

## 'data.frame': 2167 obs. of 2 variables:
## $ Date: Date, format: "1980-01-03" "1980-01-04" ...
## $ Loss: num 1.68 2.09 1.73 1.78 4.61 ...

fdanish.ln.MLE <- fitdist(danishuni$Loss, "lnorm")
fdanish.ln.MME <- fitdist(danishuni$Loss, "lnorm", method = "mme",

order = 1:2)
cdfcomp(list(fdanish.ln.MLE, fdanish.ln.MME),

legend = c("lognormal MLE", "lognormal MME"),
main = "Fitting a lognormal distribution",
xlogscale = TRUE, datapch = 20)
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In a second time, a Pareto distribution, which gives more weight to the right-tail of the distribution, is fitted.
As the lognormal distribution, the Pareto has two parameters, which allows a fair comparison. The Burr
distribution (with its three parameters) would lead to a better fit.

We use the implementation of the actuar package providing raw and centered moments for that distribution
(in addition to d, p, q and r functions (Goulet 2012). Fitting a heavy-tailed distribution for which the first
and the second moments do not exist for certain values of the shape parameter requires some cautiousness.
This is carried out by providing, for the optimization process, a lower and an upper bound for each parameter.
The code below calls the L-BFGS-B optimization method in optim, since this quasi-Newton allows box
constraints1. We choose match moments defined in Equation~(1), and so a function for computing the
empirical raw moment (called memp in our example) is passed to fitdist. For two-parameter distributions
(i.e., d = 2),
Equations~(1) and (2) are equivalent.

library("actuar")
fdanish.P.MLE <- fitdist(danishuni$Loss, "pareto",

start = list(shape = 10, scale = 10), lower = 2+1e-6, upper = Inf)
memp <- function(x, order) sum(x^order)/length(x)
fdanish.P.MME <- fitdist(danishuni$Loss, "pareto", method = "mme",

order = 1:2, memp = "memp", start = list(shape = 10, scale = 10),
lower = c(2+1e-6, 2+1e-6), upper = c(Inf, Inf))

cdfcomp(list(fdanish.P.MLE, fdanish.P.MME),
legend = c("Pareto MLE", "Pareto MME"),
main = "Fitting a Pareto distribution",
xlogscale = TRUE, datapch = ".")

1That is what the B stands for.
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gofstat(list(fdanish.ln.MLE, fdanish.P.MLE,
fdanish.ln.MME, fdanish.P.MME),
fitnames = c("lnorm.mle", "Pareto.mle", "lnorm.mme", "Pareto.mme"))

## Goodness-of-fit statistics
## lnorm.mle Pareto.mle lnorm.mme
## Kolmogorov-Smirnov statistic 0.1374619 0.3124174 0.4367645
## Cramer-von Mises statistic 14.7911467 37.7226866 88.9503123
## Anderson-Darling statistic 87.1933309 208.3387883 416.2567475
## Pareto.mme
## Kolmogorov-Smirnov statistic 0.3700154
## Cramer-von Mises statistic 55.4266567
## Anderson-Darling statistic 281.5838880
##
## Goodness-of-fit criteria
## lnorm.mle Pareto.mle lnorm.mme Pareto.mme
## Aikake's Information Criterion 8119.795 9249.666 9791.887 9408.535
## Bayesian Information Criterion 8131.157 9261.029 9803.249 9419.897

As shown on Figure~??, MME and MLE fits are far less distant (when looking at the right-tail) for the Pareto
distribution than for the lognormal distribution on this data set. Furthermore, for these two distributions,
the MME method better fits the right-tail of the distribution from a visual point of view. This seems logical
since empirical moments are influenced by large observed values. In the previous traces, we gave the values of
goodness-of-fit statistics. Whatever the statistic considered, the MLE-fitted lognormal always provides the
best fit to the observed data.

Maximum likelihood and moment matching estimations are certainly the most commonly used method for
fitting distributions (Cullen and Frey 1999). Keeping in mind that these two methods may produce very
different results, the user should be aware of its great sensitivity to outliers when choosing the moment
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matching estimation. This may be seen as an advantage in our example if the objective is to better describe
the right tail of the distribution, but it may be seen as a drawback if the objective is different.

3 Quantile matching estimation (QME)

Fitting of a parametric distribution may also be done by matching theoretical quantiles of the parametric
distributions (for specified probabilities) against the empirical quantiles ((Tse 2009)). The equality of
theoretical and empirical qunatiles is expressed by Equation~(3) below, which is very similar to Equations~(1)
and (2):

F−1(pk|θ) = Qn,pk
(3)

for k = 1, . . . , d, with d the number of parameters to estimate (dimension of θ if there is no fixed parameters)
and Qn,pk

the empirical quantiles calculated from data for specified probabilities pk. The choice pk’s is
linked to the application. For instance, the World Health Organisation uses 3%, 15%, 50%, 85%, 97% in
its charts, therefore one could choose p1 = 50%, p2 = 15%, p3 = 85% for a three-parameter distribution.
Another relevant example is p1 = 99% when assessing the right-tail of the distribution, which is typical in
insurance/finance.

Quantile matching estimation (QME) is performed by setting the argument method to "qme" in the call
to fitdist and adding an argument probs defining the probabilities for which the quantile matching is
performed. The length of this vector must be equal to the number of parameters to estimate (as the vector
of moment orders for MME). Empirical quantiles are computed using the quantile function of the stats
package using type=7 by default (see ?quantile and (Hyndman and Fan 1996)). But the type of quantile
can be easily changed by using the qty argument in the call to the qme function.
The quantile matching is carried out numerically, by minimizing the sum of squared differences between
observed and theoretical quantiles.

fdanish.ln.QME1 <- fitdist(danishuni$Loss, "lnorm", method = "qme",
probs = c(1/3, 2/3))

fdanish.ln.QME2 <- fitdist(danishuni$Loss, "lnorm", method = "qme",
probs = c(8/10, 9/10))

cdfcomp(list(fdanish.ln.MLE, fdanish.ln.QME1, fdanish.ln.QME2),
legend = c("MLE", "QME(1/3, 2/3)", "QME(8/10, 9/10)"),
main = "Fitting a lognormal distribution",
xlogscale = TRUE, datapch = 20)
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Above is an example of fitting of a lognormal distribution
to danishuni data set by matching probabilities (p1 = 1/3, p2 = 2/3) and (p1 = 8/10, p2 = 9/10). As
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expected, the second QME fit gives more weight to the right-tail of the distribution. , despite we do not
choose the Pareto type-II distribution. Compared to the maximum likelihood estimation, the second QME fit
best suits the right-tail of the distribution, whereas the first QME fit best models the body of the distribution.
The quantile matching estimation is of particular interest when we need to focus around particular quantiles,
e.g., p = 99.5% in the Solvency II insurance context or p = 5% for the HC5 estimation in the ecotoxicology
context.
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